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0  INTRODUCTION

The interaction between engineering structures 
and the environment usually have corrosion as a 
consequence, producing important changes in the 
materials mechanical and physical properties and the 
structures geometry [1] and [2]. This leads to damage 
that often result in impairment of the structures 
functions. The corrosion process always starts from 
the components surface, but sometimes penetrates 
deep into the material.

A conventional criterion to classify the corrosion 
phenomena concerns the appearance of the corroded 
area [3]. In this regard, two basic forms of corrosion 
are defined: (a) generalized corrosion, which can 
be either uniform, when the component surface is 
affected at the same rate on a large area or non-
uniform corrosion, which is characterized by variation 
of the corrosion rate in different regions of the surface; 
(b) localized corrosion, which is restricted to compact 
areas.

Some typical damage geometries and their 
models are illustrated in Fig. 1. Examining this figure, 
we can conclude that for uniform corrosion, pitting, 
erosion and cavitation corrosion, a loss of mass and 
a cross-section reduction are present. Therefore, these 
types of damage are best modeled by beams or plates 

with a stepwise variable thickness [4] and [5]. In the 
case of stress and fatigue corrosion, the cross-section 
reduction is very local, and no loss of mass is present. 
Hence, the damage influence upon the beam rigidity 
can be modeled as a decrease in the longitudinal 
elasticity modulus E.

Fig. 1.  Typical corrosion geometries and the equivalent 
geometrical models

Herein, only corrosion causing both losses of 
mass and rigidity is considered. The thickness loss 
produced to structural elements by corrosion leads 
to a reduced bearing area and, therefore, decreased 
structural performance. This results in the life-
service limitation, as shown in [6] and [7]. In addition, 
changes in the structure’s modal parameters occur, 
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The natural frequencies fi for the bending 
vibration modes of a cantilever beam are derived as:

 f EI
mLi

i=
α
π

2

32
.  (1)

Here m is the beam mass and αi are the wave 
numbers for the beam that resulted as solutions of the 
characteristic vibration equation. 

That is, for the cantilever beam:

 cos cosh .α α + =1 0  (2)

In the case of uniform corrosion, the cross-
section is reduced to h on a segment of length ΔL. 
The geometrical model is presented in Fig. 3a. To 
separate the effect of the stiffness reduction from that 
of the mass loss, two individual models are proposed. 
In the model depicted in Fig. 3b, the loss of mass is 
considered by reducing the volumetric mass density 
in the corroded region, while maintaining constant 
stiffness.

a)

b)

c)

Fig. 3.  Corroded cantilever beam models

Dissimilarly, to highlight just the effect of 
stiffness decreases, the model shown in Fig. 3c has 
an increased volumetric mass density in the corroded 
region. 

The mass density is derived in both cases in such 
a  way to assure the same beam mass. 

1.1  Deriving the Loss of Mass Influence

The model presented in Fig. 3b is used to derive the 
effect of the mass loss on the natural frequencies. 

First, we consider the cantilever beam as 
continuous and having no mass. A mass mP located at 
the distance x from the fixed end covers in a quarter-
period Ti /4 the distance wi (x). A mass mE positioned 
at the free end cover in the same time distance wi (L). 

mainly in the sense of natural frequency drops; these 
changes constitute the basic input if dynamic methods 
are applied to assess the damage. If cracks are present 
in the structure, the mass changes are insignificant and 
mainly neglected in most approaches. 

In the case of generalized corrosion, it is 
impossible to neglect the loss of mass while this 
parameter becomes the most relevant one. Even if 
corrosion concerns the interest of researchers, because 
it is a major problem for structures, no reliable model 
for corroded structures is available. 

In prior research, we considered the influence of 
transverse cracks, which did not produce loss of mass, 
upon the dynamic behavior of beams, and established 
a simple and reliable method to assess this type of 
damage [8]. The most recent investigations focused 
on the influence of both local and uniform corrosion 
on the beam dynamical behavior, with regard to the 
joined effect of stiffness change and loss of mass. This 
paper presents a behavioral model of corroded beams 
and the subsequent mathematical relations, as well 
as a procedure based on this model, used to improve 
damage detection methods.

