107 Natural calcareous Norway spruce woodlands in Slovakia and their syntaxonomical classification Abstract A second version of the syntaxonomical classification of calcareous Norway spruce communities is presented for the region of Slovak Western Carpathians. Recent knowledge on delimitation of natural Norway spruce woodlands in Slovakia is summarized as well. As result, four in Slovakia traditionally recognized associations are distinguished: Seslerio caeruleae-Piceetum on the ecologically most extreme habitats, followed by Cirsio erisithalis-Piceetum (a replacement for pseudonymically used Cortuso matthioli-Piceetum), tall-forb community of Adenostylo alliariae-Piceetum and ca. species-poor low-forb community of Mnio spinosi-Piceetum (syn. Oxalido-Piceetum). Additionally, two new associations are differentiated: Fragario vescae-Piceetum ass. prov. standing between Cirsio-Piceetum and Adenostylo-Piceetum and acidified Hieracio murorum-Piceetum on deeper soils developed over rocks of the Mráznica formation. For nomenclatural reasons, new order Cortuso-Piceetalia is described for species-rich calcicolous communities of the class Vaccinio-Piceetea as well as subordinated new alliance Cortuso matthioli-Piceion for the supramontane calcicolous Norway spruce communities. Izvleček V članku predstavljamo drugo verzijo sintaksonomske klasifikacije smrekovih združb na karbonatu na območju Zahodnih Karpatov Slovaške, povzeli pa smo tudi trenutno poznavanje razmejitve naravnih smrekovih gozdov na Slovaškem. Rezultat so štiri tradicionalno prepoznane asociacije: Seslerio caeruleae-Piceetum na ekološko najbolj ekstremnih rastiščih, sledi Cirsio erisithalis-Piceetum (ki nadomešča psevdonim Cortuso matthioli-Piceetum), Adenostylo alliariae-Piceetum in vrstno siromašna asociacija z nizkimi zelišči Mnio spinosi-Piceetum (sin. Oxalido-Piceetum). Dodatno smo ločili dve novi asociaciji: Fragario vescae-Piceetum ass. prov., ki predstvalja vmesno asociacijo med Cirsio-Piceetum in Adenostylo-Piceetum, ter zakisano asociacijo Hieracio murorum-Piceetum na globljih tleh, razvitih na skalah formacije Mráznica. Zaradi nomenklaturnih razlogov smo opisali nov red Cortuso-Piceetalia za vrstno bogate združbe na karbonatih znotraj razreda Vaccinio-Piceetea in znotraj reda novo zvezo Cortuso matthioli-Piceion, kamor uvrščamo supramontanske smrekove združbe na karbonatih. Key words: Athyrio-Piceetalia, calcareous woodlands, forest plant communities, nomenclature, Picea abies, phytocoenology, supramontane woodland, syntaxonomy, Vaccinio-Piceetea, Western Carpathians. Ključne besede: Athyrio-Piceetalia, gozdovi na karbonatih, gozdne rastlinske združbe, nomenklatura, Picea abies, fitocenologija, supramontanski gozdovi, sintaksonomija, Vaccinio-Piceetea, Zahodni Karpati. Corresponding author: Peter Kučera E-mail: peter.kucera@uniba.sk Received: 31. 3. 2021 Accepted: 13. 10. 2021 Peter Kučera1 DOI: 10.2478/hacq-2021-002421/1 • 2022, 107–151 1 Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia 21/1 • 2022, 107–151 108 Peter Kučera Natural calcareous Norway spruce woodlands in Slovakia and their syntaxonomical classification Introduction Syntaxonomical classification of the Norway spruce com- munities has undergone a long way since the establish- ment of the class Vaccinio-Piceetea by Braun-Blanquet et al. (1939). Hadač (1962) published a groundbreaking proposal for a fundamental division of this class based on floristical and ecological differentiation valid on su- praregional to continental scale: separation of (1) usu- ally species-poor communities growing on (very) strongly acidic soils, i.e. distributed over non-carbonate rocks and (2) species-rich communities growing on moderately to slightly acidic and neutral soils, i.e. inhabiting areas of various carbonate rocks. For these basic units the rank of order was assigned: the order Myrtillo-Piceetalia Hadač 1962 for the first group (the correct order name is Piceeta- lia abietis Pawłowski ex Pawłowski et al. 1928) and the order Athyrio-Piceetalia Hadač 1962 for the second group (for nomenclatural discussion see Kučera, in red.). Acceptance of this syntaxonomical division is continu- ously growing in the European countries (for detail see Kučera, in red.), and even if authors did not recognize the order Athyrio-Piceetalia Hadač 1962 as a separate unit of the rank of order, their syntaxonomical system repro- duced the respective two-component fundamental divi- sion (cf. Exner et al., 2002; Exner, 2007). For the territory of Slovakia, two syntaxa checklists of the class Vaccinio-Piceetea Br.-Bl. in Br.-Bl. et al. 1939 were published up to the present: (1) Šomšák’s list of syn- taxa (in Mucina et al., 1985) based mostly on studies of Hadač et al (1969), Šoltés (1976) and Fajmonová (1978), and (2) recent derived checklist of Jarolímek et al. (2008a). Altogether five associations of natural calcicolous Norway spruce communities were traditionally differentiated: Seslerio-Piceetum, Cortuso-Piceetum, Adenostylo-Piceetum within the alliance Chrysanthemo-Piceion auct. non (Kraji- na 1933) Březina et Hadač in Hadač 1962 as well as Mnio spinosi-Piceetum, Oxalido-Piceetum classified within Oxa- lido-Piceion auct. non (Krajina 1933) Březina et Hadač in Hadač 1962 (cf. Kučera, 2012a; Kučera, in red.). Kučera (2012a) published the first comprehensive syn- taxonomical revision of the natural mountain Norway spruce syntaxa within Slovakia. An important part was a commented overview of distribution of the Norway spruce woodlands in the territory of the Western Car- pathians, associated with a revision of traditional views on their natural distribution. Aim of this paper is present an updated syntaxonomical classification of natural calcareous Norway spruce com- munities found in the territory of the Western Carpathi- ans in Slovakia. The preceding syntaxonomical revisions were dedicated to syntaxonomy of Arolla pine communi- ties (Kučera, 2017; Kučera, 2019b) and coniferous wet woodland communities (Kučera, 2019a, with exception of bog woodland communities). Methods This contribution presents partial results of the syntaxo- nomical revision of the communities of the class Vaccinio- Piceetea Br.-Bl. in Br.-Bl. et al. 1939 present in Slovakia, originally intended to be part of the specialized volume of the Rastlinné spoločenstvá Slovenska (1995–) on the forest and scrub vegetation (Valachovič et al., msc.). Therefore the presented relevé dataset selection follows the method- ical directions established for that monograph: (1) The dataset for Slovak forest and scrub phytocoe- noses was officially closed to the date 27. 5. 2016 and no newly published relevés were accepted. This regula- tion was here followed therefore this is the reason why for example numerous relevé data of Arolla pine woodlands published by Zięba et al. (2018) were not included in the statistical comparisons of the Vaccinio-Piceetea alliances. The final dataset was exported from Slovak vegetation database (CDF) (see Šibík, 2012; https://www.givd.info/ ID/EU-SK-001) by J. Šibík (Institute of Botany SAS, Bratislava) and made available to the respective authors of chapters on Slovakian forest and scrub vegetation. (2) For forest communities only relevés with plot siz- es 200–650 m2 were accepted. This regulation was also strictly followed even if that meant loss of some typi- cal relevés with sizes between 100–200 m2 (for example Hadač et al., 1969, p. 272 etc.1). (3) Selected taxa were merged to species aggregates such as Dryopteris carthusiana agg., Senecio nemorensis agg. (cf. Valachovič et al., msc.) or to the nearest mutual taxonom- ical rank (e.g. Solidago virgaurea ssp. minuta + Solidago virgaurea). The resulting dataset was stored in Turboveg for Win- dows database software (Hennekens c1998–2020) (cf. Hennekens & Schaminée, 2001) and selection of Vac- cinio-Piceetea phytocoenoses with respect of above-men- tioned limitations was performed by the author. Some of the relevés were revised according to originally published data. In respect of the thorough revision of literature sources, records of explicit successional stages (e.g. some relevés of Krajina (1933)) as well as relevés with missing ground lay- er species were excluded. Relevés of phytocoenoses with natural occurrence of Pinus cembra were also excluded be- cause they are classified within the alliances Calamagrostio 1 However, the excluded relevés were considered within the proposal of syn- taxonomical classification within the respective associations. 21/1 • 2022, 107–151 109 Peter Kučera Natural calcareous Norway spruce woodlands in Slovakia and their syntaxonomical classification variae-Pinion cembrae and Homogyno alpinae-Pinion cem- brae (cf. Kučera, 2017). With regard to different floristical patterns of calcareous and acid Norway spruce woodlands (cf. Kučera, 2012a), the set of calcicolous phytocoenoses was separated. In attempt to maximize quality of data selected for sta- tistical classification of Slovak Picea abies phytocoenoses of the Western Carpathians, the available relevé data were thoroughly re-analysed with regard to revisions of the nat- ural distribution of Picea abies communities in Slovakia (see below). The most important part is to eliminate po- tential data contamination with floristical and ecological influence of anthropogenically degraded forest commu- nities, especially exclusion of data recorded in unequivo- cally identified substitutionary Norway spruce stands (see below in the Results, for the detailed explanation see Kučera (2012a)). As result, a strict restriction of altitudinal limit was adopted: relevé data from localities below the elevation 1400 m a.s.l. were excluded. This subjective decision is based on the field observations of Fagus and mixed Fagus woodland stands found above 1300 m a.s.l. on exposi- tions of all four cardinal directions, with emphasis on the preserved Fagus stands reaching with their artificially lowered upper forest line (!) above 1340–1350 m a.s.l. on non-carbonate bedrock. In the carbonate regions, such artificial upper forest line of mixed Fagus woodlands of the class Carpino-Fagetea was confirmed in the field above 1360–1390 m a.s.l. Below the chosen altitudinal limit (1400 m a.s.l.) only carefully selected relevés of Picea abies phytocoenoses were accepted into the dataset. They represent plant communities mostly found on ecologically more extreme habitats which hinder development of the Carpino-Fa- getea communities, within the Western Carpathians for example on considerably steep and rocky habitats with shallow soils which support an extragradal occurrences of natural calcareous Norway spruce phytocoenoses (cf. Fajmonová, 1978). No other phytocoenological relevés were eliminated, even if they represented untypical of problematically identifiable phytocoenoses. The complete list of the used relevés is summarily presented by Kučera (in prep.), see also below the particular associations.2 The final dataset with 80 relevés was exported to the software package JUICE (Tichý c1998–2020) (cf. Tichý, 2002) for further modifications (see above) and, subse- quently, exported for statistical analysis performed by the 2 In comparison to the dataset used for calcicolous Norway spruce com- munities by Kučera (2019a), tab. 1: “76 relevés”), four relevés were added: Kobzáková (1987), tab. 8, rel. 7; Miadok (1995), p. 60, rel. 2; Kučera (2012a), p. 289, rels. 9–10. software package SYN-TAX 2000 (Podani, 2001a). The ordinal hierarchical clustering was executed to evaluate also quantitative information provided by ordinal Braun- Blanquet’s scale (cf. Kučera, 2011a) and the Podani’s discordance coefficient was used as it takes into account also presence vs. absence relation (Podani, 2001b). For confrontation also the ordinal nonhierarchical clusterings were performed using the Podani’s discordance coeffi- cient. Further classification comparisons and verifications included variants of the ordinal hierarchical/nonhierar- chical clustering without the most species-rich commu- nities ([1] Seslerio-Piceetum or [2] Seslerio-Piceetum and Cirsio-Piceetum). The final relevé classification is based on classification of data on the field layer (E1) and the ground layer (E0) only, because tree species data deformed the statistical results and for example Sorbus aucuparia-pseudocommu- nities were created without having other sufficient diag- nostic floristical attributes. The resulting dendrogram is presented in the Figure 1. The differential attributes of the respective syntaxa (fidelity and frequency values) and resulting tables were elaborated within JUICE; the concept of fidelity was used (Chytrý et al., 2002a). Fidelity calculations (φ-values) are based on the presence/absence data with a standardization of relevé groups to an equal size. Performing the Fisher’s exact test, zero fidelity was given to species with signifi- cance P > 0.05 in a particular cluster (Tichý & Chytrý, 2006). The formal sequence of species groups in the Table 2 is adjusted according to the template of differential tables of the Vegetation of the Czech Republic, Vol. 