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Abstract

Internal erosion and piping in embankments and their 
foundations is the main cause of failures and accidents 
to embankment dams. To estimate the risks of dam 
failure phenomenon, it is necessary to understand this 
phenomenon and to develop scientifically derived analyti-
cal models that are simpler, easier to implement, and more 
accurate than traditional methods for evaluation of piping 
potential. In this study, a generalized regression neural 
network (GRNN) technique has been applied for the 
assessment of piping potential, as well, due to its ability to 
fit complex nonlinear models. The performance of GRNN 
has been cross validated using the k-fold cross validation 
method technique. The GRNN model is found to have very 
good predictive ability and is expected to be very reliable 
for evaluation of piping potential.
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INTRODUCTION

In recent years, dam safety has drawn increasing atten-
tion from the public. This is because floods resulting 
from the breaching of dams can lead to devastating 
disasters with tremendous loss of life and property, espe-
cially in densely populated areas [1]. Past dam-failure 
disasters showed that the loss of life is directly related to 
the evacuation time available, should failures occur. It is 
therefore very important to understand the process of 
dam breaching, and if possible, to obtain the key breach-
ing parameters required to quantitatively describe the 
dam-breaching process. 

Earth and rockfill dams are widely used throughout 
the world, and most past dam failures involved such 
dams. Piping is the most common cause of dam failures. 
According to statistics, approximately half of all the 
world’s dam failures are attributed to piping phenomena 
[2-3]. Possible piping-phenomena modes include heave, 
internal erosion and backwards erosion. While the 
most common piping-failure mode is internal erosion, 
most often associated with conduits or other structural 
penetrations through dams, up to one-third of all piping 
failures can be attributed to backwards-erosion piping [4]. 

Piping phenomena have been studied by a large number 
of researchers and the list of publications on this topic is 
voluminous. For instance, in the early twentieth century, 
Terzaghi [5] performed experiments on heave-type 
piping, and developed a theoretical framework for 
the prediction of heave. Based on this framework, an 
equation for the factor of safety against heave was later 
adopted by practitioners for all piping-failure modes, 
such as backward-erosion piping and piping along 
internal fractures (concentrated leak erosion), although 
the theoretical basis for this adaptation of Terzaghi’s 
equations has not been confirmed with laboratory 
experiments. Bligh [6] and later Lane [7] recognized 
a fundamental difference in the piping mechanisms 
between the seepage occurring through intergranular 
flow and the seepage along soil/structure boundaries. 
Modern practitioners define these piping mechanisms 
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as backwards-erosion piping (for the intergranular-flow 
case), and concentrated leak erosion for the case of 
flow along pre-existing openings (either soil-structure 
openings or cracks through an embankment), and so on. 
However, more research is still needed to fill in the gaps 
in our understanding of piping. Many existing structures 
were constructed without filters or with inadequate 
filters. Current methods for the evaluation of piping 
potential are based on theories that were developed 
almost 100 years ago, which have proven to be inad-
equate, when one considers the range of mechanisms 
that fall under the heading ‘‘piping’’[8]. Therefore, many 
scholars and experts have attempted to develop scientifi-
cally derived analytical models that are simpler, easier to 
implement, and more accurate than traditional methods 
for the evaluation of piping potential. 

In recent years, due to pervasive developments in 
computational software and hardware, several alternative 
computer-aided pattern-recognition approaches have 
emerged [9]. An artificial neural network (ANN) is a 
sophisticated computational approach capable of model-
ling a highly complex function [10]. It is frequently 
employed to mimic a nonlinear function with a large 
number of variables that cannot be modelled with a 
classical linear function. The theory, design and applica-
tion of ANNs have been advancing a great deal during 
the past 20 years in order to solve complicated problems 
in different fields, including structural and earthquake 
engineering [11-12], construction engineering [13], 
geotechnical engineering [14], signal processing [15] and 
geosciences [16]. The neural network is well known as a 
parallel information-processing structure that consists of 
simple processing units with a high degree of intercon-
nection between each unit. Each neuron performs a 
relatively simple job: receive impulses from input cells or 
neurons, carry out some types of transformation of the 
inputs and pass on the weighted products to the other 
cells or other neurons. The function of a neural network 
replicates that of a biological brain, which is basically 
composed of a very large number of massively intercon-
nected neurons. Neural networks exhibit a mapping 
capability, learn from examples and possess the capabil-
ity to generalize. They are robust systems that attempt to 
mimic the fault-tolerance and can process information 
in parallel with high speed. For these outstanding 
capabilities, neural networks are designed for pattern-
recognition and classification applications. 

