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THE VALUE OF SHARING ADVANCE
CAPACITY INFORMATION UNDER
“ZERO-FULL” SUPPLY CAPACITY
AVAILABILITY

MARKO JAKSIC*
BORUT RUSJAN**

ABSTRACT: The importance of sharing information within modern supply chains has been
established by both practitioners and researchers. Accurate and timely information helps
firms effectively reduce the uncertainties of a volatile and uncertain business environment.
We model periodic review, single-item, stochastic demand and stochastic supply where, in
a given period, supply is either available or completely unavailable. In addition, a supply
chain member has the ability to obtain advance capacity information (ACI’) about the
future supply capacity availability. We show that the optimal ordering policy is a base stock
policy with the optimal base stock level being a function of future capacity availability or
unavailability given through ACL In a numerical experiment we quantify the value of ACI
and provide relevant managerial insights.

Keywords: Operational research; Inventory; Stochastic models; Value of information; Advance capacity informa-
tion

UDC: 519.8:005.745

JEL classification: C61, M11

1. INTRODUCTION

Particularly in the last two decades, companies working in the global business environ-
ment have realised the critical importance of effectively managing the flow of materi-
als across the supply chain. Industry experts estimate not only that total supply chain
costs represent the majority of most organisations’ operating expenses but also that, in
some industries, these costs approach 75% of the total operating budget (Monczka et al.,
2009). Inventory and hence inventory management play a central role in the operational
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behaviour of a production system or supply chain. The fact is that the average cost of
managing and holding inventory in the United States is 30% to 35% of its value, inven-
tory represents about a third of the current assets and up to 90% of the working capital
of a typical company in the United States is invested in inventories (Jacobs et al., 2008).
Due to the complexities of modern production processes and the extent of global supply
chains, inventory appears in different forms at each level of the supply chain. A supply
chain member needs to control its inventory levels by applying some sort of inventory
control mechanism. The appropriate selection of this mechanism may significantly im-
pact on the customer service level and the member’s inventory cost, as well as supply
chain system-wide costs.

Due to the focus on providing a quality service to the customer, it is no surprise that
demand uncertainties attracted the initial attention. However, through time companies
have realised that the effective management of supply is equally important. A look at the
supply chain’s production and supply capacities allocated to produce or deliver a certain
product reveals that these are generally far from stable over time. On the contrary, supply
capacity may be highly variable for several reasons, like frequent changes in the product
mix, particularly in a setting where multiple products share the same capacity, changes
in the workforce (e.g. holiday leave), a machine breakdown and repair, preventive main-
tenance etc. To compensate for these uncertainties extra inventory needs to be kept.

However, there is another, perhaps even more appealing way to tackle uncertainties in
supply. Foreknowledge of future supply availability can help managers anticipate pos-
sible future supply shortages, while also allowing them to react in a timely manner by
either building up stock to prevent future stockouts or reducing stock in the case of
favourable supply conditions. Thus, system costs can be reduced by carrying less safety
stock while still achieving the same level of performance. These benefits should encour-
age the parties in a supply chain to formalise their co-operation to enable the requisite
information exchange by either implementing necessary information sharing concepts
like Electronic Data Interchange (‘EDI’) and Enterprise Resource Planning (‘ERP’) or by
using formal supply contracts. We could argue that extra information is always benefi-
cial, but further thought has to be put into investigating in which situations the benefits
of information exchange are substantial and when it is only marginally useful. Many
companies nowadays have invested millions to improve inventory management through
modern planning systems like ERP systems, which allow them to use one software pack-
age with a number of integrated modules, rather than multiple, conflicting systems with
different operating platforms and data formats (Scott, 2000). While a decade ago Bush
and Cooper (1988) and Metters (1997) attributed problems in determining the appropri-
ate inventory levels to the fact that companies typically do not use any formal analytic
approach, the problem persists as companies do not realise that an ERP system is only a
management tool, a framework that must be effectively applied and integrated to achieve
success (Scott, 2000; Schwarz, 2005).

In this paper, we explore the benefit of using available advance capacity information
(‘ACT’) about future uncertain supply capacity conditions to improve the performance



M. JAKSIC, B. RUSJAN | THE VALUE OF SHARING ADVANCE CAPACITY INFORMATION UNDER ... 323

of the inventory control policy and reduce the relevant inventory cost. We study a pe-
riodic review, single product, single location inventory model where both the demand
and supply capacity are assumed to be stochastic. We assume that due to their intimate
knowledge of the production process the supplier is able to provide upfront information
on its capacity availability to the retailer. This is done for a certain limited number of
future periods where in some periods the capacity is completely unavailable, while in
other periods there is complete availability of the capacity. Through ACI, the retailer can
anticipate near future supply shortages with certainty and prepare for periods of overall
product unavailability by building up inventory in advance.