4 (Chytrý et al., 2013a), i.e. trees, shrubs, differential and other species of the field and ground layer separately; constancy and fi- delity values equal and higher than “50” are highlighted in boldface type. Statistically determined diagnostic species are ranked according to fidelity values. The conventional levels of statistical significance (0.05, 0.01 and 0.001, Fisher’s exact test) for the particular species are indicated with asterisks (*, **, ***). Due to rather low total number of available natural Norway spruce relevés, species with the lowest diagnostic value (Fisher’s exact test 0.05-limit) were also retained as “diagnostic species” for individual syntaxa, bearing in mind their availability for future com- parisons and potential use during field research. However, in the text are given in number reduced groups of the recommended diagnostic species (highlight- ed in grey in the Table 2) to limit the respective species lists, recruited from species which (1) usually have φ-value ≥ 0.50 or (2) are concentrated in the respective commu- nity. Non-highlighted statistically defined diagnostic spe- cies could also be used for delimitation of the respective 21/1 • 2022, 107–151 110 Peter Kučera Natural calcareous Norway spruce woodlands in Slovakia and their syntaxonomical classification community, but only with careful consideration of their association with other species in other communities and also with consideration of their cover-abundance values in the evaluated and other communities: e.g. Adenostyles alliariae is frequent species in the whole group of natural calcicolous Picea abies woodlands, however, in the asso- ciation Adenostylo alliariae-Piceetum it is (co-)dominant species with very high frequency. Division of the diagnostic species into differential and Braun-Blanquetian character species is not applied, be- cause (1) this statistical evaluation is based only on lim- ited dataset, (2) character species (for example for Slovak vegetation) are frequently traditionally subjectively as- signed to a preselected syntaxa, even in the national mon- ographs, and thus do not rely on statistical determination (for example Adenostyles alliariae). Species taxa names from the Western Carpathian rel- evés follow checklists of Marhold et al. (1998), Kubinská & Janovicová (1998) and Pišút et al. (1998), exceptions are for example the names of Sesleria caerulea (L.) Ard. (cf. Foggi et al., 2001) and Soldanella marmarossiensis agg. (S. hungarica auct. slov., cf. Valachovič et al., 2019), or other species adapted from the particularly cited studies. Nomenclatural evaluation of the discussed syntaxa names is regulated according to the 4th edition of the Code (Theurillat et al., 2021), highlighted are the cited Code Articles (“Art.”) and Recommendations (“Rec.”). The names of the classes Vaccinio-Piceetea Br.-Bl. in Br.-Bl. et al. 1939 and Carpino-Fagetea Jakucs ex Passarge 1968 are hereafter given without author citations. Common soil names (within the associations’descriptions) are supple- mented with the 2006 edition of the World Reference Base for Soil Resources names given according to the ref- erence table in the Societas pedologica Slovaca (2014). The sites of the analysed relevés within the individual associations in Slovakia are given in the Figures 2 and 3. The coordinates of the dataset relevés taken from the CDF were partially revised, especially those created for older surveys without pre-existing coordinate data. The maps were created using the Free and Open Source QGIS (QGIS.org, 2021), the base layer (terrain) is provided by Geodesy, Cartography and Cadastre Authority of the Slo- vak Republic (see https://zbgis.skgeodesy.sk). Extended characterization of the discussed associations – their distribution within the Western Carpathians, ecol- ogy, dynamics of the stand, notes to nature conservation – is summarized by Kučera (in prep.), in this paper are mainly discussed: floristical differentiation, syntaxonomi- cal variability as well as important nomenclatural and syntaxonomical problems. 78 76 74 72 70 68 66 64 62 60 58 56 54 52 50 48 46 44 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 0 D iss im ila rit y 2 1 3 4(4c) (4c) (4c)4c 6 5 1 – Seslerio caerulae-Piceetum; 2 – Cirsio erisithalis-Piceetum, 3 – Fragario vescae-Piceetum ass. prov., 4 – Adenostylo alliariae-Piceetum, 4c – Adenostylo-Piceetum stellarietosum nemorum, 5 – Mnio spinosi-Piceetum, 6 – Hieracio murorum-Piceetum Figure 1: Dendrogram of the ordinal hierarchical clustering of the relevés of natural calcareous Picea abies communities from Slovakia. Slika 1: Dendrogram ordinalne hierarhične klasifikacije popisov naravnih združb z vrsto Picea abies na karbonatu s Slovaške. 21/1 • 2022, 107–151 111 Peter Kučera Natural calcareous Norway spruce woodlands in Slovakia and their syntaxonomical classification Results and discussion General delimitation of the considered plant communities Regionally developed intrazonal coniferous orobiomes (i.e. within the nemoral zone) of the main Central Euro- pean mountain ranges are analogous counterparts of the taiga (zono)biom of the northern Eurasian latitudes. The most frequent and usually the exclusive component of these orobiomes is a Picea abies mountain woodland, only the most highest mountain ranges (Alps, Tatra Mountains etc.) possess (mixed) Arolla pine woodlands. Numerous Picea abies plant communities were histori- cally syntaxonomically included into the class Vaccinio- Piceetea. Due to the impacts of pre-/historical land man- agement, general patterns of the distribution of Norway spruce stands in the Western Carpathians have consider- ably changed. Fully in agreement with Zlatník (1959, p. 20) I am of the opinion that the key to understand the original [primary] overall composition of forests in Slova- kia is a reconstruction of the natural distribution of Fagus sylvatica and its proportional participation on composi- tion of these forests. This approach requires determination of potential natural distribution of Fagus sylvatica or, more precisely, determination of horizontal and vertical potential natural distribution of woodlands (co-)dominated by F. sylvati- ca as well as mixed deciduous-coniferous woodlands of higher montane altitudes with still considerable ecologi- cal influence of F. sylvatica on the plant species compo- sition of the field layer. The Zlatník’s concept of forest vegetation reconstruction (Zlatník, 1957; Zlatník, 1959; Zlatník, 1975; Zlatník, 1976; Zlatník, 1978) is similar to geobotanical reconstruction approaches (cf. Tüxen (1956) and later updates and variations, cf. Neuhäusl (1994)). Moreover in regard to the recent climate change, specialized attention should be paid to the period up to 1950–1980, i.e. before the notable recent anthropogenic impact on climate variables important for the develop- ment of woodland orobiomes. In the territory of the Western Carpathians within Slo- vakia, planted Norway spruce stands are frequently easily recognizable because they abruptly border to (semi-)natu- ral and more resilient beech or beech-silver fir stands of the class Carpino-Fagetea even within the same slope of a valley, i.e. at the originally same habitat. Such planta- tions have usually limited duration, however, existence of several generations of uninterrupted Norway spruce monocultures is known in some regions (Šimurdová, 2001) or Norway spruce monocultures could have re- placed already historically changed forest vegetation (see Nižnanská, 1983). In such cases, centuries long cultiva- tion of Norway spruce stands gradually effects regional species composition and also habitat conditions. All such plantations represent less or more anthropo- genically influenced stages of original plant communities of the class Carpino-Fagetea and they should be classified within that class (cf. Hadač & Sofron (1980) and cor- rections by Kučera (2012a, chap. 5.27); see also Zlatník (1975, p. 83–84, 86). The higher up into the mountains, the harder becomes the differentiation between the native and anthropogenic Norway spruce stands replacing the original mixed Euro- pean beech woodland. However, in the Slovakian West- ern Carpathians the beech-fir woodlands are sufficiently represented even in the altitudes 1000–1200 m a.s.l. therefore the Norway spruce cultures as temporary conif- erous stages of Carpino-Fagetea communities are mostly reliably identifiable. General lower line of Norway spruce altitudinal vegetation zone in the Western Carpathians Throughout the previous decades several variants of the elevational span of the Norway spruce altitudinal vegeta- tion zone were published for the Western Carpathians (see Kučera 2012a, chap. 3): according to various au- thors, altitudes of the general lower limit of this zone were estimated to different values within the range from (1000) 1100 up to 1250 (1300) m a.s.l., the natural gen- eral (i.e. climatic) upper limit was assumed to be situ- ated also at different values ranging from 1300 to 1550 (1600) m a.s.l. Inconsistency of the referred assessments is evident. Evaluations of the assumed natural altitudinal distribu- tion of Norway spruce woodland within the majority of previous vegetational outlines published for the terri- tory of Slovakia, either from the view of botany (Holub & Jirásek, 1967; Futák, 1972; Michalko & Berta, 1972; Michalko et al., 1980; Michalko et al., 1986; Šomšák, 1998; cf. also Medwecka-Kornaś, 1972) or forest typolo- gy (Hančinský, 1972; Hančinský, 1977; Randuška, 1986; Fleischer & Chmiel, 2010; cf. also Minďáš, 1999) and geography (Plesník, 1961; Plesník, 1995; Plesník, 2004) are at least partly unsatisfying (for details see Kučera (2012a)). Debatable geobotanical conclusions of the cited studies and other works were also reflected in specialized manuals for nature conservation (Stanová et al., 2002; Vi- ceníková et al., 2003; and previous versions). The most probable explanation of inconsistencies be- tween the previously published results and the recently 21/1 • 2022, 107–151 112 Peter Kučera Natural calcareous Norway spruce woodlands in Slovakia and their syntaxonomical classification revised field situation is that insufficient attention was paid to identification of anthropogenic, secondary Nor- way spruce stands in the field, especially within the high- est part of the montane altitudinal zone, and to their differentiation from natural Norway spruce woodlands. Formation of the former group is frequently connected with the long-term spontaneous succession of Picea abies on formerly deforested areas once used for high mountain grazing or even mowing in some localities (subanthropo- genic origin of Picea stands; Kučera, 2012a). In the various Western Carpathian mountain ranges, occurrences of (mixed) upper montane Fagus woodlands over the traditionally most accepted general altitudinal limit 1250 m a.s.l. for existence of European beech wood- land were confirmed along with a widespread gradual re- covery of such forests by the processes of secondary suc- cession of F. sylvatica within anthropogenic P. abies stands (Kučera, 2011b; Kučera, 2012a; Kučera, 2013a; Kučera, 2014a; Kučera, 2015a; and other until now unpublished sequels in this topic). Therefore the current general delimitation of the nat- ural distribution of communities of the class Vaccinio- -Piceetea is based on detailed revision of the occurrences of more or less natural (mixed) Fagus woodlands in the field, especially those which existed before 1950s. As such they were recorded in the historical orthophoto map of Slovakia with the oldest aerial photos dated to the year 1949 (Historická ortofotomapa Slovenska s. d.). Considerably revised was also distribution of so-called Fagus-free coniferous woodlands in the middle and lower montane altitudes of Slovak basins and mountain ranges which were also traditionally classified as plant commu- nities of the class Vaccinio-Piceetea (e.g. Kučera, 2012b; Kučera, 2012c; Kučera, 2014b; Kučera, 2015b; Kučera et al., 2009). The above-cited results of the field revision of natural- ness of Norway spruce woodland communities in the Western Carpathians signify that the general lower limit of Norway spruce altitudinal vegetation zone (in Latin “gradus” as an altitudinal counterpart to a latitudinal veg- etation zone [Latin “zona”], cf. Holub & Jirásek (1967, p. 79–8) and Krippel (1986, p. 260)) should be placed to considerably higher altitudes than traditionally ac- cepted. In Slovakia, this altitudinal limit most probably has not naturally descended below 1350 m a.s.l. at all. In respect to various expositions and mountain ranges, the estimated range is probably within the interval be- tween ca. (1370) 1380–1430 (1450) m a.s.l. It should be emphasized that the respective estimation is projected for 20th century before the era of gradually more visible impacts of the anthropogenic climate change (i.e. before ca. 1990, cf. Lapin et al., 2005; Faško et al., 2008). In addition, important though insufficiently known is the original natural elevational span of the transitional belt between