There are different types of neural networks that can be 
employed for pattern recognition, e.g., generalized neural 
network (GRNNs), multi-layer perceptron and recurrent 
network, and so on. In this study, a GRNN has been 
chosen to predict the occurrence of a seepage piping 
disaster in terms of selected factors. The performance of 
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the GRNN was cross-validated using the k-fold cross-
validation technique. The main purpose of this paper is 
to determine the scope and suitability of the GRNN for 
the prediction of piping disasters in embankments.

2 MECHANISM OF PIPING 

Piping is a process whereby internal voids are created by 
seepage flow. Erosion in earth structures due to water 
flow occurs when the erosion-resistant forces are less 
than the seepage forces that tend to produce it, in such a 
way that the soil particles are removed and carried with 
the water flow (Fig.1). 

 

Embankment

Seepage

Figure 1. Illustration of piping leakage.

The resistant forces depend on the cohesion, the inter-
locking effect, the weight of the soil particles and the 
kind of protection they have downstream, if any. Since 
the seepage through an earth structure is not uniform, 
the erosion phenomenon increases where there is a 
concentration of seepage and water velocity; in places 
where this concentration emerges at the downstream 
side, the erosive forces on the soil particles might 
become very significant. This accentuates the subsequent 
concentration of seepage and erosive forces there. The 
seepage water has a velocity and force such that it is able 
to remove soil particles from the ground surface at the 
point of exit. As the soil particles are removed, the length 
of the seepage path decreases, resulting in a higher 
hydraulic gradient. The increased hydraulic gradient 
induces a higher seepage velocity and force, which in 
turn moves ever larger soil particles (Fig.2).

Piping in earth dams can be categorized based on the 
erosion process, i.e., concentrated leak erosion, back-
ward erosion, suffusion and soil contact erosion [17]. 
This is shown in Fig.3 (a) and (b) for piping through the 
foundation, and from the embankment to the founda-
tion. Concentrated leak erosion is defined as the erosion 
of soil in a crack or a system of interconnecting voids in 
an earth dam or its foundation [17]. The initial cracks 
generated by differential settlement, desiccation or 
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Figure 2. Illustration of sand content and seepage flow during piping leakage. a) Before piping. b) After piping.

a) b)

Initiation Continuation Progression Breach/Failure

Leakage exits from the 
foundation and 

backward erosion 
initiations

Continuation of erosion Backward erosion in 
progresses to form a pipe

Breach mechanism 
forms

(a)

Initiation Continuation Progression Breach/Failure

Leakage exits the core into 
the foundation and backward 

erosion initiates as core 
erodes into the foundation

Continuation of erosion Backward erosion  
progresses to form a pipe. 
Eroded soil is transported 

in the foundation

Breach mechanism 
forms

(b)

Figure 3. Models for the development of failure by piping in the foundation and from the embankment to the foundation [18].
a) Piping in the foundation initiated by backwards erosion. b) Piping from the embankment to foundation initiated by backwards erosion.

freezing may be shut by the swelling or softening of the 
soil, but remain to be a serious problem for dams with 
unfavourable internal stress conditions.

The above process can be described briefly as follows [19]:

1) Initiation. Cracks or defects providing potential seepage 
paths in the dam or foundation may result from a 
number of causes: differential settlement, desiccation, 

backward erosion, earthquake shaking, high-permea-
bility zones due to poor compaction or segregation of 
the fill during placement, suffusion (internal instability) 
of gap graded soils, or hydraulic fracture. Erosion 
begins when the hydraulic gradient in the seepage 
path becomes large enough to move the soil particles. 
Thus, the requirements for this phase are: 1) a path for 
concentrated flow (usually a crack of some kind) and 2) 
the initiation of erosion along the seepage path.
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2) Continuation. The requirements for the continuation 
of erosion are the lack of an effective filter and the 
ability for the eroding particles to be removed at 
the downstream end of the seepage path. While a 
designed filter is obviously the most reliable means 
for stopping the removal of particles along a seepage 
pathway, other fill zones and native soil deposits 
may also provide restraint, even if they do not meet 
modern filter-design criteria. In such cases, some 
erosion of the base soil may take place before the 
filtering material becomes effective.