1  ANALYTICAL INVESTIGATION

Since the natural frequency changes are the relevant 
features used for structural damage assessment, the 
aim of this section is to introduce two mathematical 
relations developed by the authors, indicating the 
changes due to stiffness decrease and loss of mass, 
respectively. 

The case of a corroded cantilever beam is used 
for exemplification. Its geometrical asymmetry 
assures an unequivocal damage location definition. 
In its healthy state, the prismatic steel beam analyzed 
(Fig. 2) has the length L, the width B and the height 
H. As a consequence, the beam has the cross-section 
area A = B·H and the moment of inertia I = (B·H3 )/12. 
The involved mechanical parameters are: the mass 
density ρ, the longitudinal elasticity modulus E and 
the Poisson ratio μ. In addition, the earth’s gravity g is 
considered. The single load acting on the cantilever is 
its own mass.

Fig. 2.  Cantilever beam model
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These distances depend on the bending vibration 
mode shape, defined as:

 

w xi i i

i i

i i
i

x x
L L
L L x

( ) = − −

− +
+

−

cos cos

cos cos

sin sin
sin

h
h
h h

α α
α α
α α

α ssinαi x( ) ,  (3)

for the cantilever.
This fact is illustrated in Fig. 4 for the bending 

vibration mode three. The kinetic energy calculated 
from the mass mP, the general case, is:

 U x m w x
TKi

P i

i
( ) = ( )



2

2

.  (4)

For the mass mE, the kinetic energy results in:

 U L m w L
TKi

E i

i
( ) = ( )



2

2

.  (5)

To attain the same natural frequencies in both 
cases, the kinetic energies of the two models have to 
be equal. Eqs. (4) and (5) result in the dependency 
between two masses for the ith vibration mode, which 
is: 

 m m w x
w L

m w xEi P
i

i
P i= ( )

( )





= ( )[ ]

2

2
.  (6)

With w xi ( )  we denoted the dimensionless 
transverse displacement for a point located at the 
distance x from the fixed end; it takes values between 
null and the unit.

Fig. 4.  Two dynamic equivalent systems, having the mass located 
at different positions

In concordance to Eq. (6), for any mass located at 
a distance x from the fixed end, an equivalent mass 
conventionally located on the free end can be derived. 
These masses are in a relation given by the normalized 
mode shape square w xi ( )[ ]2 . From the dynamic 
point of view, the beam equivalent own mass is 

achieved by summarizing the equivalent masses of all 
beam slices. Fig. 5 exemplifies the case of bending 
vibration Mode 3. 

Fig. 5.  Cantilever beam statically load by a distributed inertia and 
the mass participation in the kinetic energy for Mode three

In fact, the total equivalent mass mi
eq , 

corresponding to the ith bending vibration mode, is 
obtained by multiplying the beam’s specific mass m   
with the area under the curve w xi ( )[ ]2 . Consequently,

 m mL w x dx mLi
eq

i
L

= ( )[ ] =∫ 2

0
0 25. .  (7)

The area under the entire curve w xi ( )[ ]2  is 0.25 
for all bending vibration modes, because the curves 
have the same nature. 

Hence, the frequency of the undamaged beam can 
be expressed, with regard to the equivalent mass, as:

 f EI
mL

EI
m Li

i i

i
eq= =

α
π

α
π

2

4

2

32 2 4
.  (8)

The mass contribution to the total kinetic energy 
can be derived from Eq. (7) for any location along 
the beam. The participation of each slice regards the 
distance covered in a quarter of the period Ti, thus 
being different for the different vibration modes. Fig. 
6 depicts the mass participation of 100 slices for the 
bending vibration mode three.

Let us consider now that the specific beam mass 
decreases due to uniform corrosion on a specific beam 
segment of length ∆L b a= − . The consequence is a 
reduced specific mass mR  on that segment. 

The equivalent mass contribution of the corroded 
segment is:
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 m m L w x dx m LRi
eq

R ia

b
R i= ( )[ ] =∫ 2 ς .  (9)

Note that for corrosion extended on the whole 
beam surface, the mass participation coefficient is 
ςi = 0.25.

Fig. 6.  The mass participation for 100 slices to the total kinetic 
energy for vibration Mode 3

Fig. 6 presents the mass participation for a 
beam having a corroded segment (h = 0.9H), located 
between a = 0.2L and b = 0.36L. On that portion, less 
mass will contribute to the kinetic energy. The entire 
mass contribution for the corroded beam is marked 
with dark bars in Fig. 6. 