unequivocally classifiable Carpino-Fagetea and Vaccinio--Piceetea communities. The extragradal natural occurrences of Norway spruce communities in lower altitudes are, obviously, not counted to that range because the respective communi- ties originated in terrain-induced ecologically extreme habitats inhibiting the development of so-called climax woodlands forming the predominating woodland vegeta- tion (cf. also Zlatník, 1975, p. 103–104; Zlatník, 1978, p. 327–328). Such ecologically peculiar Norway spruce communities are altitudinally lying in the uppermost part of the montane belt occupied by communities of the class Carpino-Fagetea. Considering the natural calcareous Nor- way spruce woodland types, the most frequent examples of such extragradal communities are phytocoenoses of the asociation Seslerio-Piceetum Fajmonová 1978 developed at altitudes below ca. 1370–1400 m a.s.l. A detailed review of Norway spruce woodlands docu- mented in the individual mountain ranges of the Western Carpathians as well as comments to communities incor- rectly classified within the class Vaccinio-Piceetea was al- ready published (see Kučera, 2012a). A shortened cata- logue of records of the plant communities which should not be considered as natural calcicolous Norway spruce communities is given in the Table 1. As such they should be classified as anthropogenic degraded variants of plant communities of the class Carpino-Fagetea, mostly within the order Cephalanthero damasonii-Fagetalia sylvaticae Boeuf et Royer in Boeuf et al. 2014,3 uniting the Europe- an calcareous Fagus and Fagus-Abies woodlands, i.e. com- munities with ecological conditions and species composi- tion determined by special ecological regime provided by mutual effect of base-rich soils (mostly various calcareous soils: rendzic leptosols, rendzinas, pararendzinas) and dis- tinctive landscape relief usually developed in mountain regions, formed by various sedimentary calcareous rocks (limestones, dolomites etc.). Some of the considered sec- ondary Norway spruce communities also might belong to the group of mesotrophic (silicicolous to semicalcicol- ous) woodlands united into the order Fagetalia sylvaticae Tüxen 19314,5 (cf. Boeuf et al., 2014). 3 Cf. the proposal of classification of (mixed) Fagus woodlands within the class Carpino-Fagetea into three cardinal units by Boeuf et al. (2014). 4 Willner (in Willner et al., 2015) argued for validity of the order name Fagetalia sylvaticae Pawłowski 1928. Despite the all argumentation, Pawłowski (1928, p. 15) did not provide a real unambiguous direct or indirect reference to an earlier effectively published sufficient di- agnosis (cf. Theurillat et al., 2021: Art. 2b). Scientific nomenclatural evaluations and decisions should be based on clearly stated informa- tion or data presented in the considered source; on the contrary, ob- scure guessing and wishing of a “proper reference” do not count among convenient scientific approaches. Therefore I identify with 21/1 • 2022, 107–151 113 Peter Kučera Natural calcareous Norway spruce woodlands in Slovakia and their syntaxonomical classification Table 1: Catalogue of records of the anthropogenic calcicolous (mixed) Norway spruce phytocoenoses incorrectly classified within the class Vaccinio-Piceetea. Tabela 1: Seznam literaturnih virov z antropogenimi smrekovimi združbami na karbonatnih (mešanih) substratih, nepravilno uvrščenih v razred Vaccinio-Piceetea. “Only published studies are listed, for details on manuscripts’ details see Kučera (2007, 2012a). Geomorphological units are given according to Kočický & Ivanič (2011).” Part 1. Slovakia Authors Geomorphological unit Original name of unit Proportion of Carpino- Fagetea relevés Remarks Klika (1926) Veľká Fatra Piceetum excelsae All relevés Klika (1929) Veľká Fatra, Krivánska Fatra Typ borůvkový, Vaccinium myrtillus-Calamagrostis varia All relevés Sillinger (1933) Ďumbierske Tatry, Kráľovohoľské Tatry Piceetum excelsae normale calcicolum All relevés Only synoptic table. Author’s original alternative name: Piceeto-Abietetum normale calcicolum Sillinger 1933. Sillinger (1933) Ďumbierske Tatry, Kráľovohoľské Tatry, Slovenský raj Piceetum excelsae altherbosum calcicolum Pro parte maj. Only synoptic table. Sillinger (1933) Ďumbierske Tatry, Kráľovohoľské Tatry, Slovenský raj Piceetum excelsae myrtilletosum calcicolum Almost all relevés Only synoptic table. Svoboda (1939) Západné Tatry Piceetum altherbosum Pro parte Only synoptic table. Grebenščikov et al. (1956) Veľká Fatra Piceetum excelsae myrtilletosum Klika Page 117–118 Grebenščikov et al. (1956) Veľká Fatra fragments of Norway spruce woodland with Cortusa matthioli and Luzula sylvatica Page 119 Samek et al. (1957) Vysoké Tatry, Belianske Tatry Piceetum excelsae altherbosum/ Adenostyleto-Piceetum Pro parte Samek et al. (1957) Vysoké Tatry Piceetum normale silicicolum All relevés Phytocoenoses in fact considerably influenced by carbonate rocks. Samek et al. (1957) Vysoké Tatry (? Belianske Tatry) Piceetum normale calcicolum ? Pro parte 5The catalogue given in the Table 1 demonstrate that anthropogenic calcicolous Norway spruce phytocoenoses were recorded in rather large number within the Western Carpathians. Probably most of them were used in the spe- Theurilat’s conclusion (in Willner et al., 2015, p. 177) that the name Fagetalia sylvaticae Pawłowski 1928 is the invalidly published name. The derived later name Fagetalia sylvaticae Pawłowski ex Pawłowski et al. 1928 is invalidly published as well (cf. Kučera, 2013b); the oldest validly published Fagetalia-name is Fagetalia sylvaticae Tüxen 1931 and it has already been recognized by Boeuf et al. (2014), see also Renaux et al. (2019). 5 This order name is based on the alliance Fagion septentrionale Tüxen 1931 nom. illeg. (Art. 34a) described for calcicolous Fagus sylvatica phytocoenoses of the Hildesheimer Wald–Ith region in northern Ger- many. Following the original diagnosis, the order is not characterized by distinctive calciphytes, however, the phytocoenotic composition of the respective association Fagetum subhercynicum Tüxen 1931 (Tüxen, 1931, p. 104 and the attached table) is clearly influenced by the calcare- ous geological substrate. 5 cialized statistical surveys on either diagnostic and other significant species (cf. Chytrý et al., 2002b; Jarolímek et al., 2008b; cf. also Jahn, 1985; Exner et al., 2002) or phy- tocoenological affinity of a chosen taxon (cf. Valachovič et al., 2019) – see the very high total number of relevés used in that studies in comparison to the here presented syntaxonomical revision. Therefore the respective results of those studies are misleading or incorrect when con- sidering the class Vaccinio-Piceetea because they factually represent a mixture of relevé data of two classes: Carpino- Fagetea and Vaccinio-Piceetea. In contrast to the statement of Chytrý et al. (2002b, p. 406) I am of the opinion that the number of secondary Norway spruce relevés (belong- ing to the class Carpino-Fagetea) used in that study (and similar other studies) represented a considerable part of evaluated relevé data. 21/1 • 2022, 107–151 114 Peter Kučera Natural calcareous Norway spruce woodlands in Slovakia and their syntaxonomical classification Authors Geomorphological unit Original name of unit Proportion of Carpino- Fagetea relevés Remarks Samek et al. (1957) Vysoké Tatry (? Belianske Tatry) Abieto-Picetu m All relevés Zahradníková- Rošetzká (1957) Ďumbierske Tatry Piceetum excelsae normale calcicolum Sillinger 1933 – (Without relevés.) Zahradníková- Rošetzká (1957) Ďumbierske Tatry Piceetum excelsae altherbosum calcicolum Sillinger 1933 Pro parte min. (Without relevés.) Hadač et al. (1969) Belianske Tatry Dryoptero-Piceetum excelsae Březina et Hadač in Hadač et al. 1969 All relevés The original relevés represent two different communities (calcicolous: 119, 185, 254 vs. silicicolous: 225, 253). Hadač et al. (1969) Belianske Tatry Chrysanthemo-Piceetum Krajina 1933 Pro parte The association name was used as a pseudonym: Chrysanthemo- -Piceetum sensu Hadač et al. 1969 non Krajina 1933 (cf. Kučera in red.). Hadač et al. (1969) Belianske Tatry Adenostylo-Piceetum excelsae Březina et Hadač in Hadač et al. 1969 Pro parte min. Zlatník (1970) Vysoké Tatry groups of forest types: Aceri-Abieteta piceae, Abieti-piceeta All relevés Šmarda et al. (1971) Belianske Tatry Sorbeto-Piceetum calcicolum Pawłowski 1956 Pro parte Nomen fictum, thus the adequate form is Sorbo-Piceetum calcicolum Šmarda et al. 1971. Šmarda et al. (1971) Belianske Tatry Abieto-Piceetum Szafer et Sokołowski 1927 All relevés Originally as a facies, therefore the association should be cited as “Abieto-Piceetum Šmarda et al. 1971”. Šmarda et al. (1971) Belianske Tatry Acereto-Piceetum Šmarda 1958 All relevés I.e. Acero pseudoplatani-Piceetum Šmarda ex Šmarda et al. 1971 Kubíček & Jurko (1975) Západné Tatry Adenostylo-Piceetum typicum Šoltés 1971 [originally nom. ined.] Pro parte Šoltés (1976) (higher number of units) Adenostylo-Piceetum cortusietosum Pro parte maj. Only newly published relevés are considered (Šoltés 1976, tab. 3). Šoltés (1976) Belianske Tatry Vaccinio myrtilli-Piceetum calamagrostietosum variae Pro parte Only newly published relevés are considered (Šoltés 1976, tab. 4). Fajmonová (1978) (not specified) Oxalido-Piceetum (Krajina 1933) Březina et Hadač in Hadač et al. 1969 Pro parte Correct name: Oxalido-Piceetum Březina et Hadač in Hadač et al. 1969 (cf. Kučera in red.). Fajmonová (1978) (not specified) Cortuso-Piceetum (Sillinger 1933) Šoltés 1976 Pro parte Nomen fictum, the most probable correct form is “Cortuso-Piceetum (Šoltés 1976) Fajmonová 1978”, see explanation in the text. Fajmonová (1983) (higher number of units) Cortuso-Piceetum (Sillinger 1933) Šoltés 1976 Pro parte maj. Unar et al. (1984) Západné Tatry Adenostylo-Piceetum excelsae Březina et Hadač in Hadač et al. 1969 All relevés Fajmonová (1986) (higher number of units) Cortuso-Piceetum (Šoltés 1976) Fajmonová 1978 Pro parte 21/1 • 2022, 107–151 115 Peter Kučera Natural calcareous Norway spruce woodlands in Slovakia and their syntaxonomical classification Authors Geomorphological unit Original name of unit Proportion of Carpino- Fagetea relevés Remarks Uhlířová & Bernátová (1986) Veľká Fatra Phytocoenosis with Listera cordata, rel. 1. – Probably more suitable to classify as a marginal community of the class Erico-Pinetea Horvat 1959. Voško et al. (1990) ? Belianske Tatry Group of forest types Sorbi ariae-Piceeta All relevés Kubíček et al. (1992) Belianske Tatry Adenostylo-Piceetum (Sillinger 1933) Šoltés 1976 Rel. 5. Kubíček et al. (1992) Belianske Tatry Cortuso-Piceetum (Šoltés 1976) Fajmonová 1978 Rel. 7. Černušáková (1994) Západné Tatry Calamagrostio villosae-Piceetum (Tx. 1937) Hartmann 1953 Pro parte Černušáková (1994) Západné Tatry Athyrio alpestre-Piceetum (Hartmann 1953) Hartmann et Jahn 1967) Pro parte Školek (1995a) Ďumbierske Tatry Higher number of units ? All relevés Only synoptic table. Školek (1995b) Ďumbierske Tatry Carici albae-Piceetum Školek 1995 All relevés Školek (2003) Ďumbierske Tatry Higher number of units Pro parte (Without published relevés.) Kanka (2008) Belianske Tatry Higher number of units Pro parte Including Athyrio alpestris- -Piceetum (rels. 3, 4) and Dryopterido-Piceetum (rels. 1–4, 6) Krajčí (2008) Kráľovohoľské Tatry Cortuso-Piceetum (Soltés 1976) Fajmonová 1978 All relevés Cf. also Krajčí & Barančok (2009). Valachovič et al. (2019) Piceion excelsae Pro parte Authors evaluated only relevés with presence of genus Soldanella. Part 2. Selected examples from the mountain ranges of the Western Carpathians in Poland. The respective habitats do not occurr in Moravia and Silesia. Authors Geomorphological unit Original name of unit Proportion of Carpino- Fagetea relevés Remarks Szafer et al. (1923) Západné Tatry Piceetum normale Beger 1922 Pro parte maj. Szafer et al. (1923) Západné Tatry Piceo-Abietetum albae All relevés Szafer et al. (1927) Západné Tatry Piceetum excelsae normale, typical facies Pro parte maj. Szafer et al. (1927) Západné Tatry Piceetum excelsae normale, Polytrichum facies Pro parte maj. Szafer et al. (1927) Západné Tatry Abieteto-Piceetum All relevés Kulczyński (1928) Pieniny Piceetum excelsae A species list Cf. Kučera (2015b) Adamczyk (1962) Západné Tatry Piceetum excelsae tatricum Pro parte maj. J. Matuszkiewicz (1977) – Galio rotundifolii-Piceetum carpaticum J. Matuszkiewicz 1977 All relevés J. Matuszkiewicz (1977) (Západné Tatry) Polysticho-Piceetum W. Matuszkiewicz ex J. Matuszkiewicz 1977 Pro parte 21/1 • 2022, 107–151 116 Peter Kučera Natural calcareous Norway spruce woodlands in Slovakia and their syntaxonomical classification General upper line of Norway spruce altitudinal vegetation zone in the Western Carpathians As written above, the general upper limit of the Norway spruce altitudinal vegetation zone for the Western Car- pathians was estimated in various altitudes from the ele- vational range 1300 to 1550 m a.s.l. As the uppermost yet anthropogenically lowered upper limits of mixed mon- tane Fagus woodlands was recorded