The supply setting described above can also be observed in practice. We give two exam-
ples in which a retailer would be facing periods of full or zero supply capacity availability
and could take use of ACI if available. When a supplier/manufacturer is facing high set-
up costs in his production process, which are due to setting up the production process to
meet particular customer’s/retailer’s needs, he would be reluctant to frequently change
production programme. A situation like this can be observed in many capital-intensive
industries where production resources are usually quite inflexible, resulting in high pro-
duction switching costs (metal industry, food processing etc.). This results in a highly
irregular supply to a particular retailer. Since it would be too costly for a manufacturer
to fulfil each separate order from a retailer directly from a production line, while at
the same time the option of storing high inventories of products is also not possible for
longer periods (particularly in food processing industry), a relatively low service level to
the retailer is acceptable. However, to optimise its production costs the manufacturer al-
ready considers high set-up costs in its master production scheduling by determining the
production plan for several production periods in advance. Thus, it can communicate
information about future supply availability to the retailer and, while it cannot reduce
the irregularity of supply, it can reduce its uncertainty in a number of near-future peri-
ods. Advance information about future supplier capacity availability enables a retailer to
prepare for periods of supply unavailability in advance and by doing so to significantly
decrease both inventory holding costs (resulting from the high inventory levels needed
to cope with supply uncertainty) and backorder costs (mainly a consequence of high
supply variability). A similar practical setting is when the manufacturer’s transportation
costs of supplying the products to the retailer are high and manufacturer resorts to less
frequent supplies to the retailer.

Throughout the paper we address two main research questions: (1) What is the best way
to integrate ACI into the inventory control policy and how will ACI affect the optimal
inventory levels? (2) What is the value of ACI and in which settings does ACI turn out to
be particularly important?

Our contributions in this paper can be summarised as follows: (1) We present a new
model that incorporates ACI within a limited supply capacity setting, where supply ca-
pacity is modelled as a Bernoulli process. (2) We derive the structure of the optimal
policy and show that it fits in the group of base stock policies, where the base stock level is
a function of the revealed capacity realisations in the near future. (3) Finally, we establish
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the value of ACI, plus recognise and describe the system settings in which ACI brings
considerable savings.

We proceed with a brief review of the relevant literature where the focus is on presenting
the different ways suggested by researchers to tackle the problem of supply uncertainty.
Supply uncertainty is commonly attributed to one of two sources: yield randomness and
the randomness of the available capacity. The problem of either fully available or una-
vailable supply can be related to both of these categories. More specifically, Henig and
Gerchak (1990) analyse the random yield case where the creation of good products is a
Bernoulli process. Hence, the number of good products depends on the order size and
the probability of generating a good product from one unit of output, and follows a bi-
nomial distribution. Ciarallo et al. (1994) analyse an inventory model with a stochastic
limited supply. In this case, the actual order realisation is the minimum of the initial
order given and the realised random supply capacity. They show that the optimal policy
continues to be a base stock policy as in the case of unlimited supply. The optimal base
stock level must be increased to account for possible capacity shortfalls in future periods.
This work is extended by Jaksic¢ et al. (2008) where the notion of advance capacity infor-
mation is introduced and the value of ACI in the presence of non-stationary stochastic
demand and limited supply is assessed. The optimal ordering policy in this case is a
state-dependent base stock policy where the base stock level is a function of ACI. Wang
and Gerchak (1990) analyse both uncertainty effects by extending the uncertain capacity
setting by also incorporating the effect of yield uncertainty. Work closely related to the
topic of this paper is the research presented by Giillii et al. (1997, 1999). In a determin-
istic demand setting, they show that the optimality of the base stock policy also applies
in the case of a Bernoulli-type supply process. They obtain a newsboy-like formula to
characterise the optimal base stock levels. We extend this work by imposing no restric-
tions on the characteristics of demand process characteristics, modelling demand as a
non-stationary stochastic process and, in addition, we are primarily interested in the
effect of ACI on the optimal performance of the inventory system. Finally, we refer the
reader to conceptually similar work of Tan et al. (2007), where they tackle the demand
side of the supply chain rather than supply side. They analyse the structure of the optimal
policy for the case with imperfect advance demand information and the demand process
is modelled as a Bernoulli process.

The remainder of the paper is organised as follows. We present the detailed model for-
mulation and the structural characteristics of the optimal policy in Section 2. In Section
3, we present the results of a numerical study to assess the value of ACI and provide
relevant managerial insights. Finally, we summarise our findings and suggest possible
extensions in Section 4.

2. MODEL AND OPTIMAL POLICY PRESENTATION

In this section, we give the notation and describe the model. In addition, we derive the
structure of the optimal policy and characterise the optimal base stock levels. We model
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supply uncertainty as a Bernoulli process, where p,, 0< p, <1 denotes the probability
of full capacity availability in period . We introduce the parameter of supply capacity
availability a,, where a, =0 denotes the zero availability case and @, =1 the full avail-
ability case. In period ?, the manager obtains ACI «,,, on the supply capacity availabil-
ity in period ?+n, where parameter # denotes the length of the ACI horizon. Thus, in
period ¢ the supply capacity availability for 7 future periods is known and we record it
in the ACI vector d, = (a,,,,d,,,....,4,,, ). Note that the capacity availabilities in periods
t+n+1 and later are still uncertain.

Presuming that unmet demand is fully backlogged, the goal is to find an optimal policy
that would minimise the inventory holding costs and backorder costs over a finite plan-
ning horizon 7 . The demand is generally modelled to be stochastic non-stationary with
known distributions in each time period, while still being independent from period to
period. For the simplicity of presentation a case of zero supply lead time was chosen;
however, the model could easily be extended to consider positive supply lead times. The

major notation is summarised in Table 1 and some extra notation is introduced as need-
ed.