The total equivalent specific mass, contributing 
to the kinetic energy, is found by summarizing 
the equivalent specific masses of the two healthy 
segments to that found for the corroded segment in 
Eq. (9). These are:

 m mL w x dx mLHi
eq

i
a

i− = ( )[ ] =∫1

2

0
κ ,  (10a)

 m mL w x dx mLHi
eq

ib

L
i− = ( )[ ] =∫3

2 σ ,  (10b)

where κi and σi are the mass participation coefficient 
for the segments 0 to a respectively b to L. 

We presumed the stiffness to be constant along 
the beam and the mass loss attributed to a decrease in 
the mass density, as illustrated in Fig. 3b. The natural 
frequencies for the beam with decreased mass are:

 f EI
m m m LRi

i

Hi
eq

Ri
eq

Hi
eq=

+ +( )− −

α
π

2

1 3

32 4
,  (11)

similar to:

 f EI
m m m LRi

i

i i R i
=

+ +( )
α
π κ ς σ

2

42 4
.  (12)

In regard to Eq. (8) and performing simple 
mathematical operations, the natural frequencies of 
the beam with the decreased mass result in:

 f f m
m m mRi i
i i R i

=
+ +( )4 κ ς σ

.  (13)

The frequency increase caused by the loss of 
mass is:

        ∆f f m
m m mRi i
i i R i

=
+ +( )

−








4
1
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As a consequence, this has the relative frequency 
shift, attained by dividing the frequency increase 
to that of the healthy beam in the respective mode 
becomes:

      ∆ ∆
f f

f
m

m m mRi
Ri

i i i R i
= =

+ +( )
−

4
1

κ ς σ
.  (15)

The frequency increases for two damage 
scenarios are illustrated below:
• in the first scenario (Fig. 7) the mass loss is 

simulated for segments of length 0.1L and 
ten cases are analyzed, the location being 
successively replaced along the beam;

• in the second scenario (Fig. 8) the mass loss is 
simulated for segments of length 0.05L and 
twenty cases are analyzed, the location being 
again successively replaced along the beam.
From the two figures presented below, one can 

first observe that the frequency shift due to loss of 
mass depends on the corroded segment’s position 
on the beam. These changes are directly related to 
the mass participation (or the square of the highest 
velocity achieved by each slice individually), which 
is presented in Fig. 6. This is particularly obvious in 
Fig. 8 and confirmed by the expression of the kinetic 
energy, containing the sum of all beam slice masses. 

Fig. 7.  The relative frequency shift for Mode 3: mass loss on 
segments of  length 0.1L
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Fig. 8.  The relative frequency shift for Mode 3: mass loss on 
segments of length 0.05L

Now, comparing the proportions between the 
bins in Fig. 7 and that of the homonym pair of bins 
in Fig. 8 a similarity is found, confirming the fact that 
the superposition principle is valid for the frequency 
shifts. This also can be deduced from Eq. (9).

1.2  Deriving the Loss of Stiffness Influence

The analysis made on the corroded beam by neglecting 
the mass decrease, according to the model presented 
in Fig. 3c, concerns only the moment of inertia I as a 
factor influencing the natural frequencies. This case is 
nominated as corrosion in this sub-section. 

In previous research [10], we proved that the 
energy loss is proportional to the deflection increase. 
The loss of capacity to store energy, due to damage 
to the corroded beam, manifests as an apparent 
energy increase for a healthy beam (the opposite to 
Castgliano’s theorem), because of the deflection under 
similar load increases in case of damage. 

Three specific domains can be observed in Fig. 
9: the two healthy segments having the moment of 
inertia I = BH3/12, and the corroded segment with 
IC = Bh3/12. 

Because we assume that the corroded segment 
has a higher mass density, the inertial forces will keep 
constant along the beam in order to compensate the 
mass loss. In the corroded region, the neutral axis is 
deviated to the new mid-cross-section. 