above 1360–1390 m a.s.l. (Kučera, 2012a) and natural Norway spruce zone is developed in every individual mountain range with suf- ficient altitudinal elevations, these traditionally accepted estimates should be reassessed as well. According to the total altitudinal height of a particular mountain range, three categories could be differentiated when considering the Norway spruce altitudinal vegeta- tion zone of the Western Carpathians in Slovakia: (1) mountain ranges which do not exceed the alpine forest line (see the notes below), for example the Veporské vrchy Mts (Fabova hoľa-group), the Stolické vrchy Mts (Stolica–Kohút group); (2) mountain ranges with the most highest isolated summits or more continuous areas exceeding this line, for example the Oravské Beskydy Mts or the Low Tatras (Nízke Tatry Mts); (3) high mountain ranges which provided a postglacial (especially post-Boreal and post-Atlantic) refugium (cf. Krippel, 1986) for survival of Pinus cembra populations and therefore the alpine forest line (and consequently the alpine treeline) is determined by Pinus cembra (together with Larix decidua and partially Picea abies), i.e. the Tatra Mountains (equivalently to the Alps), whereby this spe- cies change has also considerable effect on the altitudinal rise of the upper forest line in comparison to the other Western Carpathian mountain ranges (Plesník, 1971); however, historical deforestation considerably reduced or destroyed native mixed Arolla pine forests, especially in their western (Západné Tatry Mts) or eastern part (Be- lianske Tatry Mts) (cf. Kučera (2019b, chapter 3.3), and Zięba et al. (2019), detailed distribution map in their el. appendix).6 6 As the last glacial mixed Pinus cembra woodland was present in the Pod- tatranská kotlina Basin lying between the Tatra Mountains and the Low Tatras as well as in other rather unexpected regions (Jankovská, 1984; Jankovská, 1991; Jankovská et al., 2002; Jankovská et al., 2018; Pokorný et al., 2015), it may be expected that Pinus cembra was a native tree of the lowest parts of Low Tatras’ slopes during the more favourable periods of the Würm glaciation and after its ending the species probably survived the Atlantic period – similarly like within the Tatra Mountains – also in the uppermost elevations of the highest parts of the Low Tatras and on other ecologically extreme habitats, as for example rugged rocky terrain of some carbonate summits (Krakova hoľa Mt. etc.). Due to considerably small area they could be easily completely destroyed by later pre-/historical land When considering the third category, it should be not- ed that the natural development of Picea abies (or Picea- Larix) woodlands was altitudinally considerably narrowed due to competition with mixed Arolla pine woodlands, syntaxonomically classified within either the alliance Calamagrostio variae-Pinion cembrae or the alliance Ho- mogyno alpinae-Pinion cembrae (see Kučera, 2017). While in the lower altitudes (for example above 1400 m a.s.l.) spontaneously rejuvenated Pinus cembra individuals are – in ecologically favourable habitats – overshadowed by much taller Picea abies trees and they wither away, the interspecific competition has a different outcome in the higher elevations (for example above ca. 1500–1550 m a.s.l.) where the total height of Picea abies trees is lower: Norway spruce woodland is thus replaced with mixed Norway spruce-Arolla pine and subsequently with mixed Arolla pine woodlands. However, historical land manage- ment considerably changed the original distribution pat- terns of the respective woodland communities. Historical deforestation also played an essential role for the development of the current upper forest line in the Western Carpathian mountain ranges of the sec- ond above-differentiated category. By no means could it be identified with the alpine forest line of the potential natural vegetation formed by Norway spruce woodland (cf. Plesník, 1954; Plesník, 1966; Plesník, 1975; Plesník, 1978). According to my current field knowledge, the natural upper Norway spruce forest line was generally de- veloped above 1650 m a.s.l. (for the period up to 1950– 1980). Only severe ecological conditions controlling the vegetation development on top regions of some elevated isolated mountains could induce occurrence of lower ly- ing upper forest line: patches of Picea krummholz stands or, alternatively, mixed Pinus mugo scrub were originally developed before the historical deforestation. Substantial ecological changes on largely and deeply de- forested mountain slopes and ridges (as for example in the southern part of the Veľká Fatra Mts) significantly retard the regeneration, i.e. the reverse spontaneous secondary succession of Norway spruce forests to their former pre- historical habitats; the similar effect have Pinus mugo af- forestantions in lower altitudes of the former high moun- tain pastures (cf. example given by Kučera (2019b)). A note to terminology of the Picea abies altitudinal vegetation zone Woodlands of the European Picea abies altitudinal vegeta- tion zone are labelled with different adjectives in Central management (for example the upper parts of the Krakova hoľa Mt. were deforested). Up to the 20th century, segments of the natural alpine forest line did not preserve within the entire region of the Low Tatras. 21/1 • 2022, 107–151 117 Peter Kučera Natural calcareous Norway spruce woodlands in Slovakia and their syntaxonomical classification European literature, which are, likewise, applied in alter- native short names of the respective altitudinal zones. The variety of terms was indicated for example by Jahn (1977, p. 478–480), see the following list: – “high montane” in the sense of German “hochmontan”, i.e. lying above the uppermost part of (further divided) montane zone (Hartmann & Jahn, 1967; W. Matusz- kiewicz, 1984); – “upper montane” in the terms of other Polish authors who divide the montane zone to (1) the mostly Fa- gus sylvatica-dominated “regiel dolny” and (2) the Pi- cea abies-dominated “regiel górny” (Pawłowski, 1928; Pawłowski, 1956; Medwecka-Kornaś, 1972; W. Ma- tuszkiewicz 1981; W. Matuszkiewicz, 2014; Mirek & Piękoś-Mirkowa, 1992) – “supramontane” (Domin, 1923;* Holub & Jirásek, 1967; Neuhäuslová-Novotná, 1994; Neuhäuslová et al., 2001; Jirásek, 2002; Chytrý et al., 2013b); *Domin applied the term also for high altitude Fagus sylvatica woodlands reaching the upper forest line (cf. also Klika, 1936), however, in the Western Carpathians such up- per forest line woodlands are the result of past deep de- forestation of slopes (see above); – “oreal” (Rothmaler 1950, ca. also Haeupler, 1970; cf. Holub & Jirásek, 1967); – “subalpine” for the highest Norway spruce zone in old Czechoslovak botanical literature: Sillinger (1933); Klika (1936); Svoboda (1939); – ocassionally also “altomontane” – as a replacement for German “hochmontan” (Meusel et al., 1965, p. 21). Special case is the simultaneous application of two terms for natural Norway spruce woodlands: – “montane” and “supramontane” (Neuhäuslová et al., 2001), “supramontane” to “subalpine” (Jirásek, 2002, p. 78); – “high montane” of so-called mittelgebirge mountain ranges and “subalpine” for the hochgebirge mountain ranges, e.g. the Alps (Oberdorfer, 1957; Hartmann & Jahn, 1967; Jahn, 1977; Pott, 1992; Seibert, 1992; cf. Kuoch, 1954; Exner, 2007); – “montane” and “subalpine”/“low subalpine” or in Ger- man also “tiefsubalpin” to two groups of altitudinally differentiated coniferous, especially Norway spruce communities of the Alps (Ellenberg, 1963 and later editions; Mayer & Hofmann, 1969; Elenberg & Klöt- zli, 1972; Zukrigl, 1973; Mayer, 1974; Mayer, 1984; Horvat et al., 1974; Pignatti, 1998; cf. Braun-Blanquet et al., 1939; Braun-Blanquet et al., 1954; Kuoch, 1954; Pott, 1992; Exner, 2007; Chifu, 2014; Pignatti & Pign- atti, 2014); see also similar approach of Sillinger (1933) and Svoboda (1939) for Tatra Mountains’ and Low Tatras’ Norway spruce forests; – “upper montane” and “subalpine” (Coldea, 2015); – “altimontane” and “subalpine” (Šilc & Čarni, 2012; Ju- van et al., 2013); – “oreal” and “subalpine” (Haeupler, 1970; cf. Jahn, 1977). Terminological unification seems to be difficult because the particular terms are associated with different tradi- tional use within the individual European regions. Instead of lengthy descriptions and characterizations of individual approaches and subsequent additional reasoning, the fol- lowing short proposal should be presented in this place. The term alpine forest line (closely connected with the alpine tree line) (see Körner, 2012) should be chosen as the crucial terminological base: the alpine forest line rep- resents one of the several types of general climate-driven forest lines (arctic forest line etc.); other special forest lines – e.g. orographic, edaphic – are natural ecological limits of different kind as they are “disrupting” the gen- eral patterns of vegetation development of a particular re- gion/area (cf. Wraber, 1970; Plesník, 1971; Mayer, 1984; Ellenberg, 1996). In contrast to the evaluation of Jeník & Lokvenc (1962), the mechanically changed course of upper forest line (avalanches, snow patches [nivation], debris flows etc.) could not be labelled as part of an “al- pine forest line” because the absence of tree stands is there not caused by the alpine climate. Use of the term “artifi- cial alpine forest line” (Jeník & Lokvenc, 1962, p. 24) is controversial as well, especially if the respective anthropo- genic modification resulted in decrease of the upper for- est line in tens or hundreds of metres (cf. Plesník, 1971; Plesník, 1978; Wraber, 1970). The alpine climate inhibits formation of woodland communities and only non-forest plant communities are present, with the special case of krummholz belt in lower elevations of the alpine region of some mountain ranges (Domin, 1923; Rothmaler, 1955; Meusel et al., 1965, p. 21; Holub & Jirásek, 1967). A krummholz belt formed by Pinus mugo [s. str.] scrub is a distinctive feature of the Carpathian mountain ranges and other European mountain ranges as Sudetes (the Krkonoše Mts.) (Holub & Jirásek, 1967; Medwecka-Kornaś, 1972), Dinarides, Apennines and also of the great part of the Alps (Jalas & Suominen, 1973, map 169; Horvat et al., 1974; El- lenberg, 1996, fig. 226; Pignatti et al., 2017); however, it could be formed by Picea abies-krummholz (primarily in the Hrubý Jeseník Mts.) or other (also broadleaf ) species in the mountain ranges where Pinus mugo (or Picea abies) does not naturally forms an altitudinal vegetation zone. Therefore the adjective term “alpine” (and its deriva- tives, e.g. subalpine) should be only associated with veg- etation types above the alpine forest line (see already Meusel et al., 1965), while the various mountain forest 21/1 • 2022, 107–151 118 Peter Kučera Natural calcareous Norway spruce woodlands in Slovakia and their syntaxonomical classification types below this line – and reaching this line – should be labelled with the adjective term “montane” (and its various derivatives) (see Domin, 1923; Holub & Jirásek, 1967; Mirek & Piękoś-Mirkowa, 1992) as indicated in the following scheme:7 nival (sensu lato) nival nival sensu stricto subnival climatic perennial snow line climatic perennial snow line climatic perennial snow line alpine (sensu lato) alpine (upper, lower)* alpine sensu stricto subalpine alpine forest line alpine forest line alpine forest line montane (sensu lato) supramontane** upper montane montane sensu strictolower montane submontane complex of planar and colline zones*** colline planar * An analogous term “supraalpin” (to supramontane) is ap- plicable for special non-European climate-driven high-altitude regions extensively without continuous snow and simultane- ously vegetation cover (for example region of Ojos del Salado in the Andes, Gspurning et al. (2006)). The “vegetation-free” rocky steep slopes/walls of peaks of the High Tatras (or in the montane-alpine elevations the Alps) does not belong here, be- cause they are caused by orographic, not climatic conditions. ** In some European mountain ranges, Picea abies does not form an altitudinal zone due to phytochorological or other rea- sons (the Massif Central, the Vosges, as well as some South- eastern European mountain ranges; Issler, 1942; Horvat et al., 1974; Boeuf et al., 2014), therefore the physiognomically dis- tict (coniferous) uppermost subzone of the montane zone (sensu lato) is not developed. Their uppermost Fagus sylvatica horizon corresponds to other beech woodlands of higher montane el- evations (e.g. upper montane Western Carpathian mixed Fagus woodland above ca. 1250–1300 m a.s.l.) and, consequently, as such it should not be labelled as a supramontane zone. However, physiognomically distinct supramontane zone could be formed by other species when Picea abies is naturally absent – see the example of woodlands of Pinus uncinata Ramond ex DC s. str. in the Pyrenees (Vigo, 1979). The Tatra Mountains (and few other European regions, Jalas & Suominen, 1973) with their hochgebirge character are