3) Progression. In the progression phase the seepage 
pathway enlarges to form a pipe or open eroded 
conduit through the embankment. This requires 
sufficient flow through the leak to maintain the 
eroding velocities, and the ability of the surrounding 
soil to support a pipe without collapse, as illustrated 
in Fig.3. The flow-limiting ability of the upstream 
and downstream zones can control the flow volume 
through the leak. In addition, crack fillers can 
migrate from upstream zones into defects within the 
seepage barriers and seal off concentrated leaks.

Soils with the ability form and hold an arch (soils 
with plastic fines and cemented granular soils are 
likely to have the highest arching ability) are capable 
of supporting a pipe [20, 21]. It is also possible for a 
pipe to be supported by bedrock or competent soil 
above the eroding soil.

4) Breach. Breach mechanisms may include the gross 
enlargement of the pipe, crest settlement, unravel-
ling of the downstream slope, and slope instability 
leading to an open flow channel through the 
embankment. 

From the above it can be seen that the extent and sever-
ity of the piping is dependent on the embankment-soil 
type. A soil that allows bridging, or a “roof ” to form 
over the void, will allow piping to develop to a large 
extent and remain unnoticed from above. Piping often 
causes sinkholes to form at isolated points along its path 
through the embankment. If the soil mass over the pipe 
is unable to bridge, or the pipe enlarges to such an extent 
that the overlying soil mass collapses, a sinkhole will be 
created. Seepage may exit the downstream face of an 
embankment or its foundation at any point. Therefore, 
piping may develop on the embankment slope, along 
the toe of the foundation or at some distance beyond 
the toe. Generally, underseepage that exits closer to the 
toe of the embankment is potentially more critical than 
seepage that initially exits at some distance away.

3 ARTIFICIAL NEURAL 
NETWORKS (ANNS) OVERVIEW

Artificial neural networks (ANNs) is a computational 
approach inspired by the human nervous system [22, 
23]. Its data-processing paradigm is made up of highly 
interconnected nodes (neurons) that map a complex 
input pattern with a corresponding output pattern. They 
are known for their generalization ability and ease of 
working with highly dimensional and nonlinear data.

There are many types of neural network structures 
(architectures) and training algorithms, e.g., generalized 
regression neural networks (GRNNs), back-propagation 
network (BPs), etc. This section briefly describes the 
above two neural networks.

x

x2

xm
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Input 
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Layer

Figure 4. Structure of GRNN.
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3.1 GENERALIZED REGRESSION NEURAL 
NETWORKS (GRNNS)

In 1991, Specht [24] proposed the generalized regression 
neural network (GRNN) as a variation of the radial 
basis function kernel (RBF) neural network, which 
approximates a function between the input and output 
vectors based on a standard statistical technique called 
kernel regression. The training time for the GRNN is 
relatively short, as the bandwidths of all the parameters 
are calculated, unlike the initial setting of the learning 
parameters. As the size of training set becomes larger, 
the estimation error approaches zero, while only minor 
restrictions are imposed on the function. The typical 
structure of a GRNN is shown in Fig.4. 

Assume that f(x,y) represents the known joint continu-
ous probability density function of a vector random 
variable, x, and a scalar random variable, y. Let X be a 
particular measured value of the random variable x. The 
conditional mean of y given X (also called the regression 
of y on X is given by
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When the density f(x,y) is not known, it must usually be 
estimated from a sample of observations of x and y. For 
a nonparametric estimate of f(x,y), we will use the class 
of consistent estimators proposed by Parzen [25] and 
shown to be applicable to the multi-dimensional case by 
Cacoullos [26]. As noted in Specht [27], these estimators 
are a good choice for estimating the probability density 
function, if it can be assumed that the underlying 
density is continuous and that the first partial deriva-
tives of the function evaluated at any x are small. The 
probability estimator ( )ˆ ,f X Y  is based upon the sample 
values Xi and Yi of the random variables x and y, where 
n is the number of sample observations and p is the 
dimension of the vector variable x:
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A physical interpretation of the probability estimate 
( )ˆ ,f X Y  is that it assigns a sample probability of width σ 

for each sample Xi and Yi , and the probability estimate 
is the sum of those sample probabilities. Substituting the 
joint-probability estimate ( )ˆ ,f X Y  in Equation (2) into 
the conditional mean, (1), gives the desired conditional 
mean of y given X. In particular, combining Equation 
(1) and (2) and interchanging the order of integration 