While the mass distribution remains constant, the 
bending moment M(x) is easily derived for the healthy 
cantilever beam, as it is known that it is proportional 
with the mode shapes’ second derivative. Thus, the 
dimensionless bending moment is similar to the 
dimensionless curvature M x w xi i( ) ( )= ′′ . Here, both 
terms of the relation are made dimensionless by the 
division to the highest value of the category, achieved 
at the fixed end: these are Mi ( )0  and (0)iw′′ .

In the case of a partial stiffness decrease, as shown 
in Fig. 9, it is convenient to consider the effective 
bending moment Meff (x). It is the moment acting on a 
presumed healthy beam, but producing a similar effect 
as M(x) on the corroded one. The relation between the 
two bending moments is:

 M x M x I
Ieff ( ) ( ) .= actual

reference

 (16)

As a consequence, this has a perturbation of 
the bending moment in the transition zones and an 
increase of it in the corroded region. 

           

Fig. 9.  Typical regions for a corroded beam and the energy 
distributions for modes 1 and 3

Furthermore, in Fig. 9, the apparent energy 
increase is presented for mode one (similar to the 
static load) and mode three. The distortion in the 
transition region can be neglected since the cross-
section centers for the healthy and corroded segments 
are closely located.

The apparent energy increase is actually a 
decrease, while the beam is able to store less energy 
for a reduced cross-section. Thus, the energy loss ratio 
is derived from the corroded and healthy state, as:
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Both the actual and the effective moments are 
dimensionless. 

The energy distribution along the beam for the 
analyzed case is, in the explicit form:

U
EI

M x dx

EI
M x dx

EI
M x dx

Si i
a

C
i

a

b
i

b

L

= [ ] +

+ [ ] + [ ]

∫
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2

1

2

2

0

2 2

( )

( ) ( )∫∫ , (18)

where 0 to a and b to L are the healthy segments and a 
to b is the corroded one.

In accordance with Eq. (16), and considering the 
inverse effect of stiffness decrease to the stored 
energy, we can replace the actual bending moment in 
Eq. (17) by M x I I M xC C( ) / ( )= ( ) . Moreover, by 
adding and subtracting the strain energy of the healthy 
segment a to b in Eq. (18), one attains:

 

U U
EI

I
I
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EI
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Si i
C

C
i

a

b

i
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b

= + [ ] −
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2

2
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or, in a comprehensive form:

 U U I
I EI

M x dxSi i
C

i
a

b
= − −






 [ ]∫1
1

2

2
( ) .  (20)

Now, after substituting USi in Eq. (17) and 
reduction of the common factor, the energy loss ratio 
becomes:

  ηi
i
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C
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I I
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Denoting τi i
a

b
M x dx= [ ]∫ ( )

2 , and knowing that 

M x dxi
L

( ) .[ ] =∫ 2

0

0 25  as in the case of lateral 

deflection, the energy loss ratio is found as:

 η
τ

i
i CI I
I

= −
−( )

1
4

.  (22)

From Eqs. (17) and (22), the relation between 
the natural frequencies for the beam with stiffness 
decrease and the healthy one results as:

 f
f

U
U

I I
I

Si

i

Si

i
i

i C= = = −
−( )η

τ
1
4

,  (23)

hence, the frequencies for the damaged beam are:

 f f I I I
ISi i
i C=

− −( )4τ
.  (24)

The frequency shift due to stiffness decrease 
results from Eq. (24), as:

     ∆f f f f I I I
ISi i Si i
i C= − = −

− −( )







1

4τ
,  (25)

and as consequence the relative frequency shift is:

 ∆
∆

f f
fi

I I I I
ISi

Si i C= =
− − −( )4τ

.  (26)

In the following, the frequency decrease is 
illustrated for two damage scenarios. First, the 
stiffness reduction manifests on a segment of length 
0.1L, and ten cases are analyzed. The damage location 
is successively replaced along the beam (see Fig. 10).

The second scenario considers a stiffness 
reduction on a segment of length 0.05L and twenty 
cases are analyzed, the location again being 
successively replaced along the beam. The results are 
presented in Fig. 11.