TABLE 1: Summary of the notation.

T : number of periods in the planning horizon

n length of the advance capacity information horizon, n>0

h inventory holding cost per unit per period

b backorder cost per unit per period

x, . inventory position at time s before ordering

y, . inventory position at time ¢ after ordering

X, ¢ netinventory at time ¢

z, . order size at time ¢

a, - parameter of the supply capacity availability, denoting either full or zero supply

capacity availability in period ¢

p, - probability of full supply capacity availability in period ¢
d, : actual demand as the realisation of random demand in period ¢

We assume the following sequence of events. (1) At the start of period 7, the manager
reviews the inventory position before ordering x, and ACI a,,, on the supply capacity
availability in period #+7 is received, which could potentially limit the order z,,, that
will be given in period #+7. (2) In the case of @, =1, the ordering decision z, is made
and correspondingly the inventory position is raised to the inventory position after or-
dering y,, y, = x, +z,. (3) The order placed at the start of the period is received. (4) At
the end of the period, demand d, is observed and satisfied through on-hand inventory;
otherwise it is backordered. Inventory holding and backorder costs are incurred based
on the end-of-period net inventory.

To follow the evolution of the inventory system through time we need to keep track of
starting inventory position x,, current supply capacity availability «,, and the vector
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of ACI d,. The state space can therefore be described by an 7+ 2 -dimensional vector
(x,,a,,d,) and becomes updated in period ¢ +1 in the following manner:

X =Xtz _dt’ (1)

at+1 = (at+2 > at+3 AR at+n+1 )

Finally, we can derive the minimal discounted expected cost function f, (x,,4,,4d,) (also
later referred to as the optimal cost function) that optimises the cost over finite planning
horizon 7' from time ¢ onward, starting in the initial state (x,,4,,d, ) and which is given
in equation .

min{C,(y)+0.E, f,.,(v, =d, . a,,,d,,)}, ifT—n<t<T,

/i (x,a,,a,)= ©)

fin,—d, ,a,,.d.,)}, f1<t<T-n-1,

mjn{ct (yf) + aEdt SAintl
where O is a discount factor, C,(y,)=hmax(0,y, —d,)+bmax(0,d, —y,) represents
the single period cost function, and the ending condition is defined as f;,,(-)=0.

The single period cost function C,(y,) gives the total inventory holding plus the backo-
rder cost in each period, where the inventory holding costs are incurred if the inventory
position after ordering y, is higher than subsequent realisation of demand d, . The op-
posite is true for backorder costs as they are incurred when the demand exceeds the
available inventory. As we are interested in minimizing the costs over a finite planning
horizon, from period t up to period T, we do not take into account the costs that would
occur in subsequent periods beyond period T. We denote this by writing the ending
condition f;,,()=0

The solution to this dynamic programming formulation minimises the cost of manag-
ing the system for a finite horizon problem with T-t periods remaining until termina-
tion. Cost function f; is a function of the inventory position before ordering and all the
supply capacity information available before ordering, that is, current supply capacity
realisation ACI on future supply capacity realisations. The optimal y, is determined
or, equivalently, the ordering decision z, is made by minimizing the sum of period t
single period cost and the discounted expected cost of period t+1 onward, where the
order can only be filled if supply capacity is available in the current period. Observe
that going backward from period T we start to build up the vector of ACI 4, by adding
a new component to the vector in each period, up to period T-n, where the vector has
all n components. This means that the decision-maker can now optimise his ordering
decision based on the full extent of ACI available in period T-n. Going back another
period to T-n-1, we eliminate the last component «,,,,, of the ACI vector, by taking
the expectation over all possible realisations of the available supply capacity (full or
zero capacity) in period t+n+1, while also accounting for all possible realisations of the
demand in period # (the expectation is denoted as £, , ). Due to the limited length of
the ACI horizon, we are now faced with the full extent of the state space over which the
minimisation is made. In this manner we proceed backwards in time until we end in
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the starting period. In other words, the optimisation is made for all possible combina-
tions of » and all possible supply capacity realisations given by the ACI vector, where
y, values are restricted by the supply capacity availability. Thus, the optimal y, is de-
termined for each of these combinations by minimizing the sum of a single period cost
function C,(y,) and the cost of managing the system in the remaining periods f+I to
T, given by f,,,.

We proceed with the characterisation of the optimal solution given by the dynamic pro-
gramming formulation in equation . The characterisation of the optimal policy is based
on establishing the convexity of the optimal cost function f,. Note that the single period
cost function C,(y) is convex in  since it is the usual Newsboy cost function (Porteus,
2002). Based on the convexity results proven in the Appendix, we show the structure of
the optimal policy in the following theorem.

Theorem 1. Let ,(d,) be the smallest minimiser of function g,(y,.d,). For any a,, the

following holds for all t :

1. The optimal ordering policy under ACI is a state-dependent base stock policy with the
optimal base stock level 3,(d,) .