(2)

and summation yields the desired conditional mean, 
designated ( )Ŷ X :
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Defining the scalar function 2
iD ,

( ) ( )T2
i i iD X X X X= - -         (4)

and performing the indicated integrations yields the 
following:
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The resulting regression, (5), which involves summations 
over the observations, is directly applicable to problems 
involving numerical data. 

The estimate ( )Ŷ X  can be visualized as a weighted 
average of all of the observed values, Yi , where each 
observed value is weighted exponentially according to 
its Euclidean distance from X. When the smoothing 
parameter σ is made large, the estimated density is 
forced to be smooth and in the limit becomes a multi-
variate Gaussian with the covariance σ2I. On the other 
hand, a smaller value of σ allows the estimated density to 
assume non-Gaussian shapes, but with the hazard that 
wild points may have too great an effect on the estimate. 
As σ becomes very large, ( )Ŷ X  assumes the value of 
the sample mean of the observed Yi , and as σ goes to 
0, ( )Ŷ X  assumes the value of the Yi associated with the 
observation closest to X. For intermediate values of σ, all 
the values of Yi are taken into account, but those corre-
sponding to points closer to X are given greater weight.

When the underlying parent distribution is not known, 
it is not possible to compute an optimum σ for a given 
number of observations n. It is therefore necessary to 
find σ on an empirical basis. This can be done easily 
when the density estimate is being used in a regression 
equation because there is a natural criterion that can 
be used for evaluating each value of σ, i.e., the mean-
squared error between Yi and the estimate ( )ˆ

iY X . This 
procedure is used to avoid an artificial minimum error 
as 0s  that results when the estimated density is 
allowed to fit the observed data points, that is

(3)
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The principal advantages of the GRNN are the rapid 
learning and the convergence to the optimum regression 
surface as the number of samples becomes very large. The 
GRNN is particularly advantageous with sparse data in a 
real-time environment, because the regression surface is 
instantly defined everywhere, even with just one sample. 

3.2 BACK-PROPAGATION NETWORK (BP)

The back-propagation neural is a multilayered, feed-
forward neural network and is by far the most extensively 
used [28]. Back-propagation works by approximating the 
non-linear relationship between the input and the output 
by adjusting the weight values internally. A supervised 
learning algorithm of back-propagation is utilized to 
establish the neural network modelling. A normal back-
propagation (BP) neural model consists of an input layer, 
one or more hidden layers, and an output layer (Fig.5). 

5) Calculate the outputs:

( )neto o
pk k pko f=         (10)

6) Calculate the error terms for the output units:

( ) ( )net
pk

o o o
pk pk k pky o fd ¢= -        (11)

7) Calculate the error terms for the hidden units:

( )net
pj

h h h o o
j pj pk kj

k
f wd d¢= å        (12)

 Notice that the error terms on the hidden units are 
calculated before the connection weights to the 
output layer units have been updated.

8) Update weights on the output layer:

( ) ( )1o o o
kj kj pk pjw t w t ihd+ = +        (13)

9) Update weights on the hidden layer:

( ) ( )1h h h
ji ji pj iw t w t xhd+ = +     (14)

where i is the unit node in the input layer, j is the unit 
node in the hidden layer, p is the pattern and k is related 
to the output layer, η is the learning rate, t is the tth itera-
tion, o

pkd  and h
pjd  are the error terms (which encompass 

a derivative part) for the output units and hidden units, 
respectively. h

jiw  and o
kjw  are the weights for the hidden 

units and output units, respectively.

4 CROSS-VALIDATION

Cross-validation is a technique for assessing how the 
results of statistical analyses can be generalized to an 
independent dataset. This technique is mainly used in 
situations where the goal is prediction, and one wants to 
estimate how accurately a predictive model will perform 
in practice [30]. 

