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Abstract

Augmented reality (AR) merges real world with digital
content, a process which requires information about the
observed scene. In this paper we address a part of this
task by exploring fast inference of a single light setup in
common AR scenarios using deep learning. We propose
a new synthetic dataset for training deep models for the
task of light condition inference as well as a dataset of
photos used for testing models in real environment. Using
our datasets we have compared existing approaches that
vary in light position information representation. Addi-
tionally, we propose an alternative representation that
could extend to encoding multiple lights. We discuss the
differences between evaluated models and provide some
ideas for further research in this field.

1 Introduction

Augmented reality aims to blend real world with digi-
tal content which requires information about the scene,
primarily its structure and camera position. One of ad-
ditional visual cues that makes the superimposed digital
content appear more realistic are matching lighting con-
ditions. While lighting is not necessary for all AR ap-
plications (e.g. information overlays), other applications
like gaming may benefit from it. In these scenarios light-
ing may make or break the illusion as illustrated in Fig-
ure 1.

Real-world scene lighting is a complex phenomenon,
but the parameters that are inferred for AR are firstly lim-
ited by the real-time graphic engines which operate with a
number of primitive light sources with different intensity.
Secondly, these parameters have to be further simplified
due to real-time and low power consumption constraints.
To this end, most research work in this area focuses on de-
termining position of a single light source relative to the
camera using regression of angle parameters. In this pa-
per we continue the investigation by proposing a new syn-
thetic dataset for training deep models and a real dataset
for evaluation. We also show that superior performance
can be achieved by treating the problem as a classifica-
tion problem where individual classes denote discretized
angles. We believe that this formalization can be easily
extended to multiple light sources.
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Figure 1: Comparison of lighting setups. Image (a) shows a
generic render of a cube where no information about the light
is known. Image (b) shows a render of the same cube with
light conditions matching those in the scene. Both examples
are rendered using a fast OpenGL renderer.

2 Related Work

There have been several methods for illumination esti-
mation proposed in the past years, each with different as-
sumptions and goals. Most early approaches utilize light
probes and/or objects with known geometry, e.g. in [1] an
object with known geometry and Lambertian reflectance
material assumption is used to predict position of mul-
tiple light sources. Light probes are used in AR context
in [2], in [3] a known, globally convex, object is also used
as a light probe to determine position and intensity of a
light. Combining both ideas [4] proposes a deep learning
model trained on synthetic versions of a known model
that is used as a light probe in to determine lighting condi-
tions in real images. In [5] authors propose an interactive
method for light estimation without known geometry, but
require user to trace the silhouette of an object. In [6], au-
thors use head-mounted camera to classify lighting con-
ditions into a predefined number of illumination classes
based on illumination of hands.

Direct parameter inference using deep models has be-
en recently explored by [7]. Synthetic RGB-D images
are used to train prediction of direction of a single light
in an AR scene. Their work has been extended by [8],
they work with RGB images and use stereoscopic projec-
tion to encode light direction. Our work follows these re-
cent developments. We use synthetic RGB data for train-
ing the model and a real dataset for testing. In contrast
to [8] our datasets are more diverse and contain more than



Figure 2: Examples from synthetic training (above) and real-
world testing (below) datasets.

one object in various spatial configurations. We are also
proposing a new way to encode light position that has po-
tential to generalize to multiple light sources.

3 Datasets

As mentioned, recent works [7, 8] utilize synthetic data-
sets for training their models, but they have so far not
released their datasets to the research community. The
datasets are also quite limited in diversity of scenes. We
have therefore built our own dataset to address these is-
sues. The dataset is generated in Blender using Cycles
ray-tracing engine. Scenes, materials, light and camera
position are generated using pseudo random generator
which means that rendering of specific sample can be
reproduced by controlling the seed value. At the same
time the size of the dataset can be easily extended by
generating new samples. For the experiment, presented
in this paper, we have generated a dataset consisting of
more than 60.000 samples using a single light source in
combination with ambient light to mimic the diversity of
real-word conditions. Several images from the dataset are
shown in Figure 2.

The second dataset was acquired for testing. The ac-
quisition was done using a Canon EOS700D camera in
a controlled environment with a single dominant light
source. The position of a camera and position of the light
source was monitored determined using fiducial markers.
By also changing objects in the scene, we have acquired
100 images, some of those shown in Figure 2. We have
also created an online annotation tool that allows us to
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Figure 3: Light angle encoding approaches. (a) Direct encoding
using radians - RAD, (b) Stereographic projection - STR, (c)
Angle discretization - DIS.

manually to determine position of light using slider con-
trols and a visualization of an shaded object as a feed-
back. We intend to use this tool to annotate in-the-wild
samples. So far we have used it to re-annotate half of the
testing dataset in order to evaluate human precision for
the same task that is expected from evaluated models.

4 Methodology

Based on our previous preliminary experiments we have
selected EfficientNet [9] architectures for all our experi-
ments with the proposed dataset. The model receives a
RGB image of 128 x 128 pixels as an input. For the out-
put we have first implemented two angle regression ap-
proaches, regression of radian angles of light relative to
the camera [7], denoted as RAD, and stereographic pro-
jection of the angles [8], denoted as STR. We have re-
lied on the description in corresponding papers and only
changed the backbone part.

Both reference approaches are illustrated in Figure 3
and make certain assumptions regarding the scene that
make sense in AR scenarios. The ¢ angle denotes the
azimuth angle and spans from 0 to 360 degrees, while 6
denotes elevation angle and only spans from 0 to 90 de-
grees. The advantage of stereographic projection of an-
gles is supposed to disentangle interaction of both angles
when the 6 approaches 90 degrees and estimation of ¢
becomes difficult.