2. Under the optimal policy, the inventory position after ordering y,(d,), in the case of
supply capacity availability a, =1, is given by:

y(a), x<y/(d,),. €)
X, x, > ¥,(a).

t

y,(ﬁ,)={

The base stock policy obtained is characterised by a single base stock level 7,(4,), which
determines the optimal level of the inventory position after ordering. The base stock
level 7,(d,) is a function of future supply availability given by the vector of ACI 4,. The
optimal inventory policy instructs the manager to raise the inventory position up to the
base stock level in the case where the inventory position before ordering is below the
base stock level. However, if the inventory position exceeds the base stock level the order
should not be placed.

3. NUMERICAL EXAMPLE

In this section we present the results of the numerical analysis which was carried out to
quantify the value of ACI and to gain insights into how the value of ACI changes with
a change in the relevant system parameters. Numerical calculations were done by solv-
ing the dynamic programming formulation given in equation . In Figure 1 we present
an example of an end-customer demand and supply pattern faced by a retailer. Weekly
demand roughly varies between 0 and 100, with an average of 45 and a coeflicient of vari-
ation of 0.6. The actual supply process is highly irregular with random periods of zero
supply and a probability of full supply availability of p=0.6. A gross packaging size from
a manufacturer to the retailer contains 20 units.
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FIGURE 1: Example of end-customer demand and the retailer’s supply pattern.
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Based on this setting we selected the following set of input parameters: T'= 20, n = (0, 1,
2,3,4,5), the probability of supply capacity availability p = (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,
0.8, 0.9, 1) is assumed to be constant over the whole planning horizon, the cost structure
h=1,b=(5,20,100), discount factor o =0.99 , uniformly distributed demand with the
expected value of E(d)= 5 and coeflicient of variation CV, = (0,0.3,0.6). The cho-
sen parameter values do not correspond directly to monetary units (the cost structure
above), although they are chosen in line with what researchers have observed in practice:
backorder costs are prevalent over inventory holding costs, and the demand distribution
with CVs, which are commonly observed in practice. The results are presented in Figures
2-3 and Tables 1-3.

To determine the value of ACI, we undertake a performance comparison between the no
information case, 7 = (), and the case where ACI is given for a certain number of future
periods, 7 > (. We define the relative value of ACI for n >0 as:

(n=0) __ f(n>0)
t

f[("=0)
We also define the absolute change in the value of ACI with which we measure the extra

benefit gained by extending the length of the ACI horizon by one time period, from 7
ton+1:

AV, (n+1)= £ — £ (5)

Let us first observe the effect of changing the system parameters on the total cost. Obvi-
ously, decreasing the extent of supply capacity availability by decreasing the value of p
will increase the costs. Due to the increased probability of multiple consecutive periods
of zero capacity, the likelihood of backorders occurring will rise dramatically and the

%V, (n>0)=: @
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costs will grow particularly in the case of a high b/h cost ratio. In addition, costs rise
when one has to deal with the effect of growing demand uncertainty. The demand uncer-
tainty causes deviations in the actual inventory levels from the desired target levels set by
the manager. This results in frequent mismatches between the demand and the available
on-hand inventory and, consequently, high costs.

FIGURE 2: Relative value of ACI
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These costs can be effectively reduced when ACI is available. Extending the ACI horizon
obviously also increases the extent of the cost savings. However, the marginal gain of in-
creasing 7 by 1 period varies substantially depending on the particular setting. When we
consider the case of low supply capacity unavailability ( p close to 1), we observe a surpris-
ingly high relative decrease in costs measured through %V, . This can be attributed to
the fact that ACI enables us to anticipate and prepare for the rare periods of complete ca-
pacity unavailability. Thus, we can avoid backorders and at the same time lower the inven-
tory levels that we would otherwise need to compensate for the event of multiple successive
periods with zero capacity. Especially in the case of low demand uncertainty, and also a
high b/h ratio, %V, can reach levels above 80%, even close to 90% (Figures la and
1b). When the manager wants to gain the most from anticipating future supply capacity
unavailability, it would be helpful if no additional uncertainties were present that would
prevent it meeting the desired target inventory level. We also observe that these high rela-
tive cost savings are already gained with a short ACI horizon. Extending 7 above 1 only
leads to small further cost reductions. This is an important insight regarding the practical
use of ACI, when the majority of gains are already possible with limited future visibility



330 ECONOMIC AND BUSINESS REVIEW | VOL. 11 | No. 4 | 2009

it is more likely that the manager will be able to obtain ACI (possibly also more accurate
information) from his supplier. While the short ACI horizon is sufficient in the case of p
being close to 1, we see that a longer ACI horizon is needed in a setting with high supply
capacity unavailability. Observe that for low p values the relative marginal savings are
actually increasing. When multiple periods of zero capacity can occur one after the other
it is particularly important to anticipate the extent of future capacity unavailability. In
such a setting, it is very important if one can have an additional period of future visibility.
Several researchers who have studied a conceptually similar problem of sharing advance
demand information suggest that prolonging the information horizon has diminishing
returns (Ozer and Wei, 2004). Although we consider a special case of zero or full supply
availability in this paper, this result actually shows that this does not hold in general.