dis- tinct by the native occurrence of Pinus cembra preserved in the form of postglacial refugia (Jankovská, 1991). As the presence of this tree species considerably transforms the altitudinal pattern 7 Position of “sub-zones” are following the classification of Rothmaler (1955) and Löve (1970, section Etymology); however, the label “subal- pine zone” is here applied for the krummholz zone only (see above). of the alpine forest line in comparison to other (mittelgebirge) mountain ranges with native Norway spruce belt and simultane- ously with Arolla pine absence (Plesník, 1971; Kučera, 2012a; Zięba et al., 2019), the respective high mountain mixed P. cem- bra woodlands could be labelled with the adjective “altimontane” (= occurring in the very high montane altitudes).8 In the Pyr- enees the similar role is taken by high-altitude Pinus uncinata woodland (cf. Rivas-Martínez, 1968). *** See Haeupler (1970). According to this proposal, natural Picea abies altitu- dinal vegetation zone (including the mixed Picea-Larix decidua communities of some regions) in the mountain ranges of Central Europe (with Alps) to Southeastern Europe (Southern Carpathians) would be labelled as “su- pramontane zone”, irrespective of the total altitudinal limits reached in the particular region. Only those Alpic Norway spruce forests of the so-called Zentralalpen zone, which altitudinally correspond to the Randalpen upper montane mixed Fagus forests, should be labelled as wood- lands of the montane zone s. l.; however, their spatial dis- tribution should be revised (see below p. 140). The term “oreal” (proposed by Rothmaler (1950)) is based on the Greek equivalent to Latin expressions “montana, montanus”; it was also preceded by the older Domin’s term “supramontane” (Domin, 1923) which is therefore here prioritised. However, the term “oreal” could be advantageously ap- plied for plant species which have their altitudinal centre of distribution in higher montane altitudes as well as in subalpine altitudinal zone, for example Adenostyles alli- ariae, Athyrium alpestre, Calamagrostis villosa, Cicerbita alpina, Doronicum austriacum, Homogyne alpina, Gen- tiana asclepiadea, Luzula sylvatica, (Streptopus amplexi- folius, Trientalis europaea) etc.9 These are species which grow (for example in the Western Carpathians) mainly in the uppermost horizon of montane mixed Fagus sylvatica woodlands, in the supramontane Picea abies forests, in the subalpine Pinus mugo krummholz, and at the same time in montane to subalpine agradal10 tall-forb communities 8 Juvan et al. (2013) used the labels “altimontane” and “subalpine” for two groups of coniferous forests which could correspond to the above proposed term “supramontane”. However, the very high frequencies of Fagus sylvatica (73% and 58%) indicate the considerable proportion of data recorded in changed secondary forests, thus belonging to the class Carpino-Fagetea (see above p. 111–113). 9 The respective species are incorrectly labelled as “subalpine species” in Slo- vak forest science handbooks (e.g. Randuška (1986) and later editions) despite the fact that their altitudinal centre of distribution is below the (potential natural) alpine forest line which lies above 1650 m a.s.l., respec- tively above 1800 a.s.l. for Pinus cembra forests of the Tatra Mountains. 10 See above for the differentiation between Latin “zona” and “gradus”; thus the terms “azonal/extrazonal” and “agradal/extragradal” have separate dis- tinct meanings. 21/1 • 2022, 107–151 119 Peter Kučera Natural calcareous Norway spruce woodlands in Slovakia and their syntaxonomical classification of the classes Mulgedio-Aconitetea Hadač et Klika in Klika 1944 and Betulo carpaticae-Alnetea Rejmánek ex Boeuf et al. in Boeuf et al. 2014. Associations of calcareous Norway spruce woodlands in Slovakia Six basic natural calcicolous Norway spruce plant com- munities are differentiated in this syntaxonomical revi- sion. They are here arranged according to ecological gra- dient provided by carbonate rocks. Stands of the association Seslerio caeruleae-Piceetum are developed on edaphically extreme carbonate habitats with shallow soils. The three subcommunities of the association Cirsio erisithalis-Piceetum correspond to the continual im- provement of habitat conditions (higher soil depth and humidity). On even deeper soils are developed stands of the association Fragario vescae-Piceetum or, alternatively, more widespread tall-forb woodlands of the association Adenostylo alliariae-Piceetum which are bound to habitats with favourable water regime. The last two associations represent marginal units of calcicolous natural Norway spruce woodlands because the presence of calciphytes is reduced. The association Mnio spinosi-Piceetum is mostly negatively differentiated; however, it is related with phy- tocoenoses of the previous association. The stands of Hi- eracio murorum-Piceetum are developed over mostly deep soils acidified in their uppermost horizon. Group No. 1 2 3 4 5 6 No. of relevés 14 13 6 28 13 6 Average number of species 54 53 49 47 23 31 Tree and shrub species Canopy (E3) Picea abies 100 – 100 – 100 – 96 – 100 – 100 – Sorbus aucuparia *** 21 – 85 55.0 17 – 43 – 8 – . – Acer pseudoplatanus * 7 – 38 25.3 50 39.0 7 – . – . – Larix decidua . – . – 17 – 7 – 15 – . – Sorbus aria agg. *** . – 31 52.0 . – . – . – . – Abies alba . – . – 17 – . – 8 – . – Fagus sylvatica . – 8 – . – . – . – . – Salix silesiaca . – . – . – 4 – . – . – Understorey (E2) Sorbus aucuparia * 7 – 38 – 17 – 46 26.4 23 – . – Picea abies 21 – 23 – 33 – 18 – 23 – . – Ribes petraeum ** . – 8 – 17 – 32 27.8 15 – . – Pinus mugo ** 43 40.1 31 – . – 4 – . – . – Salix silesiaca * 7 – 31 35.0 . – 14 – . – . – Acer pseudoplatanus * . – 31 27.6 33 – 4 – . – . – Fagus sylvatica . – 15 – . – 4 – . – . – Table 2. Statistical comparison of associations of the alliance Cortuso matthioli-Piceion abietis P. Kučera 2022 in Slovakia with values of constancy (%) and fidelity (φ (×100) ≥ 25) in the exponent. Table 2. Statistična primerjava asociacij zveze Cortuso matthioli-Piceion abietis P. Kučera 2022 na Slovaškem s prikazano stalnostjo (%) in nadpisano navezanostjo (φ (×100) ≥ 25). Field and ground layer species represented in only one column are omitted. Group 1 – Seslerio caeruleae-Piceetum abietis Fajmonová 1978 nom. corr. et nom. cons. propos. Group 2 – Cirsio erisithalis-Piceetum abietis Fajmonová et P. Kučera in P. Kučera 2022 ass. nov. Group 3 – Fragario vescae-Piceetum abietis P. Kučera ass. nov. prov. Group 4 – Adenostylo alliariae-Piceetum abietis Samek et al. 1957 nom. corr. et nom. cons. propos. Group 5 – Mnio spinosi-Piceetum abietis Hadač et al. 1969 nom. corr. Group 6 – Hieracio murorum-Piceetum abietis P. Kučera 2022 ass. nov. The quantity of asterisks in the second column express the highest state of conventional levels of the statistical significance (0.05, 0.01 and 0.001, Fisher’s exact test) for the particular species. In the case of differential species for multiple units such indication could have alternative states. 21/1 • 2022, 107–151 120 Peter Kučera Natural calcareous Norway spruce woodlands in Slovakia and their syntaxonomical classification Group No. 1 2 3 4 5 6 Sorbus aria agg. ** . – 23 44.7 . – . – . – . – Lonicera nigra . – . – 17 – 7 – . – . – Rosa pendulina . – . – 17 – 4 – . – . – Daphne mezereum . – 8 – . – . – . – . – Salix caprea . – . – . – 4 – . – . – Betula carpatica . – . – . – 4 – . – . – Ribes alpinum . – . – . – 4 – . – . – Sambucus racemosa . – . – . – 4 – . – . – Ribes uva-crispa . – . – . – . – 8 – . – E1 Sorbus aucuparia * 93 27.5 . – 67 – 75 – 62 – 83 – Daphne mezereum *** 93 38.3 85 30.9 83 – 39 – . – . – Lonicera nigra ** 64 33.9 23 – 33 – 57 26.9 . – . – Picea abies * . – 31 – 50 – 36 – 31 – 83 41.3 Ribes petraeum *** . – . – 50 – 61 41.3 23 – . – Acer pseudoplatanus * 14 – 23 – 17 – 25 – . – 67 44.2 Salix silesiaca *** 7 – 46 46.2 . – 4 – . – 17 – Rosa pendulina 21 – 15 – 17 – 7 – . – . – Fagus sylvatica *** . – . – . – 4 – . – 50 64.4 Ribes uva-crispa * . – . – . – 14 34.9 . – . – Ribes alpinum * . – . – . – 11 30.2 . – . – Sorbus aria agg. * . – 15 36.3 . – . – . – . – Abies alba . – . – 17 – . – . – . – Pinus cembra . – . – . – 4 – . – . – Pinus mugo . – . – . – . – 8 – . – Diagnostic field layer species (E1) Ranunculus breyninus *** 86 91.3 . – . – . – . – . – Campanula cochleariifolia *** 79 86.8 . – . – . – . – . – Phyteuma orbiculare *** 79 84.4 . – . – 4 – . – . – Crepis jacquinii *** 71 82.2 . – . – . – . – . – Vaccinium vitis-idaea *** 86 75.4 8 – . – 14 – 8 – . – Carex ornithopoda *** 57 72.5 . – . – . – . – . – Carex digitata *** 79 69.3 15 – 17 – . – . – . – Carex sempervirens ssp. tatrorum *** 57 61.8 15 – . – . – . – . – Carduus glaucinus *** 64 59.3 31 – . – . – . – . – Swertia perennis *** 36 56.3 . – . – . – . – . – Tofieldia calyculata *** 50 56.1 15 – . – . – . – . – Maianthemum bifolium *** 86 54.4 54 23.3 17 – 7 – . – 17 – Clematis alpina *** 79 52.3 31 – 33 – 18 – . – . – Calamagrostis varia *** 86 51.4 54 – 17 – 29 – 8 – . – Poa alpina *** 43 50.4 8 – . – 7 – . – . – Festuca tatrae ** 36 46.4 8 – . – 4 – . – . – Orthilia secunda ** 29 46.1 . – . – 4 – . – . – Campanula rotundifolia agg. ** 43 43.7 . – . – 4 – 23 – . – Fragaria vesca *** 79 41.5 15 – 67 – 46 – . – . – Galium anisophyllon * 21 38.6 . – . – 4 – . – . – Lathyrus vernus * 21 34.5 8 – . – . – . – . – 21/1 • 2022, 107–151 121 Peter Kučera Natural calcareous Norway spruce woodlands in Slovakia and their syntaxonomical classification Group No. 1 2 3 4 5 6 Aquilegia vulgaris ** 36 33.9 . – 33 – . – . – . – Corallorrhiza trifida * 29 31.8 . – . – . – 23 – . – Melica nutans ** 29 31.1 8 – 17 – . – . – . – Polygonatum verticillatum * 93 31.1 77 – 67 – 68 – 31 – 17 – Gymnocarpium robertianum * 29 30.0 23 – . – 4 – . – . – Homogyne alpina * 100 27.7 77 – 17 – 79 – 62 – 100 – Astrantia major * 71 25.0 69 – 67 – 39 – 15 – . – Cystopteris montana *** . – 54 70.2 . – . – . – . – Dentaria enneaphyllos *** 21 – 85 69.7 17 – 4 – . – . – Rubus saxatilis *** 43 23.6 77 60.9 . – . – 8 – . – Festuca carpathica *** . – 38 58.5 . – . – . – . – Asplenium viride *** 57 – 92 53.4 33 – 29 – . – . – Ranunculus nemorosus *** . – 31 52.0 . – . – . – . – Laserpitium latifolium ** . – 31 48.2 . – 4 – . – . – Cortusa matthioli *** 64 – 100 47.1 67 – 54 – . – . – Allium victorialis *** . – 38 45.3 . – . – . – 17 – Crepis paludosa *** 43 – 85 45.1 50 – 39 – . – . – Trollius altissimus ** . – 23 44.7 . – . – . – . – Mercurialis perennis *** 57 19.1 85 44.6 67 – 4 – 8 – . – Viola biflora *** 64 – 92 43.5 17 – 50 – 8 – 33 – Geranium sylvaticum *** 43 – 85 41.3 50 – 43 – . – 17 – Poa stiriaca ** 29 24.7 38 38.7 . – . – . – . – Veratrum album ssp. lobelianum ** 36 – 77 38.6 . – 54 – 31 – 17 – Campanula serrata *** . – 46 36.7 17 – . – . – 33 – Cyanus mollis * . – 15 36.3 . – . – . – . – Symphytum tuberosum * . – 15 36.3 . – . – . – . – Saxifraga rotundifolia * . – 15 36.3 . – . – . – . – Primula elatior ** 64 – 100 35.6 83 – 64 – 38 – 17 – Gentiana asclepiadea ** 64 – 92 32.8 83 – 57 – 38 – . – Melampyrum sylvaticum ** 43 19.4 54 30.9 33 – . – 15 – . – Geum rivale * 7 – 38 30.3 17 – 25 – . – . – Phyteuma spicatum * 71 – 85 28.8 67 – 54 – 38 – . – Actaea spicata ** . – . – 50 56.8 14 – . – . – Aconitum variegatum ** 14 – 8 – 67 54.5 25 – . – . – Digitalis grandiflora ** . – . – 33 54.2 . – . – . – Polypodium vulgare ** . – . – 33 54.2 . – . – . – Polystichum aculeatum * . – . – 33 50.6 4 – . – . – Geranium robertianum * . – . – 33 50.6 4 – . – . – Dryopteris filix-mas ** 14 – 46 – 100 45.9 57 – 8 – 67 – Campanula trachelium * . – 8 – 33 44.2 4 – . – . – Campanula persicifolia * 7 – 8 – 33 41.6 . – . – . – Delphinium elatum * . – 15 – 33 39.0 4 – . – . – Doronicum austriacum *** . – 8 – . – 64 67.2 8 – . – Leucanthemum rotundifolium *** 29 – 23 – 17 – 82 58.9 . – . – Milium effusum *** 7 – 15 – . – 50 52.0 . – . – Cicerbita alpina *** 7 – 38 – 33 – 82 49.9 23 – . – Dentaria glandulosa ** . – . – . – 21 43.0 . – . – 21/1 • 2022, 107–151 122 Peter Kučera Natural calcareous Norway spruce woodlands in Slovakia and their syntaxonomical classification Group No. 1 2 3 4 5 6 Sesleria tatrae ** . – . – . – 18 39.2 . – . – Arabis alpina * . – . – . – 14 34.9 . – . – Oreogeum montanum * . – . – . – 14 34.9 . – . – Aconitum firmum ** 7 – 15 – . – 29 32.1 . – . – Epilobium montanum *** 14 – 8 – 67 – 64 30.8 23 – 17 – Geranium palustre * . – . – . – 11 30.2 . – . – Adenostyles alliariae *** 43 – 46 – 67 – 96 28.6 62 – 83 – Chrysosplenium alternifolium ** . – 23 – 17 – 39 28.5 . – 17 – Galeobdolon luteum agg. ** 21 – 54 – 50 – 68 26.9 38 – . – Veronica officinalis * . – . – . – . – 15 36.3 . – Soldanella carpatica ** 36 – 31 – . – 18 – 69 33.3 50 – Agrostis capillaris *** . – . – . – . – . – 83 89.8 Calamagrostis villosa *** . – 31 – . – 25 – 31 – 100 66.6 Luzula luzuloides *** 29 – . – 33 – 25 – . – 100 66.5 Deschampsia cespitosa ** . – . – . – 7 – 8 – 50 56.5 Veronica chamaedrys ** . – . – . – . – . – 33 54.2 Ranunculus repens ** . – . – . – . – . – 33 54.2 Poa annua ** . – . – . – . – . – 33 54.2 Anthoxanthum