This study adopts a k-fold cross-validation technique that 
randomly partitions the original sample into k subsam-
ples. A single subsample is retained as validation data for 
testing the model, and the remaining k—1 subsamples 
are used as training data. The cross-validation process 
is repeated k times (the folds), with each of the k 
subsamples used exactly once as the validation data. The 
k results from the folds can be averaged (or otherwise 
combined) to produce a single estimation. Fig.6 provides 
an example of a k-fold cross-validation procedure.

Fig.7 shows the k-fold cross-validation error versus k for 
a large dataset, and indicates that a k value between 4 

 

Input Layer Output Layer

Hidden Layer

Figure 5. The back-propagation neural network model.

The BP technique is only outlined in this section, and 
for more details, the reader is referred, for example, to 
Freeman and Skapura [29]. 

1) Apply the input vector, ( )T
1 2, , ,p p p pNx x x=X   to 

the input units.

2) Calculate the net-input values to the hidden layer 
units:

1
net

N
h h h
pj ji pi j

i
w x q

=

= +å        (7)

3) Calculate the outputs from the hidden layer:

( )neth h
pj j pji f=         (8)

4) Move to the output layer. Calculate the net-input 
values to each unit:

1
net

L
o o o
pk kj pj k

j
w i q

=

= +å         (9)
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and 10 is a good trade-off: increasing this value signifi-
cantly increases the computation time and does not 
significantly improve the results [31]. Thus, this study 
adopts a 10-fold cross-validation. This approach may not 
be useful in achieving high training accuracy, but it can 
prevent the over-fitting problem.

In order to select the optimum value of σ, Specht [24] 
suggested the holdout method. The holdout method 
is the simplest kind of cross-validation. The data set is 
separated into two sets, called the training set and the 
testing set. The function approximator fits a function 
using the training set only. Then the function approxi-
mator is asked to predict the output values for the data 
in the testing set (it has never seen these output values 
before). The errors it makes are accumulated as before 
to give the mean absolute test-set error, which is used 

to evaluate the model. The advantage of this method is 
that it is usually preferable to the residual method and 
takes no longer to compute. However, its evaluation 
can have a high variance. The evaluation may depend 
heavily on which data points end up in the training set 
and which end up in the test set, and thus the evalua-
tion may be significantly different depending on how 
the division is made. As a step further, in this paper the 
10-fold cross-validation method was used. After the 
selection of a fixed value of σ, the model was trained 
using the training dataset. Then the model was evalu-
ated using the test dataset. This process was repeated 
for each k=10 folds (90% for training and 10% for test-
ing) and then many times using different values of the 
smoothing coefficient. Finally, the best value of σ that 
should be used was selected as the value that minimized 
the error that was estimated as the average error rate 
on these cross-validation examples. The advantage of 
this method over repeated random subsampling (which 
is also known as the Monte Carlo variation, meaning 
that the results will vary if the analysis is repeated with 
different random splits) is that all the observations 
are used for both training and validation, and each 
observation is used for the validation exactly once. The 
main drawback of this method is that it requires intense 
computation.

5 CASE STUDIES

5.1 MODEL VALIDATION WITH EXPERI-
MENTAL DATA

Model development (i.e., model “training”) should be 
followed by a model validation to assess the predictive 
capability [32]. To evaluate the overall performance of 
the GRNN model, we compared the predictions against 
the experimental data. The case records listed in Table 
1 are evaluated using the GRNN model. The database 
includes 25 experimental data from ref. [33]. And then, 
seven selected factors, which include various character-
istic particle sizes, such as d85, d15, d5, d60, d30, d10, and 
the porosity Φ of non-cohesive soils, were taken into 
account as the input parameters of the GRNN model. 
Moreover, the seepage failure types of non-cohesive soils 
are also listed in Table 1; it is 1 for piping and 0 for soil 
flow. 

As can be seen from Table 1, the predictions from the 
GRNN model agree well with the experimental data, and 
it has a high success rate (100%). These results indicate 
that our GRNN model seems to be a good tool for 
predicting the piping potential.

Figure 6. A k-fold cross-validation procedure [30].