While we have observed a large relative decrease in costs in some settings, it may be more
important for a particular company to determine the potential decrease in absolute cost
figures. Intuitively, we would expect that the biggest absolute gains would occur in a setting
where the uncertainty of supply is high, and the possible shortage anticipation through ACI
would be the most beneficial. We confirm this in Tables 1-3 (the shaded areas under Average
change) where we see that the biggest absolute savings are attained for an availability prob-
ability of between 0.2 and 0.4. Here, the cost decrease is bigger for a higher 7 (Figure 2). In
fact, the lower the availability the more we gain by prolonging the ACI horizon. In the case
of extremely low levels of capacity availability the system becomes too hard to manage due
to an extremely long inventory pre-build phase, and the gains from using ACI are limited.

FIGURE 3: Absolute change in the value of ACI
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The effect of demand uncertainty on an absolute decrease in costs is not as obvious as it
was in the relative case. This can be attributed to the interaction of two factors. While
stronger demand uncertainty intensifies the difficulties of managing inventories as de-
scribed above, it also contributes to higher costs and thus provides more potential for
savings through ACI.

5. CONCLUSIONS

In this paper, we study a periodic review inventory model in the presence of stochastic
demand and limited supply availability. The supply capacity is modelled as a Bernoulli
processes, meaning that there are randomly interchanging periods of complete capac-
ity unavailability and full availability. We upgrade the base case with no information
on future supply capacity availability by considering the possibility that a supply chain
member can obtain advance capacity information (‘ACI’) from its upstream partner. We
develop an optimal policy and show that it is a base stock policy with a state-dependent
base stock level. The optimum base stock level is determined by the currently available
ACI where, in the case of information about unfavourable supply capacity conditions in
future periods, the base stock level is raised sufficiently to avoid the probable stock-outs.
By means of a numerical analysis, we quantify the benefit of ACI and determine the situ-
ations when obtaining ACI can be particularly important. While the relative cost savings
are highest for the case of close to full availability due to the fact that one can completely
avoid backorders with only a small extra inventory, the cost reduction in absolute terms
is greater for cases with medium to low supply capacity availability. Further, we show
that in most cases having only a little future visibility already offers considerable savings,
although when one faces the possibility of consecutive periods of supply unavailability it
can be very beneficial to extend the ACI horizon. In general, managers should recognise
that the extent of savings shown clearly indicates that sharing ACI should be encour-
aged in supply chains with unstable supply conditions. In our experience, the current
dynamic programming cost formulation is manageable in terms of the complexity of
the calculations and can also be used for larger practical problems. However, a natural
extension of this work would involve developing a simpler, preferably also optimal, in-
ventory policy that would capture the effect of sharing ACI.
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TABLE 2: Value of ACI for b=5