The reference approaches [7, 8] have a problem that
they only model a single light source. Every extension of
the model to multiple lights or addition of ambient light
requires modification of the architecture. There is also
a problem of selecting appropriate loss function that has
to take these interdependent factors into account. We are
therefore exploring an option of formalizing lighting con-
ditions as a discretized probability function. For a single
light source the problem can be reduced to a separable
multi-class problem where the interval of possible angle
values is linearly discretized to a certain number of op-
tions. The desired output is then encoded using one-hot



Model Random (1) ImageNet (2)
R A ® 0 ® 0
A RAD B3 30,5 +£32,8(21,2) 20,5+13.3(19,1) 24,4+£22,4(16,9) 23,6+ 11,4(24,4)
B STR B3 62,8 +48,9(49,2) 20,1+12,6(20,9) 51,5+46,5(28,3) 18,9+12,1(17,8)
C DIS B3(64,64) 37,7+41,4(22,2) 21,5+14,5(19,3) 23,8+29,3(14,6) 25,6+ 11,7(24,4)
D DIS B3(32,16) 19,04+21,8(12,0) 19,64 12,2(19,0) 20,3 +17,3(15,5) 22,6+ 10,3(22,4)
E DIS BO0(32,16) 29,9+32,9(19,3) 21,1+12,6(19,9) 21,5+26,4(14,9) 22,1+ 10,8(22,2)

Table 1: Overview of the experiment results. Each model is represented with a letter from A to E and a number 1 or 2. Model
hyperparameters are defined with angle representation (R) and architecture (A). For discretized angles approach we have evaluated
several configurations, two different discretization resolutions and two different models (EfficientNet B3 and B0O). Number pre-
sented are angle errors on testing dataset (smaller is better) converted to degrees. The first number is average error, followed by

variance, the third number is median error.

encoding. Note that this approach introduces some level
quantization noise. This noise could be mitigated using
interpolation, but at the moment we have only evaluated
this simple approach.

5 Results

We have evaluated all described approaches in two dif-
ferent contexts, we have used EfficientNet B3 as the ba-
sis, once with randomly initialized parameters, in sec-
ond case model parameters were initialized using a model
pre-trained on ImageNet dataset. All models were trained
using Adam [10] optimization algorithm. Learning rate
was set to 0.0002 for randomly initialized models vari-
ants and to 0.0001 for the pre-trained variants. Batch size
was set to 32 samples. According to [7, 8] we used MSE
loss function for RAD and STR approaches. For DIS,
we have used standard cross entropy loss. We have run
training for all the models for 100 epochs.

The results of our experiment are presented in Ta-
ble 1, all errors are given in degrees. The errors for all
models look quite high, but to put the numbers into per-
spective we have measured average error of human anno-
tations for a part of the testing dataset which are 24.9 for
@ and 7.3 for 6. It is also clear that the inter-sample vari-
ation of error is quite high. We have therefore also com-
puted median angle error which is almost always lower
than the average. This shows that the distribution is ske-
wed - we have many samples with low error and a few
samples with very high error as shown in Figure 4 where
we look at the distribution of errors for model D1. The
errors according to ¢ are indeed not distributed normally.
The 6 errors are more evenly distributed and are appar-
ently harder to infer.

Reference models (A and B) are performing worse
than reported in corresponding papers [7, 8], also due to a
more difficult setup with more objects in the scene as well
as textures. The best models according to the testing set
results are the discretized position models, primarily D1
and D2, despite quantization errors that occur in this rep-
resentation. Increasing discretization resolution (models
C1 and C2) does not help, but increases error, especially
with respect to ¢ dimension. We attribute this to the sim-
ple quantization technique with one-hot encoding, we be-
lieve that distributing votes among neighbor cells may re-
duce this problem. Selected examples of predictions for
D1 model are shown in Figure 5, first row shows good ex-
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Figure 4: Distribution of errors for testing dataset for angle ¢
and 60 according to model D1. The plots show errors for all
testing samples with respect to their actual angle. Dotted green
lines represent average error for each distribution.

amples, second row bad ones. We can see that the model
is less sure regarding the 6 angle with more uncertainty
in the distribution. We can also see that model tends to
be less reliable when real objects are not distributed over
entire image. Another thing that we have observed is that
the model performs worse on the half of images that con-
tain fiducial markers. All these observations give us new
guidelines and ideas for the design of the training dataset.

Finally, we have tested out trained model on several
images that we have acquired in-the-wild with more di-
verse and different light sources. Figure 6 contains sev-
eral examples where the model behaves well despite weak
shading and reflections, leading us to believe that a more
general and robust model can be obtained with more work.

6 Conclusion

In this paper we have presented our preliminary results
on fast inference of a single light setup in common AR
scenarios using deep learning. We have proposed a new
synthetic dataset for training deep models for the task of
light condition inference as well as a dataset of real im-
ages used for testing models in real environment. Both
datasets are meant to become publicly available, thus ben-
efiting the progress of the field. Using these datasets we
have evaluated several approaches and proposed a novel
representation that could be easily extended to encode



Figure 5: Qualitative example overview for model D1. Prediction distribution for ¢ is presented on the left chart and for 6 on
the right chart. Examples (a) to (c) show results with good prediction of both angles, examples (d) to (f) show cases with severe
problems. Reference object rendered using an OpenGL based engine, shadow intensity a default value and it not predicted by the

model.

Figure 6: Preliminary result for D1 model on samples recorded
outside the controlled environment. Only position is determined
by the model, other light properties are set to default values.

multiple lights. Our future work will involve improving
and extending the datasets as well as exploring ways to
determine multiple light sources in a scene and working
with multiple viewpoints to increase robustness.
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