Fig. 10.  The relative frequency shift for mode 3: stiffness loss on 
segments of length 0.1L

Fig. 11.  The relative frequency shift for mode 3: stiffness loss on 
segments of length 0.05L
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If the corrosion is extended on the whole beam 
surface, i.e. τi = 0.25, by neglecting the loss of mass, 
one obtains the frequencies for the slimmer beam 
(with thickness h) as:

 


f f I
ISi i
C= .  (27)

The frequencies of a corroded beam (with both 
loss of mass and stiffness decrease) derived from Eqs. 
(16) and (24) depend on the healthy beam’s frequency 
and 3 parameters that characterize the damage 
geometry: a and b indicating the damage extend and 
d = H – h as the damage depth. Therefore, it is possible 
to characterize any corrosion damage by patterns, 
defined as a sequence of frequency shifts of some 
bending vibration modes. Comparing these patterns 
with frequency shifts found from measurements the 
damage can be located and its severity evaluated [9] 
to [11].

2  NUMERICAL VERIFICATION 

In order to prove the validity of the contrived 
mathematical relations, which express the frequency 
changes due to mass and stiffness decrease, a finite 
element analysis was performed. First, the undamaged 
beam, as a reference, was investigated. Afterward, 
the corroded cantilever was considered, for three 
particular cases:
1.  the beam with a corroded segment associated 

with loss of mass and stiffness, Fig. 3a;
2.  the beam with constant stiffness having a segment 

presenting a loss of mass realized by the density 
alteration, Fig. 3b;

3.  the beam having a segment with reduced stiffness, 
but with compensated loss of mass in order to 
assure the original mass, Fig. 3c.
The analysis was performed with SolidWorks 

software. Tetrahedral elements are taken, with the 
reference dimension of 6 mm. The resulted number of 
nodes is around 16,000 and the number of elements 
around 7,800 in all cases, assuring high precision.

The intact steel beam with a rectangular cross 
section has the following geometry: length L = 1 m, 
width B = 50 mm and height H = 5 mm. The 
physical-mechanical parameters are: the mass density 
ρ = 7850 kg/m3, the longitudinal elasticity modulus 
E = 2.0·1011 N/m² and the Poisson ratio μ = 0.3. The 
Earth gravity acceleration is taken g = 9.806 m/s² and 
the mass of the beam results as being m = 1.9625 kg.

The parameters of the corroded region for 
three conceived damage scenarios are presented 
comprehensively in Table 1.

Table 1.  Damage geometrical parameters

Case Depth, D
[mm]

Left limit, a
[mm]

Right limit, b 
[mm]

Extent, ΔL 
[mm]

A 0.5 500 600 100
B 1 500 600 100
C 0.5 700 900 200

The first three frequencies for the weak-axis 
bending vibration modes are found using the Modal 
analysis module. Table 2 presents the results derived 
from the contrived relations, for the healthy beam 
and the three damage scenarios, while the results 
obtained by simulations are presented in Table 3. The 
fit between the results obtained analytically and by 
means of FEA confirm the validity of the relations.

Table 2.  Natural frequencies – analytically

Mode

i Scenario fi
[Hz]

fRi
[Hz]

fSi
[Hz]

fCi
[Hz]

1
A

4.077
4.0901 4.0589 4.072

B 4.1034 4.0444 4.0708
C 4.1668 4.0744 4.1642

2
A

25.550
25.779 24.840 25.069

B 26.015 24.257 24.722
C 25.739 25.246 25.435

3
A

71.539
71.652 71.138 71.251

B 71.766 70.815 71.042
C 72.070 68.788 69.319

The frequencies of the corroded beam from Table 
2 are derived, involving the shifts due to the stiffness 
decrease and the mass loss, as:

 f f f f f f fCi i Ri Si Ri Si i= − − = + −∆ ∆ .  (28)

Table 3.  Natural frequencies – FEM simulations

Mode

i Scenario fiFEM

[Hz]

fRiFEM

[Hz]

fSiFEM

[Hz]

fCiFEM

[Hz]

1
A

4.092
4.1047 4.0669 4.08

B 4.1181 4.0289 4.054
C 4.1821 4.0885 4.178

2
A

25.639
25.870 24.732 24.973

B 26.111 23.521 24.012
C 25.708 25.225 25.314

3
A

71.792
71.902 71.280 71.416

B 72.019 70.605 70.879
C 72.335 68.329 68.941

To have an overview on the results, the relative 
frequency shifts are derived and compared. Eqs. (15) 
and (26) are again involved for the cases of mass loss 
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respectively stiffness decrease. If both changes occur, 
we use

 ∆f f f
fCi

FEM Ci
FEM

i
FEM

i
FEM=
−

100.  (29)

Table 4 presents the results achieved from the 
analytical study and Table 5 those from the FEM 
analysis.