p
n 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
0 0.00 50.27 96.94 12547 179.06 237.05 33042 48398 78855 1605.02
1 0.00 15.35 41.34 81.37 12498 19520 294.66 459.92 77445 1600.15
5 2 0.00 12.80 30.64 57.70 99.81 15887  257.85 42357 750.38 159142
S 3 0.00 12.63 29.13 52.10 86.90 14155 23173 393.87 72436 1580.07
4 0.00 12.62 28.94 50.95 8267 13292 21610 371.69 700.84 1568.04
5 0.00 12.62 28.93 50.75 8153 12860 208.02 357.55 682.65 1556.62
2 1 0.00 69.47 57.35 35.15 30.20 17.65 10.82 497 1.79 0.30
ﬁ; [ 2 0.00 74.54 68.39 54.01 44.26 32.98 21.96 12.48 4.84 0.85
S RS 0.00 74.87 69.95 58.47 51.47 40.29 29.87 18.62 8.14 1.55
% 4 0.00 74.89 70.14 59.39 53.83 43.93 34.60 23.20 1112 2.30
o 5 0.00 74.89 70.16 59.55 54 .47 45.75 37.04 26.12 1343 3.02
1 0.00 34.93 55.59 44.10 54.08 41.85 35.76 24.07 14.10 4.87
2g 2 0.00 2.55 10.71 23.67 25.17 36.34 36.81 36.35 24.07 8.73
E E 3 0.00 0.17 1.51 5.60 12.91 17.31 26.12 29.70 26.01 11.35
< ©° 4 0.00 0.01 0.19 1.15 4.23 8.64 15.63 22.18 23.52 12.03
5 0.00 0.00 0.02 0.20 1.14 431 8.08 14.14 18.19 11.43
0 36.42 66.32 106.95 14363 188.38 250.56 34167 493.68 797.66 1612.92
1 36.42 51.05 7254 10378 14855 212.64 310.01 47080 784.39 1608.29
- 2 36.42 49.49 66.80 9144 12842 18571 278.23 43962 762.32 1600.09
S 3 36.42 49.34 65.69 8786 12028 17124 257.05 41351 738.37 1589.57
4 36.42 49.32 65.47 86.80 117.10 164.06 243.97 39421 71710 1578.25
5 36.42 49.32 65.43 86.50 11589  160.60 236.26 380.68 699.76 1567.28
o | 3 1 0.00 23.02 32.17 27.74 21.14 15.13 9.27 464 1.66 0.29
S| S 2 0.00 25.38 37.54 36.34 31.83 25.88 18.57 10.95 443 0.80
g -_% £ 3 0.00 25.61 38.58 38.83 36.15 31.66 24.77 16.24 743 1.45
= 4 0.00 25.64 38.78 39.56 37.84 34.52 28.60 20.15 10.10 215
x 5 0.00 25.64 38.82 39.77 38.48 35.90 30.85 22.89 12.27 2.83
1 0.00 15.27 34.41 39.85 39.83 37.92 31.66 22.89 13.27 4.64
2g 2 0.00 1.56 5.74 12.34 20.13 26.93 31.78 31.18 22.07 8.20
E E 3 0.00 0.16 1.1 3.58 8.14 14.47 21.18 26.11 23.95 10.52
< ©° 4 0.00 0.01 0.22 1.05 3.18 7.18 13.08 19.30 21.27 11.32
5 0.00 0.00 0.04 0.30 1.21 345 7.71 13.53 17.34 10.97
0 82.77 10357 13177 17095 218.26 27882 369.59 521.15 824.76 1638.21
1 82.77 9748 11805 146.71 187.68 24842 34267 50058 81240 1633.80
= 2 82.77 96.36 11387 138.02 173.37 22797 316.89 474.04 79254 1626.11
S 3 82.77 96.27 11309 13546 16747 21694 29975 45186 77142 1616.46
4 82.77 96.25 11293 13467 165.06 211.39 289.30 43563 752.82 1606.21
5 82.77 96.25 11290 13445 16414 208.71 28318 42442 737.78 1596.43
o| 8 1 0.00 5.89 10.41 14.18 14.01 10.90 7.28 3.95 1.50 0.27
S| S 2 0.00 6.96 13.58 19.27 20.57 18.24 14.26 9.04 391 0.74
5 ,g £ 3 0.00 7.05 14.17 20.76 23.27 2219 18.90 13.30 6.47 1.33
= 4 0.00 7.07 14.29 21.22 24.37 2418 21.73 16.41 8.72 1.95
x 5 0.00 7.07 14.32 21.35 24.80 25.14 23.38 18.56 10.55 2.55
1 0.00 6.10 13.72 24.24 30.59 30.40 26.92 20.57 12.35 441
2g 2 0.00 1.1 417 8.70 14.30 20.45 25.78 26.54 19.86 7.69
E E 3 0.00 0.10 0.78 2.56 5.90 11.04 17.14 22.18 21.12 9.66
< ©° 4 0.00 0.01 0.16 0.79 241 5.55 10.45 16.23 18.60 10.25
5 0.00 0.00 0.03 0.22 0.92 267 6.11 11.21 15.05 9.78
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TABLE 3: Value of ACI for b=20