Figure 7. A plot of k-fold cross-validation errors vs. k [31].
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No. d85/mm d15/mm d5/mm d60/mm d30/mm d10/mm Φ Test 
results

Predicted 
results

Calibration

1 7.00 0.37 0.20 3.50 0.60 0.29 0.44 0 0.0124
2 5.90 0.29 0.15 2.10 0.50 0.20 0.28 0 0.0235
3 4.40 0.15 0.11 2.70 1.10 0.13 0.28 1 0.9891
4 5.10 0.22 0.12 2.60 1.13 0.14 0.28 1 0.9867
5 7.00 0.21 0.12 4.10 2.60 0.16 0.28 1 0.9895
6 6.68 0.21 0.11 4.00 2.10 0.16 0.28 1 0.9989
7 5.00 0.20 0.11 2.20 1.05 0.13 0.34 1 0.9856
8 5.60 0.25 0.12 3.30 2.00 0.20 0.31 1 0.9687
9 4.30 0.19 0.12 3.70 2.30 0.15 0.35 1 0.9888

10 5.00   0.26 0.16 3.50 2.10 0.18 0.29 1 0.9886
11 5.00 0.30 0.11 3.20 2.10 0.18 0.33 1 0.9883
12 5.00 0.23 0.15 3.10 2.10 0.17 0.34 1 0.9889
13 7.00 0.25 0.17 4.10 2.30 0.19 0.29 1 0.9888
14 6.00 0.20 0.15 3.40 2.00 0.17 0.30 1 0.9885
15 5.00 0.21 0.15 3.00 1.70 0.18 0.30 1 0.9887
16 7.50 0.23 0.16 2.00 0.40 0.19 0.28 0 0.0104
17 5.30 0.23 0.16 2.30 0.50 0.19 0.30 0 0.0125
18 0.42 0.14 0.04 0.37 0.24 0.12 0.40 0 0.0061
19 0.30 0.02 0.01 0.12 0.06 0.02 0.43 0 0.0053
20 0.19 0.02 0.01 0.10 0.07 0.02 0.39 0 0.0105

Validation

21 0.22 0.05 0.01 0.16 0.09 0.03 0.38 0 0.0054
22 0.18 0.02 0.01 0.10 0.07 0.02 0.42 0 0.0015
23 0.22 0.05 0.01 0.19 0.11 0.05 0.41 0 0.0031
24 0.21 0.05 0.01 0.17 0.09 0.04 0.40 0 0.0073
25 0.22 0.07 0.01 0.20 0.13 0.04 0.38 0 0.0112

Table 1. Experimental data.

5.2 PRACTICAL PROJECTS

In this section, an attempt has been made to predict 
the seepage piping of embankments with the help of 
the GRNN and BP. With chosen network parameters, 

23 case studies containing the most necessary informa-
tion of embankment structures, materials and states of 
seepage piping are filtered and selected from ref. [34, 
35]. The 23 case records are shown in Table 2. A total 
of nine selected factors, which include the height of the 
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Figure 8. Comparison between forecasted and actual results.
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No. H/m Hw/m λ c /kPa φ/° γsat/kN/m3 k/cm/s db/cm δ/° Actual

Calibration

1 133 123 0.455 40 27.0 21.3 3.0×10-7 0.009 79.0 1
2 87.5 80 0.4 12 28.9 21.2 3.5×10-7 0.008 75.0 1
3 35.5 31 0.295 60 15.6 20.5 1.0×10-7 0.008 43.0 1
4 31 29 0.249 20 26.7 20.8 4.0×10-4 0.01 14.0 0
5 31 29 0.249 15 26.7 20.1 7.8×10-5 0.009 14.0 0
6 29 25 0.435 30 31.6 20.8 2.0×10-5 0.01 23.5 0
7 39 35.5 0.466 109 21.2 20.7 5.1×10-6 0.04 29.0 0
8 39 35.5 0.466 76 13.8 20.7 5.1×10-6 0.04 25.0 0
9 28 25 0.286 157 13.2 20.3 3.6×10-7 0.009 60.0 1

10 28 25 0.286 153 24.8 21.2 4.8×10-8 0.009 60.0 1
11 96 90 0.417 20 26.0 21.0 3.5×10-8 0.012 65.0 1
12 56 49 0.364 30 29.0 19.5 2.0×10-7 0.013 59.0 1
13 51 47 0.308 42 34.5 21.2 2.2×10-8 0.012 66.0 1
14 133.1 126 0.476 41 32.0 21.7 1.3×10-6 0.004 76.0 1
15 13.0 10.5 0.364 44 38.4 22.9 1.0×10-2 0.02 26.6 0
16 6.7 5.5 0.4 109 21.2 20.7 5.1×10-6 0.004 67.5 1
17 6.0 4.75 0.5 51 38.5 20.9 7.0×10-3 0.024 26.6 0
18 87.5 80 0.256 14 27.0 21.2 4.0×10-6 0.008 28.0 0
19 51.5 46 0.455 100 19.3 21.0 2.9×10-6 0.007 45.0 1