odoratum ** . – . – . – . – . – 33 54.2 Rubus idaeus ** 7 – 8 – 67 – 57 11.0 31 – 100 49.5 Athyrium filix-femina ** 14 – 15 – 17 – 39 – 23 – 83 49.2 Dryopteris carthusiana agg. * 14 – 31 – 33 – 71 20.9 38 – 100 46.5 Diagnostic field layer species for two or more associations Sesleria caerulea *** 100 69.2 77 46.5 . – . – . – . – Bellidiastrum michelii *** 93 66.5 62 34.9 . – 7 – . – . – Pimpinella major *** 64 48.9 46 28.8 . – 4 – 8 – . – Soldanella marmarossiensis agg. **/* 79 38.4 31 – 33 – 64 25.2 15 – . – Heracleum sphondylium *** 79 35.8 100 55.4 33 – 25 – . – . – Cardaminopsis arenosa agg. *** 64 34.1 92 61.6 17 – 4 – . – . – Cirsium erisithales *** 86 33.9 100 46.7 83 – 18 – . – . – Valeriana tripteris ** 100 32.3 100 32.3 100 – 71 – 23 – . – Mycelis muralis ** 71 26.7 15 – 67 – 21 – 77 31.7 . – Polystichum lonchitis **/* 64 26.3 69 30.9 50 – 25 – 8 – . – Pyrethrum clusii ***/* 36 – 69 37.8 67 35.3 11 – . – . – Tithymalus amygdaloides ***/* . – 46 35.5 50 40.1 4 – . – . – Chaerophyllum hirsutum **/* 21 – 62 32.2 17 – 57 27.9 . – 17 – Galium schultesii **/* 36 – 69 29.3 83 42.3 21 – 15 – . – Stellaria nemorum ***/** . – 15 – . – 68 34.6 8 – 100 65.5 Calamagrostis arundinacea ***/* 86 30.2 23 – 83 28.1 29 – 8 – 83 28.1 Other field layer species (E1) Oxalis acetosella 79 – 69 – 83 – 96 14.0 85 – 100 – Luzula sylvatica ssp. sylvatica 86 – 100 22.7 67 – 79 – 46 – 100 – Senecio nemorensis agg. 50 – 54 – 100 – 96 19.9 85 – 83 – Vaccinium myrtillus 93 – 92 – . – 64 – 77 – 100 – Hieracium murorum 86 17.9 77 – 67 – 50 – 38 – 83 – Prenanthes purpurea 71 – 69 – 67 – 57 – 54 – 33 – Myosotis sylvatica 21 – 46 – 67 – 75 19.3 62 – 50 – 21/1 • 2022, 107–151 123 Peter Kučera Natural calcareous Norway spruce woodlands in Slovakia and their syntaxonomical classification Group No. 1 2 3 4 5 6 Avenella flexuosa 57 – 8 – 33 – 57 – 38 – 50 – Ranunculus platanifolius 7 – 54 – 50 – 54 21.5 23 – . – Solidago virgaurea 36 – 15 – 17 – 43 22.1 23 – . – Athyrium distentifolium . – . – 17 – 39 14.3 46 – 50 – Senecio subalpinus 14 – 31 – 17 – 39 20.2 8 – 17 – Lilium martagon 43 – 38 – 33 – 14 – 8 – . – Thalictrum aquilegiifolium 7 – 23 – 50 – 39 21.7 . – . – Paris quadrifolia 14 – 15 – 17 – 36 23.6 15 – . – Ranunculus lanuginosus . – 23 – 50 – 32 15.2 8 – . – Moneses uniflora 29 – 8 – 17 – 18 – 31 – . – Acetosa arifolia . – 15 – . – 29 – 8 – 50 – Alchemilla sp. div. . – . – . – 36 24.9 8 – 50 – Gymnocarpium dryopteris 21 – 31 – . – 21 – . – . – Cystopteris fragilis . – 8 – 33 – 25 20.0 . – . – Hypericum maculatum . – . – 17 – 18 – 8 – 33 – Pulmonaria obscura . – 23 – 17 – 14 – . – . – Silene dioica . – 23 – 17 – 14 – . – . – Valeriana sambucifolia . – 8 – 33 – 18 – . – . – Huperzia selago . – 8 – 17 – 21 23.2 . – . – Cardamine impatiens . – . – 17 – 14 – 23 – . – Petasites albus 14 – 8 – 17 – 11 – . – . – Urtica dioica . – . – 17 – 18 14.9 . – 17 – Cardaminopsis halleri . – . – . – 14 – 23 – . – Phegopteris connectilis . – . – 17 – 11 – . – 33 – Anthriscus nitidus . – . – 33 – 14 – . – . – Asarum europaeum . – 8 – 17 – 4 – 15 – . – Poa nemoralis . – . – 17 – 7 – 8 – . – Angelica sylvestris . – . – . – 7 – 15 – . – Hieracium prenanthoides . – 8 – 17 – 4 – . – . – Aegopodium podagraria . – 8 – . – 7 – . – . – Coeloglossum viride . – 8 – . – 7 – . – . – Geranium phaeum . – . – 17 – . – 15 – . – Lunaria rediviva . – . – 17 – 7 – . – . – Festuca picturata . – . – 17 – 7 – . – . – Potentilla aurea . – . – . – 7 – . – 17 – Aruncus dioicus . – . – . – 7 – 8 – . – Tussilago farfara . – . – . – 7 – . – 17 – Circaea alpina . – . – . – 4 – 15 – . – Adoxa moschatellina . – . – . – 4 – 15 – . – Convallaria majalis 7 – . – 17 – . – . – . – Galium odoratum . – 8 – . – . – . – 17 – Campanula rapunculoides . – 8 – 17 – . – . – . – Stachys alpina . – . – 17 – 4 – . – . – Hylotelephium argutum . – . – 17 – 4 – . – . – Ajuga reptans . – . – 17 – 4 – . – . – Galeopsis speciosa . – . – 17 – . – . – 17 – Polygonatum odoratum . – . – 17 – 4 – . – . – 21/1 • 2022, 107–151 124 Peter Kučera Natural calcareous Norway spruce woodlands in Slovakia and their syntaxonomical classification Group No. 1 2 3 4 5 6 Dentaria bulbifera . – . – 17 – 4 – . – . – Phleum rhaeticum . – . – . – . – 8 – 17 – Diagnostic ground layer species (E0) Ctenidium molluscum *** 79 56.1 31 – 17 – 21 – . – . – Mnium spinosum *** 93 55.7 8 – 33 – 46 – 23 – . – Pleurozium schreberi ** 50 48.4 15 – . – 14 – . – . – Dicranum scoparium *** 100 43.2 31 – 33 – 64 – 15 – 67 – Rhytidiadelphus loreus * 14 34.9 . – . – . – . – . – Tortella tortuosa ** 64 34.9 54 24.6 33 – 14 – 8 – . – Plagiothecium curvifolium ** 64 31.9 15 – . – 18 – 23 – 67 – Hylocomium splendens * 57 29.5 31 – 33 – 21 – 23 – . – Plagiochila asplenioides * 36 25.7 23 – 17 – . – 15 – . – Cirriphyllum tommasinii * . – 15 36.3 . – . – . – . – Eurhynchium angustirete ** . – 8 – 50 56.5 7 – . – . – Hypnum cupressiforme ** . – . – 33 54.2 . – . – . – Plagiothecium laetum * . – . – 33 50.6 4 – . – . – Conocephalum conicum ** . – . – . – 21 43.0 . – . – Cirriphyllum piliferum ** . – . – . – 21 43.0 . – . – Rhytidiadelphus squarrosus * . – . – . – 14 34.9 . – . – Barbilophozia lycopodioides * . – . – . – 11 30.2 . – . – Drepanocladus uncinatus * . – . – . – 11 30.2 . – . – Fissidens taxifolius * . – . – . – 11 30.2 . – . – Plagiochila porelloides * . – . – . – 11 30.2 . – . – Brachythecium salebrosum * . – . – . – 11 30.2 . – . – Sphagnum girgensohnii * . – . – . – 4 – 23 40.5 . – Plagiothecium cavifolium * . – . – . – . – 15 36.3 . – Mnium spinulosum * . – . – . – . – 15 36.3 . – Polytrichum formosum *** 7 – . – . – 21 – 15 – 83 68.0 Pellia sp. *** . – . – . – . – . – 50 67.4 Polytrichum commune ** . – . – . – . – . – 33 54.2 Other ground layer species (E0) Rhytidiadelphus triquetrus 36 – 38 – 17 – 21 – . – . – Rhizomnium punctatum . – 23 – 33 – 11 – 8 – . – Brachythecium velutinum . – . – . – 11 – 23 – . – Blepharostoma trichophyllum . – . – 17 – 14 18.5 . – . – Fissidens dubius . – 15 – 17 – 4 – . – . – Atrichum undulatum . – 8 – . – . – 15 – 17 – Plagiothecium denticulatum . – . – . – 7 – 15 – . – Lepidozia reptans 7 – 15 – . – . – . – . – Cladonia coniocraea . – . – 17 – 7 – . – . – Dicranella heteromalla . – . – 17 – 4 – . – 17 – Plagiomnium affine . – . – 17 – . – 15 – . – Plagiomnium cuspidatum . – . – . – 7 – 8 – . – Tetraphis pellucida . – . – . – 7 – 8 – . – Calypogeia azurea . – 8 – . – . – . – 17 – Plagiomnium undulatum . – . – 17 – 4 – . – . – Dicranum montanum . – . – . – 4 – 8 – . – Plagiomnium rostratum . – . – . – . – 8 – 17 – 21/1 • 2022, 107–151 125 Peter Kučera Natural calcareous Norway spruce woodlands in Slovakia and their syntaxonomical classification Seslerio caeruleae-Piceetum abietis Fajmonová 1978 nom. corr. et nom. cons. propos. Nomenclatural type: Fajmonová (1978), tab. 1, rel. 6, holotype. Original name: Seslerio-Piceetum (Fajmonová, 1978, p. 553), i.e. Seslerio variae-Piceetum abietis Fajmonová 1978 nom. inept. (Rec. 10C, Art. 44) Non: Seslerio variae-Piceetum Eggler 1952, Seslerio- -Piceetum Zukrigl 1973 nom. inval. (Art. 3b) Set of the most important diagnostic species: E1: Ranunculus breyninus, Campanula cochleariifolia, Phyteuma orbiculare, Crepis jacquinii, Vaccinium vitis- idaea, Carex ornithopoda, Carex digitata, *Sesleria caerulea, *Bellidiastrum michelii, Carex sempervirens ssp. tatrorum, Carduus glaucinus, Swertia perennis, Tofieldia calyculata, Maianthemum bifolium, Clematis alpina, Calamagrostis varia, Poa alpina, *Pimpinella major, Festuca tatrae, Or- thilia secunda, Campanula rotundifolia agg., *Cardami- nopsis arenosa agg., *Calamagrostis arundinacea. Relevé data: Fajmonová (1978), tab. 1, rels. 1–13; Faj- monová (1986), tab. 1, rel. 5; see fig. 3. The association was described for Western Carpathian natural supramontane (marginally also upper montane) Norway spruce phytocoenoses on the most extreme habi- tats developed over dolomites and limestones within the class Vaccinio-Piceetea (Fajmonová, 1978). Their canopy is considerably open (cover 50–70 [80]%), formed by dominant Picea abies and admixed Sorbus aucuparia. Other tree species could also participate in canopy species composition: Acer pseudoplatanus, Larix decidua, Sorbus aria and sparsely shrubby Fagus sylvatica. In the under- storey are usually growing Daphne mezereum, Lonicera ni- gra, Pinus mugo, Rosa pendulina, exceptionally also Salix silesiaca. High species diversity of the field layer along with considerable number of the highly constant species is a characteristic feature of the community stands. The field layer dominant is Sesleria caerulea, here and there mutu- ally with Calamagrostis varia. The group of calcicoles has significant abundance (Bellidiastrum michelii, Carduus glaucinus, Cirsium erisithales, Cortusa matthioli, Phyteuma orbiculare etc.), including the species which indicate shal- low soils or stony habitats (Asplenium viride, Cardaminop- sis arenosa agg., Carex sempervirens ssp. tatrorum, Crepis jacquinii, Festuca tatrae, Poa alpina, Ranunculus breyninus, Tofieldia calyculata). Substantial importance has the group of species which in the higher mountain altitudes prefer habitats on calcareous rocks (Astrantia major, Clematis alpina, Carex digitata, Crepis paludosa, Fragaria vesca, Heracleum sphondylium, Geranium sylvaticum, Mercurialis perennis, Phyteuma spicatum, Polygonatum verticillatum, Primula elatior, Valeriana tripteris and many others). With high constancy in the stands are also growing Calamagrostis arundinacea, Maianthemum bifolium, Lu- zula sylvatica ssp. sylvatica, Soldanella marmarossiensis agg., Prenanthes purpurea, Oxalis acetosella or Homogyne alpina, Vaccinium myrtillus, V. vitis-idaea, Avenella flexu- osa. Species as Viola biflora, Adenostyles alliariae, Mela- mpyrum sylvaticum, Senecio nemorensis agg. (Fajmonová 1978 ut S. *jacquinianus and S. fuchsii), Leucanthemum rotundifolium also frequently participate in the species composition of the phytocoenoses. The most frequent ground layer species are Ctenidium molluscum, Dicranum scoparium, Mnium spinosum, Pla- giothecium curvifolium and Tortella tortuosa. With a lower constancy are present e.g. Hylocomium splendens and Pleu- rozium schreberi. Variability. – Due to low total number of recorded rel- evés, variability of the association Seslerio caeruleae-Picee- tum Fajmonová 1978 is still insufficiently known. There- fore only variants are syntaxonomically recognized here: (1) Aquilegia vulgaris-variant (diferential species: Aquilegia vulgaris, Gentiana asclepiadea, Moneses uniflora, Pimpinella major, Tofieldia calyculata, data: Fajmonová (1978), tab. 1. rel. 1, 2, 6–10); (2) Pyrethrum clusii-variant (diferential species: Ga- lium schultesii, Lilium martagon, Melampyrum sylvaticum, Poa stiriaca, Pyrethrum clusii, Rubus saxatilis; data: Faj- monová 1978, tab. 1. rel. 4, 5, 12, 13, Fajmonová (1986), tab. 1. rel. 5); (3) Paris quadrifolia-variant (differential species Den- taria enneaphyllos, Dryopteris dilatata, Galeobdolon luteum agg., Lathyrus vernus, Paris quadrifolia, data: Fajmonová (1978), tab. 1. rel. 3, 11) with differential species indicat- ing less extreme habitat conditions, however, dominance of Sesleria caerulea is maintained. Nomenclatural note. – According to the taxonomical reassessments in the genus Sesleria (Foggi et al., 2001), the name Sesleria varia (Jacq.) Wettst. used by Fajmon- ová (1978) is a later synonym of the correct name Sesleria caerulea (L.) Ard. Since the name S. caerulea (L.) Ard. is accepted in the newer botanical literature (Kubát et al., 2002; Fischer et al., 2008; Tisson et al., 2014; Jäger et al., 2017; Kaplan et al., 2019; Mereďa et al., 2019; etc.), for- mal change of the original name Seslerio variae-Piceetum Fajmonová 1978 is here proposed. The name Seslerio variae-Piceetum Fajmonová 1978 is a later homonym of the validly published name Seslerio 21/1 • 2022, 107–151 126 Peter Kučera Natural calcareous Norway spruce woodlands in Slovakia and their syntaxonomical classification variae-Piceetum Eggler 1952 (see also the syntaxonomical note). However, the latter name was never accepted by later Austrian authors (Wallnöfer, 1993, p. 320; Exner, 2007, p. 191; Willner, 2007, p. 238) and Willner (2007, p. 238) proposed to give the nomenclatural priority to its later syntaxonomical synonym Adenostylo glabrae-Pi- ceetum Zukrigl 1973. Recent Slovenian authors seem to accept the name “Seslerio variae-Piceetum Eggler 1952”, though only one relevé is known from Slovenia (Zupančič, 1999, tab. 17) and it represent floristically and ecologi- cally different community from Seslerio variae-Piceetum Eggler 1952; according to Zupančič the phytocoenosis represent a secondary Norway spruce community (cf. Šilc & Čarni, 2012; Juvan et al., 2013). On the contrary, the name Seslerio variae-Piceetum Fajmonová 1978 was immediately accepted in the Slo- vak literature for the respective natural supramontane(- montane) Norway spruce community (Šomšák in Mu- cina et al., 1985) and was continuously used to the present (Jarolímek et al., 2008a; Kučera, 2010a; Kučera, Figure 2: Distribution of analysed associations’ relevés in Slovakia: diamonds – Cirsio erisithalis-Piceetum, stars – Fragario vescae-Piceetum, circles – Adenostylo alliariae-Piceetum. Made with QGIS. Slika 2: Razširjenost popisov obravnavanih asociacij na Slovaškem: diamanti – Cirsio erisithalis-Piceetum, zvezde – Fragario vescae-Piceetum, krogi – Adenostylo alliariae-Piceetum. Narejeno z QGIS. 2012a). To avoid an inconvenient rejection of this com- monly used name, it is formally proposed for protection as a nomen conservandum (cf. Kučera, 2012a, p. 210), with consideration of the required nomenclatural change to Seslerio caerulae-Piceetum Fajmonová 1978 nom. corr. Syntaxonomical note. – Phytocoenoses documented by Eggler (1952) and Zupančič (1999) does not belong to Seslerio caerulae-Piceetum Fajmonová 1978 due to a dif- ferent phytochorological and/or ecological content (e.g. species Adenostyles glabra, Galium verum, Pulmonaria stiriaca, Soldanella alpina, different abundances of Fragar- ia vesca, Poa stiriaca, Oxalis aceotsella, valeriana tripteris etc. as recorded by Eggler; or Erica carnea, Cyclamen pur- purascens, Helleborus niger ssp. niger, Polygala chamaebux- us etc. recorded by Zupančič). Moreover, the phytocoe- noses of Fajmonová (1978) represent ecologically most extreme natural calcicolous Norway spruce community of the Western Carpathians, while the relevés of Seslerio- Piceetum poetosum stiriacae of Eggler (1952) reflect mostly secondary Norway spruce stands from the Austrian East- ern Alps (cf. Eggler, 1952, p. 39). 