p

n 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

0 0.00 10832 179.28 25226 35894 508.71  751.09 1202.76 2258.01 5569.65

1 0.00 36.62 86.10  169.13  277.04 44265 70427 1171.85 224112 5563.93

- 2 0.00 23.29 6049 11959 21545 37159 63089 111529 2208.71 5553.19

S 3 0.00 21.99 5415 10361 186.30 32444 57282 1055.23 2166.73 5538.60

4 0.00 21.87 52.65 98.54 17262 29917  532.90 100540 2123.84 5521.71

5 0.00 21.86 52.32 96.96 167.01 286.37 508.52 968.87 2085.40 5504.13

g 1 000 6620 5197 3296 2282 1298 623 257 075 0.0

Tl _ 2 000 7850 6626 5259 3998 2695 1600 727 218 030

3|28 3 000 7970 6980 5893 4810 3622 2373 1227 404 056

% 4 0.00 79.81 70.63 60.94 51.91 41.19 29.05 16.41 5.94 0.86

(-2 5 000 7982 7082 6156 5347 4371 3229 1945 764 1.8

1 0.00 71.70 93.18 83.13 81.90 66.06 46.82 30.91 16.90 5.72

£ g 2 0.00 13.33 25.61 49.54 61.59 71.07 73.38 56.56 32.40 10.73

S E 3 0.00 1.30 6.35 15.98 29.15 47.15 58.07 60.06 41.99 14.59

XS 4 0.00 0.12 1.50 5.06 13.68 25.27 39.92 49.83 42.89 16.90

5 0.00 0.01 0.33 1.58 5.61 1280 2437 36.53 38.43 17.57

0 3642 13585 197.09 27572 37834 527.83 77885 122238 227971 5593.61

1 36.42 68.81 12085 19527 304.22 466.15 73312 119213 2263.06 5587.95

- 2 36.42 6345 10220 16133 254.05 40382 669.31 1139.93 223248 5577.69

S 3 36.42 62.96 98.60 150.50  232.04 36795 621.02 1086.73 2193.87 5564.05

4 36.42 62.91 97.90 14727 22298 349.05 590.23 1044.31 2155.37 5548.48

5 36.42 62.91 97.77 14631 21935 339.39 571.58 101344 2121.60 5532.50

o | 3 1 0.00 49.35 38.68 29.18 19.59 11.69 5.87 247 0.73 0.10

T|S 2 0.00 53.29 48.15 41.49 32.85 23.49 14.06 6.75 2.07 0.28

g _g £ 3 0.00 53.66 49.97 45.41 38.67 30.29 20.26 11.10 3.77 0.53

= 4 0.00 53.69 50.33 46.59 41.06 33.87 24.22 14.57 545 0.81

o 5 0.00 53.69 50.39 46.93 42.02 35.70 26.61 17.09 6.94 1.09

1 0.00 67.04 76.24 80.45 7412 61.68 45.73 30.25 16.65 5.66

2eg 2 0.00 5.36 18.65 33.93 50.17 62.33 63.81 52.20 30.58 10.25

2 E 3 0.00 0.50 3.60 10.83 22.01 35.87 48.29 53.20 38.61 13.64

XS 4 0.00 0.04 0.70 3.23 9.06 18.90 30.79 4242 38.50 15.57

5 0.00 0.00 0.13 0.96 3.63 9.65 18.66 30.87 33.77 15.98

0 91.05 17261 24432 31962 42343 57403 81742 127277 233562 5652.68

1 91.05 12566 176.03 249.67 356.90 516.59 77342 1243.09 2319.01 5646.91

- 2 91.06 12283 164.82 22510 317.03 46483 71715 119514 2289.68 5636.73

S 3 91.06 12253 16249 21756 30044 43573 675.66 1148.12 225391 5623.40

4 91.05 12250 162.04 21535 29376 420.89 649.29 1111.34 2219.02 5608.53

5 91.06 12250 16196 21472 29119 41361 633.51 1085.03 2189.11 5593.55

o | 3 1 0.00 27.20 27.95 21.88 15.71 10.01 5.38 2.33 0.71 0.10

F|S 2 0.00 28.84 32.54 29.57 25.13 19.02 12.27 6.10 1.97 0.28

g _g £ 3 0.00 29.02 33.49 3193 29.04 24.09 17.34 9.79 3.50 0.52

= 4 0.00 29.03 33.68 32.62 30.62 26.68 20.57 12.68 4.99 0.78

® 5 0.00 29.04 33.71 32.82 31.23 27.95 22.50 14.75 6.27 1.05

1 0.00 46.95 68.29 69.95 66.53 57.44 44.01 29.68 16.61 5.77

£ g 2 0.00 2.83 11.21 24.57 39.87 51.77 56.27 47.95 29.33 10.19

2 E 3 0.00 0.31 2.33 7.53 16.58 29.10 41.49 47.02 35.77 13.33

<° 4 0.00 0.03 0.45 2.21 6.69 14.84 26.37 36.78 34.88 14.87

5 0.00 0.00 0.09 0.63 2.56 7.27 15.78 26.31 29.91 14.99
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TABLE 4: Value of ACI for b=100

p
1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
0.00 22871 378.08 59346 917.66 1428.07 2357.22 4301.25 9380.07 26309.55
0.00 92.58 24486 47487 81432 135224 2305.11 4268.18 9362.27 26303.63
0.00 73.78 19367 386.03 701.78 1239.56 2207.25 4201.86 9327.24 26292.43

§ 0.00 7144 18058 354.33 64525 115518 2109.67 4118.46 9278.93 26277.00
0.00 7117 17743 34394 62031 1108.20 2040.57 4041.37 9225.11 26258.77
0.00 7114 176.79  340.62 609.62 1083.50 199591 3980.49 9173.66 26239.36
] 0.00 59157 35.24 19.98 11.26 5.31 2.21 0.77 0.19 0.02
'c,':, S - 0.00 67.74 48.77 34.95 23.52 13.20 6.36 2.31 0.56 0.07
L 0.00 68.76 52.24 40.29 29.69 19.11 10.50 425 1.08 0.12
% 0.00 68.88 53.07 42.04 3240 22.40 1343 6.04 1.65 0.19
o

0.00 68.90 53.24 42.61 33.57 2413 15.33 7.46 2.20 0.27

0.00 13614 133.22 11859  103.34 75.83 52.11 33.07 17.79 5.93
0.00 18.80 51.19 88.84 11254  112.68 97.86 66.33 35.04 11.20
0.00 2.33 13.09 31.70 56.53 84.38 97.58 83.40 48.31 15.43
0.00 0.27 3.15 10.39 24.93 46.98 69.10 77.08 53.81 18.23
0.00 0.03 0.64 3.33 10.70 24.71 44.66 60.88 51.46 19.40

3642 24276  405.88  623.04 94358 146126 2392.68 4343.79 9435.50 26375.73
3642 13139 279.88 50345 843.04 1385.07 2339.59 4309.98 9417.12 26369.44
3642 11614 23830 431.75 746.22 127849 224567 4244.88 9382.14 26357.98
3642 11473 22971 40836  700.99 1208.93 2159.98 4167.18 933543 26342.61
3642 11459 22795 40095 681.75 1171.12 2100.90 4098.11 9285.20 26324.81
3642 11458 227.61 398.74 673.90 1151.68 2063.92 4045.61 9238.70 26306.24

0.00 45.88 31.04 19.20 10.66 5.21 2.22 0.78 0.19 0.02
0.00 52.16 41.29 30.70 20.92 12.51 6.14 2.28 0.57 0.07
0.00 52.74 43.40 34.46 25.71 17.27 9.73 4.07 1.06 0.13
0.00 52.80 43.84 35.65 27.75 19.86 12.20 5.66 1.59 0.19
0.00 52.80 43.92 36.00 28.58 21.19 13.74 6.86 2.09 0.26