Table 4.  Relative frequency shifts – analytical

Mode

i Scenario Δ fRi  [%] Δ fSi  [%] Δ fCi  [%]

1
A 0.321 –0.444 –0.122
B 0.647 –0.799 –0.152
C 2.202 –0.063 2.138

2
A 0.89 –2.778 –1.882
B 1.819 –5.060 –3.240
C 0.266 –1.189 –0.923

3
A 0.157 –0.560 –0.402
B 0.317 –1.012 –0.694
C 0.742 –3.845 –3.103

Table 5.  Relative frequency shifts – FEM analysis

Mode

i Scenario Δ fRiFEM  [%] Δ fSiFEM  [%] Δ fCiFEM  [%]

1
A 0.312 –0.613 –0.293
B 0.637 –1.540 –0.928
C 2.203 –0.085 2.101

2
A 0.901 –3.534 –2.597
B 1.843 –8.258 –6.345
C 0.269 –1.613 –1.349

3
A 0.153 –0.711 –0.523
B 0.317 –1.652 –1.271
C 0.756 –4.823 –3.971

For a clear overview, the frequencies of the 
damaged beam are made dimensionless by dividing 
their values by the healthy beam’s frequencies. The 
values, indicating a good concordance, are indicated 
in Fig. 12. A perfect fit is attained for the frequency 
increase due to mass loss derived by calculus and 
attained from the FEM. Regarding the case of 
stiffness decrease, the result varies, but with a value 
less than 3.5 %, which is achieved for Mode 2 of the 
beam with the deepest corrosion (the reason for this is 
the neglecting of the bending moment distortion). The 
correctness of the mathematical relations presented in 
Section 2 is confirmed. 

The relative frequency shifts should be given 
a special attention. Their values are analogous for 
the two scenarios: A and B. The difference consists 
in their amplitudes, which are in a relation fixed by 
the damage severity (i.e. corrosion depth d). This 

shows that by normalizing the relative frequency 
shifts a sequence of values is achieved constituting a 
pattern that indicates the corroded region’s location. 
Dissimilar is the case of Scenario C, which leads to a 
different pattern.

Fig. 12.  Ratios between the frequencies derived analytically and 
evaluated by FEM analysis

Fig. 13.  The relative frequency shifts

Analyzing the frequencies of the beam in two 
damage locations, the results show that the position 
definitely determines the shift values. If a stiffness 
decrease affects an area near the contraflexure, less 
frequency drop is observed. In contrary, if the stiffness 
affects a region with important hogging, the drop is 
significant. The mass decrease leads to a frequency 
increase, which is in direct relation to the square of the 
mode shape value at the damage location. 

3  LABORATORY EXPERIMENTS

The numerical analysis performed to prove the 
correctness of the theoretical findings was completed 
by experiments. These were performed on a similar 
cantilever, the three first natural frequencies for the 
healthy and corroded beam being aimed. To ensure 
proper rigidity for the clamped end, this was fixed in 
a milling machine vise, which is a component of the 
testing stand presented in Fig. 14. 
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The acquisition equipment consists of a laptop 
computer, an NI cDAQ-9172 compact chassis with NI 
9234 signal acquisition modules and a unidirectional 
Kistler 8772 accelerometer, which is fixed close to 
the beam’s free end. High precision in evaluating 
the natural frequencies is required since a low shift 
in frequency is expected. For this reason, a virtual 
instrument was developed in LabVIEW that permits 
acquiring the acceleration time history and the 
accurate evaluation of frequencies [12].

Fig. 14.  The experimental stand

To simulate uniform corrosion, a discontinuity 
was produced by abrasion, the disruption having the 
parameter of scenario A in the numerical simulations 
section.

The measured frequencies M
if  for the first six 

bending vibration modes, for the intact beam and the 
beam with simulated corrosion, are presented in Table 
6. Furthermore, the resulted relative frequency shifts 
are indicated, as well as the values derived by means 
of FEM analysis for the damage depth d = 0.5 mm 
respectively d = 1 mm. The results, presented in Table 
6 and Fig. 15, are in good correlation, confirming the 
validity of the proposed analytical relation for the 
prediction of frequency shifts.