21/1 • 2022, 107–151 127 Peter Kučera Natural calcareous Norway spruce woodlands in Slovakia and their syntaxonomical classification Cirsio erisithalis-Piceetum abietis Fajmonová et P. Kučera ass. nov. hoc loco Nomenclatural type: Fajmonová (1986), tab. 1, rel. 11, holotypus hoc loco. Incl.: Piceetum excelsae altherbosum calcicolum Sillinger 1933 subtyp Oxalis p. p., Sorbo-Piceetum calcico lum Šmar- da et al. 1971 facies calamagrostietosum p. p. min., Cor- tuso-Piceetum calamagrostietosum variae sensu Fajmonová 1986 non (Šoltés 1976) Fajmonová 1986, Cortuso-Piceet um typicum (sensu Fajmonová 1986), Cortuso-Piceetum saxi- fragetosum rotundifolii Fajmonová 1986, Cortuso-Piceetum adenostyletosum alliariae Fajmonová 1986 Pseud.: Cortuso-Piceetum sensu Fajmonová 1978 non (Šoltés 1976) Fajmonová 1978 p. p. min., Cortuso-Piceet- um sensu Fajmonová 1986 non (Šoltés 1976) Fajmonová 1978 Non: Piceetum excelsae normale calcicolum Sillinger 1933 nom. illeg. (Art. 34a), Adenostylo alliariae-Piceetum cortusetosum Šoltés 1976 Set of the most important diagnostic species: E1: Cystopteris montana, Dentaria enneaphyllos, *Carda- minopsis arenosa agg., Rubus saxatilis, Festuca carpathica, Asplenium viride, Ranunculus nemorosus, Laserpitium lati- folium, *Sesleria caerulea, Allium victorialis, *Tithymalus amygdaloides, *Bellidiastrum michelii, *Chaerophyllum hir- sutum, *Galium schultesii, *Pimpinella major. Relevé data and original diagnosis: Fajmonová (1986), tab. 1, rels. 1–4, 11, 13, 15–17, 21, 23–25; see fig. 2. Supramontane Picea abies woodland of less extreme habitats of limestones and dolomites (in comparison to Seslerio-Piceetum Fajmonová 1978), however, the slopes are still steep ([15] 25–30°) and, consequently, canopy cover is considerably open (55–75 [80]%). Sorbus au- cuparia is a constant companion of Norway spruce, ad- mixed tree species are Acer pseudoplatanus (often), S. aria (occasionally) and Fagus sylvatica (only exceptionally and then with a low growth). Daphne mezereum is a constant species of the understorey, less frequently is growing Salix Figure 3: Distribution of analysed associations’ relevés in Slovakia: circles – Seslerio caeruleae-Piceetum, diamonds – Mnio spinosi-Piceetum, squares (overlapping) – Hieracio murorum-Piceetum. Made with QGIS. Slika 3: Razširjenost popisov obravnavanih asociacij na Slovaškem: krogi – Seslerio caeruleae-Piceetum, diamanti – Mnio spinosi-Piceetum, kvadrati (se prekrivajo) – Hieracio murorum-Piceetum. Narejeno z QGIS. 21/1 • 2022, 107–151 128 Peter Kučera Natural calcareous Norway spruce woodlands in Slovakia and their syntaxonomical classification silesiaca, here and there are present also Pinus mugo, Loni- cera nigra and Ribes petraeum. The field layer is usually dominated by Cortusa mat- thioli, frequently accompanied by Luzula sylvatica ssp. sylvatica. Habitats with moderately shallow but very skeleton-rich soils, for example rocky slopes and ridges, induce opening of canopy cover and Calamagrostis varia dominates in the field cover. An ecological opposite con- stitutes the sub-community with Adenostyles alliariae or Saxifraga rotundifolia as codominant species (cover up to ca. 25%) to Cortusa. Equally as in the case of Seslerio-Piceetum Fajmonová 1978, very species rich composition of this community consists of numerous species with high constancy and many less frequent species. Characteristic features are the group of calcicoles (in addition to Cortusa and Calama- grostis varia for example Cirsium erisithales, Asplenium viride, Cardaminopsis arenosa agg., Sesleria albicans, Bel- lidiastrum michelii) and very abundant group of species which prefer calcareous soils in higher mountain altitudes (Astrantia major, Crepis paludosa, Galium schultesii, Ge- ranium sylvaticum, Heracleum sphondylium, Hieracium murorum, Phyteuma spicatum, Polygonatum verticillatum, Primula elatior, Valeriana tripteris and others). The constant components of stands of the associa- tion are species commonly growing also in other types of natural Norway spruce communities: Luzula sylvatica ssp. sylvatica, Vaccinium myrtillus, Gentiana asclepiadea, Homogyne alpina, Oxalis acetosella, Prenanthes purpurea, Senecio hercynicus etc. (Kučera, 2012a). In the stands are usually with low cover but frequently growing also Rubus saxatilis, Polystichum lonchitis, Chaerophyllum hirsutum, Tithymalus amygdaloides; Viola biflora, Dentaria ennea- phyllos and Mercurialis perennis could here and there reach cover over 5%. Moss species are absent in some stands of the commu- nity. The most frequent ground layer species is Tortella tortuosa, with lower constancy are occurring especially Ctenidium molluscum, Mnium spinosum, Rhizomnium punctatum, along with common woodland moss species Dicranum scoparium, Hylocomium splendens and Rhytidi- adelphus triquetrus. Variability. – In dependence on the variability in habitat ecology and, consequently, field layer species composition as well as physiognomy, a series of sub-communities is differentiated following the soil shallowness and amount of soil skeleton: (1) subassociation Cirsio erisithalis-Piceetum calamagrostietosum variae Fajmonová et P. Kučera subass. nov. hoc loco (nomenclatural type: Fajmonová (1986), tab. 1, rel. 4, holotypus hoc loco; differential spe- cies: Calamagrostis varia (dominant), Carduus glaucinus, Laserpitium latifolium, Melampyrum sylvaticum, Pimpi- nella major, Pinus mugo; original diagnosis: Fajmonová 1986, tab. 1, rels. 1–4) on the most extreme habitats within the association (see Fajmonová 1986, p. 50); this subcomunity corresponds to the unit differentiated by Fajmonová (1986) under the pseudonym Cortuso-Picee- tum calamagrostietosum variae sensu Fajmonová 1986 non (Šoltés 1976) Fajmonová 1986; (2) subassociation Cirsio erisithalis-Piceetum typi- cum subass. nov. hoc loco (nomenclatural type: Faj- monová (1986), tab. 1, rel. 11, holotypus hoc loco, automatical holotype sensu Art. 5b; differential species: Campanula serrata, Geum rivale, Soldanella carpatica; original diagnosis: Fajmonová (1986), tab. 1, rels. 11, 13, 16, 17) includes ecologically intermediate phytocoenoses within this association; this sub-community corresponds to the unit commonly used under the pseudonym Cortu- so-Piceetum typicum sensu Fajmonová 1986 non (Šoltés 1976) Fajmonová 1986 and included are also phytocoe- noses of natural Norway spruce woodland classified as Cortuso-Piceetum saxifragetosum rotundifolii Fajmonová 1986; (3) subassociation Cirsio erisithalis-Piceetum adeno- styletosum alliariae (Fajmonová 1986) P. Kučera comb. nov. hoc loco (basionym: Cortuso-Piceetum adenostyleto- sum alliariae Fajmonová 1986 [Fajmonová, 1986, p. 51]; nomenclatural type: Fajmonová (1986), tab. 1, rel. 24, holotypus [Fajmonová, 1986, p. 51]; differential species: Calamagrostis arundinacea, Chrysosplenium alternifolium, Cicerbita alpina, Clematis alpina, Gymnocarpium dryop- teris, Leucanthemum rotundifolium, Poa stiriaca, Ranun- culus platanifolius, Soldanella marmarossiensis agg.; Rhi- zomnium punctatum, Rhytidiadelphus triquetrus; original diagnosis: Fajmonová (1986), tab. 1, rels. 15, 21, 23–25) comprises phytocoenoses developed over slightly deeper calcareous soils, Adenostyles alliariae and Cortusa matthioli are codominant species. Nomenclatural and syntaxonomical note. – Up to the present, phytocoenoses of this association were includ- ed under the association name Cortuso-Piceetum (Šoltés 1976) Fajmonová 1978 (see Fajmonová, 1986). Fajmon- ová (1978) initially labelled the new association as “Cor- tuso-Piceetum (Sillinger 1933) Šoltés 1976” because it was based on a subassociation cited by Fajmonová (1976) in the form “Adenostylo-Piceetum cortusetosum (Sillinger 1933) Šoltés 1976” (cf. Šoltés, 1976). However, Šoltés (1976) did not describe a “Cortuso- Piceetum” as well as Sillinger (1933) did not describe a subassociation “cortusietosum”. Therefore the both names “Cortuso-Piceetum (Sillinger 1933) Šoltés 1976” and 21/1 • 2022, 107–151 129 Peter Kučera Natural calcareous Norway spruce woodlands in Slovakia and their syntaxonomical classification “Adenostylo-Piceetum cortusetosum (Sillinger 1933) Šoltés 1976” are here considered as nomina ficta (phantom names) and the following author citations are accepted: Cortuso-Piceetum (Šoltés 1976) Fajmonová 1978 and Adenostylo-Piceetum cortusetosum Šoltés 1976. However, more important are the syntaxonomical dif- ferences between the respective original diagnoses of con- sidered units: (A) Sillinger’s (1933) synoptic table of Piceetum excel- sae altherbosum calcicolum Sillinger 1933 represent for the most part calcareous secondary Norway spruce forests (with Abies, Acer, Larix or Pinus sylvestris) of the higher montane altitudes (1250–1380 m a.s.l.) of the Low Tatras (cf. Kučera et al., 2009), only two (? three) of in total ten relevés represent a true Vaccinio-Piceetea community; therefore the synoptic table of this Sillinger’s unit repre- sent a secondary Norway spruce community of the class Carpino-Fagetea (cf. also the new classification of Slova- kian Fagus communities by Ujházyová et al. (2021)); (B) Šoltés (1976, tab. 1 and tab. 3) published a com- parative synoptic table of Adenostylo-Piceetum cortuseto- sum Šoltés 1976 along with 13 original relevés (originally recorded mostly by Lakatosová (1971, tab. 5) [cf. p. 230, 231a]): these original relevés represent for the most part secondary Norway spruce stands developed on habitats of upper montane mixed Fagus sylvatica woodland (cf. Kučera, 2012a) and only negligible part of relevés might be identified with natural supramontane Norway spruce stands – and the corresponding original relevé(s) syntaxo- nomically belong to the association Adenostylo alliariae- Piceetum Samek et al. 1957. (C) Contrary to the previous two units, Fajmonová’s (1986) own relevés mostly represent natural supramon- tane Norway spruce community (and its sub-commu- nities), which are floristically, ecologically and physiog- nomically different and, consequently, they represent an independent association floristically related to Seslerio caerulae-Piceetum Fajmonová 1978 nom. corr. (D) The nomenclatural evaluation based on the Code’s Art. 27d is that association Cortuso-Piceetum (Šoltés 1976) Fajmonová 1978 have to be interpreted following the original differentiation and original diagnosis of the subassociation Adenostylo alliariae-Piceetum cortusetosum Šoltés 1976, and not according to Fajmonová’s own rel- evés published by Fajmonová (1986) which represent a syntaxonomically different unit from the one published by Šoltés (1976). For this reason, a new association Cirsio erisithalis-Piceetum abietis is here proposed for the three main sub-communities differentiated by Fajmonová (1986) (see Kučera, 2012a). (E) It migh be argued that the correct author citations should be applied alternatively: “Adenostylo alliariae-Pi- ceetum cortusetosum (Sillinger 1933) Šoltés 1976” and, subsequently, “Cortuso-Piceetum (Sillinger 1933) Fajmon- ová 1978”. It must be reminded that the resulting plant community had to follow Sillinger’s (1933) syntaxonomi- cal content and thus it would belong to the class Carpino- Fagetea (see above). Fragario vescae-Piceetum abietis P. Kučera ass. nov. prov. Nomenclatural type: Kanka (2008), tab. 19, rel. 3, pro holotypus. Incl.: Cortuso-Piceetum calamagrostietosum arundinace- ae Fajmonová 1986 p. p., Bupleuro longifolii-Laricetum Kanka 2008 ass. prov. p. p. min. (Art. 3b, 3o) Set of the most important diagnostic species: E1: Actaea spicata, Aconitum variegatum, Digitalis gran- diflora, Polypodium vulgare, Polystichum aculeatum, Gera- nium