0.00 111.37 126.00 119.60  100.54 76.19 53.09 33.82 18.38 6.28
0.00 15.25 41.58 71.70 96.82  106.58 93.92 65.10 34.98 11.47
0.00 1.41 8.58 23.39 45.24 69.55 85.70 77.70 46.71 15.36
0.00 0.13 1.77 740 19.24 37.81 59.08 69.07 50.23 17.80
0.00 0.01 0.34 222 7.85 19.44 36.98 52.51 46.49 18.57

91.05 30527 466.78 687.14 1010.66 1532.47 2470.47 443275 9543.15 26482.59
91.05 19060 34485 569.93 911.29 145587 2416.16 4397.50 9523.54 26475.69
91.06 18061 310.01 508.33 825.00 1357.91 2326.60 4332.98 9487.67 26463.49

Absolute
change

Cost

=0,3

(%)

CVp
Relative value

Absolute
change

3 9105 17979 30393 48069 787.16 1297.26 2249.08 425950 9441.23 26447.36

91.05 17971 30277 48430 77189 126560 2197.44 419644 939255 2642897

9105 17970 30256 48277 76597 124983 216592 414950 9348.54 26410.08

o| g 000 3756 2612 1706 983 500 220 08 021 003

TS _ 000 4084 3359 2602 1837 1139 58 225 058 007

32 000 4110 3489 2873 2211 1535 8% 391 107 013

k- 000 4113 3514 2052 2362 1741 1105 533 158 020
o

0.00 41.13 35.18 29.74 24.21 18.44 12.33 6.39 2.04 0.27

0.00 11466 121.94 117.21 99.37 76.60 54.31 35.26 19.61 6.90
0.00 10.00 34.84 61.60 86.29 97.96 89.55 64.52 35.87 12.19
0.00 0.81 6.08 18.64 37.84 60.65 77.52 73.48 46.44 16.13
0.00 0.08 1.15 5.39 15.26 31.65 51.64 63.06 48.69 18.39
0.00 0.01 0.21 1.53 5.93 15.77 31.52 46.93 44.00 18.88

Absolute
change

BN PR WN - OB WON 22Ol WN = R WN- OB WON 22Ol =2 R WN = b o= oS
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Appendix

In the Appendix we show and prove the necessary convexity results that lead to the re-
sults presented in Theorem 1. Let g, denote the cost-to-go function of period , defined
as

. C(yt)+aE ft+1(yz_dt7ar+l7at+l)5 lfT_nStST’
g (v.4,)= B ©)
C(yt)+(XEd, Hﬂf;ﬂ(%_d19a1+19at+1)’ if1<t<T-n-1,
and we rewrite the minimal discounted expected cost function f, (xt ,a,,d, ) as
f;(xf’at’at):gnzlflgt(yt’at)’ lfIStST' (7)

We first show the essential convexity results that will allow us to establish the optimal
policy.

Lemma I: For any arbitrary value of information horizon n and value of the ACI vector
a,, the following holds for all t :

L. g (y,ﬁ) is convex in V,
2. f,(x,a) is convexin x.

Proof : The proof starts by backward induction in time period T .

t=T: From equation. , we have g,(y;)=C,(¥;) by taking f;, () =0 into account.
Since the reassigned single-period cost function C,(y;) is assumed to be convex, func-
tion g;(y;) is also convex. For f;(x,,a,)=min yp2e g, (y;) we apply Lemma 1 and
show that function f;(x;,a;) is convex.

t=T-1: fT l('xT 1>4r- laar 1) mm}T 12 1{CT 1()/T 1)+0LE fr(yr 1 T 1:ar) We

have shown that f;(x;,a;) is convex, thus using an affine mappmg property (Hiriart-Ur-
ruty and Lamaréchal, 1996) we show that function fT Yrndyysa;) = fr(Vr —dr a;)
is also convex (the update of the inventory position is linear; thus a linear translation
with b=d;_;). 0.E, fT is convex since expectation preserves convexity (Heyman and
Sobel, 1984) and by adding cost function C, ,(,_,) and using a weighted sum prop-
erty (Hiriart-Urruty and Lamaréchal, 1996) we show that g, ,(y;_,a;) is convex. g;_,
is then minimised and through Lemma 1 we conclude that f;_,(x;_,a; ,d; ;) is also
convex.

t=T-2,...,1: The proof follows the same line as the previous step using backward in-
duction on £, and thus proving the convexity of f,(x,,a,,d,).0

Lemma 2: If g(y,e) is convex then f(x,c,e)=min . . g(y,e) is also convex for any
c20.

Proof: Let h(b,e):=min,_, g(y,e) where 4=[1,1] and b=[-x,x+c]. By minimisa-
tion on the polyhedral property (Porteus, 2002, Mincsovics et al., 2009), we conclude
that /(b,e) is convex. Since 4(b,e) = f(x,c,e), f isalso convex. O
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Proof of Theorem I: The convexity results of Theorem 1 directly imply the proposed
structure of the optimal policy.

RECEIVED: APRIL 2009
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