Validation

20 39.5 33 0.347 32 27.2 20.2 5.5×10-8 0.01 67.0 1
21 29.0 26 0.315 26 27.8 20.8 2.0×10-5 0.01 65.0 1
22 42.5 39 0.361 84 32.2 20.6 1.3×10-8 0.004 53.1 1
23 7.0 5.6 0.4 20 30.0 19.5 3.8×10-5 0.017 26.6 0

Table 2. Practical projects data.

No. Actual GRNN BP
1 1 0.9845 0.8967
2 1 0.9971 0.9125
3 1 0.9764 0.8834
4 0 0.0164 0.0657
5 0 0.0183 0.0637
6 0 0.0171 0.0681
7 0 0.0157 0.0764
8 0 0.0162 0.0452
9 1 0.9967 0.7634

10 1 0.9863 0.8346
11 1 0.9657 0.9023
12 1 0.9753 0.8827
13 1 0.9912 0.8424
14 1 0.9961 0.9068
15 0 0.0013 0.3467
16 1 0.9735 0.8359
17 0 0.0054 0.0357
18 0 0.0067 0.0139
19 1 0.9893 0.8641
20 1 0.9931 0.8744
21 1 0.9987 0.8655
22 1 0.9734 0.9615
23 0 0.0258 0.0637

Table 3. Comparison between forecasted and actual results. dam H, the water level Hw, the downstream slope ratio 
λ, the effective internal frictional angle φ, the effective 
cohesion c, the saturated unit weight γsat, the coefficient 
of permeability k, the maximum effective particle size 
db and the inclination angle of the seepage filter δ, were 
taken into account as the input parameters for the 
artificial neural network systems. The neural network 
output consisted of a single neuron representing the 
piping potential. The neuron was given a binary value of 
1 for seepage piping occurrence. A comparison between 
the forecasted and actual results is shown in Table 3 and 
Fig.8. From the results obtained here, it can be said that 
the GRNN demonstrates superiority over the BP tech-
nology. These results suggest that the GRNN is poten-
tially useful for predicting seepage-piping occurrence. 

6 CONCLUSIONS

Piping is known to cause the catastrophic failures of 
levees and earthen dams and has been studied for 
nearly a century. The factors that influence the piping 
occurring in embankments are uncertain and random, 
and in the process of piping they turn out to be a 
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nonlinear behaviour. In order to estimate the risks 
of dam failure phenomena, it is necessary to develop 
scientifically derived analytical models that are simpler, 
easier to implement, and more accurate than traditional 
methods for the evaluation of piping potential. In this 
paper, the GRNN technique was chosen to predict the 
seepage-piping potential. The performance of the GRNN 
was cross-validated using the k-fold cross-validation 
technique. From these studies, the following conclusions 
and recommendations may be drawn: 

(1) The above results show that the GRNN model is effi-
cient for predicting the occurrence of seepage piping 
with high accuracy and it is expected to be very 
reliable for the evaluation of the piping potential. 
Thus, the GRNN is a powerful piping-assessment 
tool worthy of promotion and support. 

(2) The main factors that affect the erosion phenomenon 
are: 1) the erodibility of the soil; 2) the water velocity 
inside the soil mass; 3) the geometry of the earth 
structure, and so on. As can be seen, the mechanism 
of piping is very complicated and needs to be further 
investigated through laboratory and field tests. 
Meanwhile, the advanced digital photographic video 
tracing technique, image processing technology, 
etc., should also be introduced into the mechanism 
research of piping phenomenon. 

(3) The performance of the GRNN is dependent on 
the smoothing parameter, and the appropriate 
smoothing parameter can minimize the misclassi-
fication rate or the error of the final network. Thus, 
to improve the prediction performance of GRNN 
models, it is necessary to study the optimization 
algorithms in future investigations. 
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