Table 6.  Measured natural frequencies and the relative shifts for 
the measured and calculated frequencies

Mode

i fiM  [Hz] fCiM  [Hz] Δ fCiM  [%]
Δ fCiFEM  [%]

d = 0.5 d = 1
1 4.0199 3.9663 –0.347 –0.293 –0.928
2 25.192 23.535 –5.881 –2.597 –6.345
3 70.539 69.367 –0.928 –0.523 –1.271
4 138.23 132.54 –3.402 –1.506 –3.374
5 228.50 222.36 –1.961 –0.941 –2.125
6 341.34 332.46 –1.875 –0.990 –2.235

The frequency shifts derived by the FEA frame 
those from measurements, meaning the right location 

has been found. The damage depth, created between 
0.5 and 1 mm, is correctly estimated as 0.8 mm. In 
contrast, by comparing the first three frequency shifts 
achieved by measurements with those in Table 5 for 
the case C, dissimilarity can be observed. This proves 
the univocal definition of locations by the relative 
frequency shifts.

Fig. 15.  Calculated relative frequency shifts for the FEM analysis 
and the measurement results

4  CONCLUSION

Two mathematical relations for the prediction of 
frequency changes due to stiffness diminishing a 
respective loss of mass are proposed. The first relation 
associates the effect of a local mass loss on the natural 
frequencies with the mode shape value corresponding 
to that location. The correlation between the frequency 
changes due to the stiffness decrease and the beam 
curvature was also found, and the second resulting 
relation was derived. It has to be mentioned that, due 
to the fact that in this second relation the effect of the 
bending moment distortion in the transition regions is 
neglected, deviations from the real frequency shifts 
can occur. This is a topic which is in our concern for 
feature research.

In order to reach the natural frequency values 
if both effects occur, the two relations have to 
be superimposed. Finite element analysis and 
experiments confirmed the correctness of these 
relations. Since the relations have as input the damage 
geometry and the healthy beams mode shape and 
curvature, these are easily adaptable for any boundary 
conditions.

The relative frequency shifts derived from 
these relations provide a simple way to describe the 
behavior of corroded beams. From these relations, 
a database containing numerous damage scenarios 
was realized. The corroded region in the three cases 
was successfully found with the involvement of this 
database.
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6  NOMENCLATURE

A cross-section area of the healthy beam [m2]
a distance from the fixed end to the left corrosion limit 

[m]
B beam width [m]
b distance from the fixed end to the right corrosion 

limit [m]
d corrosion depth [m]
E Young’s modulus [N/m2]
fi ith natural frequency [Hz]
fi  relative frequency shift due to damage for the ith 

vibration mode [%]
H beam height [m] 
h height of the segment subjected to uniform corrosion 

[m]
I moment of inertia [m4] 
L beam length [m]
ΔL length of segment subjected to uniform corrosion [m]
M(x) bending moment at distance x from the fixed end 

[N·m]
Meff(x) effective bending moment x from the fixed end [N·m]
mP  mass of a slice located at the distance x from the fixed 

[kg]
mE  mass of a slice located at the free end [kg]
mi
eq  equivalent mass of a beam segment for the ith 

vibration mode [kg]
m  specific mass [kg/m]
mR  reduced specific mass [kg/m]
T period [s]
wi(x)  beam deflection at distance x from the fixed end for 

the ith vibration mode [m]
′′w xi ( ) beam curvature at distance x from the fixed end for 

the ith vibration mode [m–1]
Uk kinetic energy [kg·m2/s2]
αi wave number of the ith vibration mode [-]
η energy loss ratio [-]
ςi, κi and σi    mass participation coefficients of beam 

segments for the ith vibration mode [-]
ρ volumetric mass density [kg/m3]
μ Poisson ratio [-]

subscripts indicates
i the bending vibration mode number
H the healthy beam/segment parameters
R the beam/segment parameters with reduced specific 

mass
S the beam/segment parameters with reduced specific 

stiffness
C the parameters of the corroded beam/segment

superscript indicates
FEM the results obtained by means of the FEM
M the results obtained by measurements
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