robertianum, *Galium schultesii, *Tithymalus amyg- daloides, *Calamagrostis arundinacea. Relevé data: Fajmonová (1986), tab. 1, rels. 7, 14; Kan- ka (2008), tab. 17, rels. 2, 10 and tab. 19, rel. 3 and tab. 26, rel. 3; see fig. 2. Canopy of this community stands is formed by Picea abies with admixed Acer pseudoplatanus, recorded is also occurrence of Larix decidua, Abies alba and Sorbus aucu- paria. Occasional dominance of Larix decidua could in- dicate a specific successional stage or, eventually, result of the former forest management. Understorey species are Daphne mezereum, Ribes petraeum, Lonicera nigra and Rosa pendulina. The constant field layer components are for example the species Cirsium erisithales, Epilobium montanum, Fra- garia vesca, Galium schultesii, Gentiana asclepiadea, Oxalis acetosella, Primula elatior, Rubus idaeus, Senecio nemorensis agg. (even with cover-abundance over 5%) and Valeriana tripteris; Calamagrostis arundinacea, eventually Dryopteris filix-mas were here and there observed as distinct domi- nants. Cortusa matthioli and Mercurialis perennis are sub- dominant species in some stands. Among the other considerably frequent species belong Aconitum variegatum, Adenostyles alliariae (with low cov- er), Astrantia major, Pyrethrum clusii, Ranunculus lanugi- nosus and other species. In contrast to other calcareous Western Carpathian supramontane Norway spruce plant communities, Vaccinium myrtillus was not recorded till the present. Occurrence of species Campanula persicifolia, C. trache- lium, Digitalis grandiflora within this natural supramon- tane Picea woodland indicate a nutrient-rich, especially 21/1 • 2022, 107–151 130 Peter Kučera Natural calcareous Norway spruce woodlands in Slovakia and their syntaxonomical classification lime-rich and considerably drier habitat. Admixture of soil skeleton is indicated by presence of species Actaea spi- cata, Asplenium viride, Cystopteris fragilis, Hylotelephium argutum, Mercurialis perennis, Polystichum aculeatum, P. lonchitis. Among the low frequent species are also An- thriscus nitidus, Aquilegia vulgaris, Calamagrostis varia, Carex digitata, Delphinium elatum, Lilium martagon, Sal- via glutinosa. The most frequently recorded ground layer species is Eurhynchium angustirete. Other moss species are infre- quent, e.g. Dicranum scoparium, Hylocomium splendens, Mnium spinosum, Tortella tortuosa. Syntaxonomical note. – The association Fragario vescae- Piceetum ass. prov. integrates species-rich phytocoenoses which are lacking distinct species of the associations Sesle- rio caerulae-Piceetum and Cirsio erisithalis-Piceetum (e.g. Bellidiastrum michelii, Pimpinella major, Sesleria albicans) or species bound to one of these units (Carex sempervirens ssp. tatrorum, Cystopteris montana, Phyteuma orbiculare, Ranunculus breyninus and others). On the other side, they do not have tall-herb character of the stands of the as- sociation Adenostylo alliariae-Piceetum Samek et al. 1957, even if some of the typical species of the latter unit (for example Adenostyles alliariae) could be present; however, with low cover-abundance values only. However, only six relevés of Fragario vescae-Piceetum prov. are known up to the present. Typically developed stands are represented by relevés of Kanka (Kanka, 2008; tab. 19, rel. 3 and tab. 26, rel. 3) from the Belianske Tatry Mts, with Digitalis grandiflora accompanied by species Actaea spicata, Campanula persic- ifolia, C. trachelium, Geranium robertianum, Polystichum aculeatum and Polypodium vulgare. Adenostylo alliariae-Piceetum abietis Samek et al. 1957 nom. corr. et nom. cons. propos. Nomenclatural type: Samek et al. (1957), tab. 14, rel. 54, lectotypus hoc loco. Original name: Adenostyleto-Piceetum (Samek et al., 1957, p. 15), i.e. Adenostyleto alliariae-Piceetum excelsae Samek et al. 1957 nom. inept. (Art. 30a, 44) Syntax. syn.: Adenostylo alliariae-Piceetum excelsae Březina et Hadač in Hadač et al. 1969 nom. illeg. (Art. 31), Cortuso-Piceetum (Šoltés 1976) Fajmonová 1978 Incl.: Piceetum excelsae altherbosum calcicolum Sillinger 1933 subtyp nivový p. p., Sorbo-Piceetum calcicolum Šmarda et al. 1971 facies altherbosum, Sorbo-Piceetum cal- cicolum Šmarda et al. 1971 facies oxalidetosum p. p. min., Adenostylo alliariae-Piceetum cortusetosum Šoltés 1976 p. p. min., Vaccinio myrtilli-Piceetum calamagrostietosum variae Šoltés 1976 (p. p. min.), Cortuso-Piceetum calam- agrostietosum variae (Šoltés 1976) Fajmonová 1986 Corresponding nomina ficta (phantom names): Sorbo- -Piceetum calcicolum Pawłowski 1956 apud Šmarda et al. 1971 p. p., Cortuso-Piceetum (Sillinger 1933) Šoltés 1976 apud Fajmonová 197811 p. p. min. Non: Adenostylo-Piceetum Hartmann 1953, Adenostylo alliariae-Piceetum Zukrigl 1973 nom. illeg. (Art. 31), Adenostylo alliariae-Piceetum Ellenberg et Klötzli 1974 nom. illeg. (Art. 31) Set of the most important diagnostic species: E1: Doronicum austriacum, Leucanthemum rotundifoli- um, Milium effusum, Cicerbita alpina, *Stellaria nemorum, *Chaerophyllum hirsutum, E0: Conocephalum conicum, Cirriphyllum piliferum. Relevé data: Šoltés (1969) (msc.), tab. 8, rels. 36, 38; Šmarda et al. (1971), tab. 18, rel. 6; Šoltés (1976), tab. 3, rels. 2, 7 and tab. 4, rel. 35; Kubíček et al. (1992), tab. 1, rel. 4; Černušáková (1994), tab. 2, rel. 14; Miadok (1995), p. 59, rel. 2 and p. 60, rels. 2, 5, 6; Kubíček et al. (1996), p. 90, rel. 1; Kanka (2008), tab. 16, rels. 3, 6, 8, 9 and tab. 17, rels. 1, 3, 5–9, 14; Krajčí (2009) (msc.), tab. 7, rels. 63, 64; Kučera (2012a), p. 319, rel. 101; see fig. 2. The dominant tree species of the woodland stands of this community is Picea abies, here and there is admixed Sorbus aucuparia (ssp. glabrata) which could temporarily dominate in early successional stages (after a windthrow) (cf. Šoltés, 1969; Šoltés, 1976). Larix decidua was docu- mented only sporadically; however, this tree species was probably more frequent in the regions with its autoch- thonous occurrence (the Tatra Mountains, some regions of the Low Tatras) before the historical deforestation and other changes of tree species composition. Acer pseudo- platanus and in the lower elevations also Abies alba were originally components of the canopy layer of the stands. In the understorey shrub species Ribes petraeum and Daphne mezereum very frequently grow, less often also Lonicera nigra, Ribes alpinum, Rosa pendulina, sporadi- cally were recorded Salix silesiaca and S. caprea, and only in the lower limit of natural vertical distribution of this woodland community Fagus sylvatica. Tall-herb character of the field layer is the physiogno- mically prominent feature of the stands of this communi- ty. Most frequently it is formed by dominant Adenostyles alliariae with other tall forbs (Cicerbita alpina, Doronicum austriacum, Leucanthemum rotundifolium, Senecio nemo- 11 According to J.-P. Theurillat (in e-mail), such phantom name should be cited as follows: “Cortuso-Piceetum (Sillinger 1933) Šoltés 1976 [recte: Cortuso-Piceetum (Šoltés 1976) Fajmonová 1978]”. 21/1 • 2022, 107–151 131 Peter Kučera Natural calcareous Norway spruce woodlands in Slovakia and their syntaxonomical classification rensis agg.) along with Luzula sylvatica ssp. sylvatica; oc- cassionally Dryopteris dilatata is subdominant species. Constant species of the lower forb layer are Oxalis ace- tosella (rarely as dominant), Homogyne alpina, Stellaria nemorum, Soldanella marmarossiensis agg., Ranunculus platanifolius etc. Characteristic is abundant presence of nutrient-demanding species, for example Valeriana tript- eris, Myosotis sylvatica, Galeobdolon luteum agg., Polygona- tum verticillatum, Epilobium montanum, Primula elatior, Phyteuma spicatum, Viola biflora, Fragaria vesca, Thalic- trum aquilegiifolium and others (Kučera, 2012a). On the contrary to the previous three associations, Ath- yrium distentifolium is here and there component of the stands (along with A. filix-femina). Presence of Vaccinium myrtillus in the stands is reduced. Cortusa matthioli is less frequent, however, here and there it grows with a higher cover (above 5%). The most frequent ground layer species are Dicranum scoparium and Mnium spinosum, relatively abundant are also Plagiothecium curvifolium, Conocephalum conicum, Cirriphyllum piliferum, Hylocomium splendens. In phyto- coenoses with Sesleria tatrae, Ctenidium molluscum and Polytrichum formosum also belong among the more fre- quent species. Variability. – Following four sub-communities could be distinguished according to the floristical and ecological differences: (1) subassociation Adenostylo-Piceetum typicum (nomenclatural type: Samek et al. (1957), tab. 14, rel. 54, holotypus hoc loco, automatical holotype sensu Art. 5b; differential species: Alchemilla sp. div., Chrysosplenium alternifolium, Galeobdolon luteum agg., Mycelis muralis, Paris quadrifolia, Ranunculus platanifolius, Senecio subal- pinus); original diagnosis: Samek et al. (1957), tab. 14, rels. 32, 54, 45, 25; Šmarda et al. (1971), tab. 18, rel. 6; Šoltés (1976), tab. 3, rels. 2, 7 and tab. 4, rel. 35; Kubíček et al. (1992), tab. 1, rel. 4; Kubíček et al. (1996), p. 90, rel. 1; Kanka (2008), tab. 16, rels. 8, 9 and tab. 17, rels. 3, 14; Krajčí (2009) (msc.), tab. 7, rels. 63, 64; Kučera (2012a), p. 319, rel. 101) represents the most frequent type of the community phytocoenoes. (2) subassociation Adenostylo-Piceetum seslerietosum tatrae P. Kučera subass. nov. hoc loco (nomenclatural type: Kanka (2008), tab. 17, rel. 8, holotypus hoc loco; differential species: Asplenium viride, Cirsium erisithales, Clematis alpina, Huperzia selago, Moneses uniflora, Sesleria tatrae; original diagnosis: Kanka (2008), tab. 17, rels. 5–9) unites open canopy woodland from very steep slopes of the Belianske Tatry Mts (cf. Kanka, 2008, tab. 17). (3) subassociation Adenostylo-Piceetum lunari- etosum redivivae P. Kučera subass. nov. hoc loco (no- menclatural type: Černušáková (1994), tab. 2, rel. 14, holotypus hoc loco; differential species: Lunaria rediviva, Luzula luzuloides, Pleurozium schreberi, Rhodiola rosea; original diagnosis: Šoltés 1969 (msc.), tab. 8, rels. 36, 38 [the relevés are published below, with the consent of Dr R. Šoltés], Černušáková (1994), tab. 2, rel. 14) contains phytocoenoses developed on ca. debris habitats (Lunaria rediviva), with considerable presence of Sorbus aucupar- ia in the canopy (some relevés represent a successional stage), eventually with Pinus mugo. Šoltés (1969), tab. 8, rel. 36: Belianske Tatry Mts, Rakúsky chrbát, steep slope to the Dolina Siedmich prameňov, 1440 m a.s.l., slope aspect: N, slope inclina- tion: 45°, debris background, plot size 20×20 m2, cover E3: 40%, E2: 30%, E1: 100%, E0: 60%, stand of young rowan trees (25 yrs. old) , R. Šoltés, 12. 8. 1969: E3: Sorbus aucuparia ssp. glabrata f. glabrata 2, Salix silesiaca 1, E2: Pinus mugo 2, Picea abies 1, Salix silesiaca 1, Betula carpatica + E1: Lonicera nigra +, Picea abies +, Ribes uva-crispa +, Sa- lix silesiaca +, Sorbus aucuparia [ssp. glabrata f. glabrata +], Avenella flexuosa 2, Oxalis acetosella 2, Chamerion an- gustifolium 2, Vaccinium myrtillus 2, Adenostyles alliariae 1, Calamagrostis varia 1, Luzula luzuloides 1, Soldanella marmarossiensis agg. 1 [ut S. montana ssp. hungarica], Vaccinium vitis-idaea 1, Athyrium filix-femina +, Cam- panula tatrae [ut C. rotundifolia ] +, Doronicum austria- cum +, Dryopteris carthusiana +, D. filix-mas +, Fragaria vesca +, Galium schultesii +, Homogyne alpina +, Gentiana asclepiadea +, Hieracium murorum +, Hypericum macula- tum +, Moneses uniflora +, Myosotis sylvatica +, Orthilia secunda +, Potentilla aurea +, Rubus idaeus +, Senecio ova- tus +, Thymus pulegioides +, Cicerbita alpina r, Hieracium lachenalii r, Leucanthemum rotundifolium r, Rhodiola rosea r, Valeriana tripteris r, E0: Pleurozium schreberi 3, Dicranum scoparium 2, Hy- locomium splendens 1, Rhytidiadelphus triquetrus 1, Bar- bilophozia lycopodioides +, Blepharostoma trichophyllum +, Eurhynchium sp. +, Sanionia uncinata +, Plagiothecium curvifolium +, Polytrichum formosum +, Ptilidium pulcher- rimum +. Šoltés (1969), tab. 8, rel. 38: Belianske Tatry Mts, un- der Kozí chrbát, approximately 10 m to the right from the [former] hiking trail towards Skalné vráta, 1420 m a.s.l., slope aspect: NE, slope inclination: 35°, debris background, plot size 20×20 m, cover E3: 75%, E2: 3%, E1: 50%, E0: 5%, stand of old rowan trees (80 yrs. old) with other tree species admixed, R. Šoltés 30. 9. 1969: E3: Sorbus aucuparia ssp. glabrata f. glabrata 3, Acer pseudoplatanus 1, Larix decidua 1, Picea abies 1, E2: Ribes petraeum 1, 21/1 • 2022, 107–151 132 Peter Kučera Natural calcareous Norway spruce woodlands in Slovakia and their syntaxonomical classification E1: Daphne mezereum +, Ribes petraeum +, R. uva-crispa +, Lonicera nigra r, Oxalis acetosella 2, Asarum europaeum 1, Calamagros- tis varia 1, Cicerbita alpina 1, Lunaria rediviva 1, Luzula luzuloides 1, Myosotis sylvatica 1, Athyrium filix-femina +, Dryopteris filix-mas +, Epilobium montanum +, Fragaria vesca +, Aegopodium podagraria +, Galium schultesii +, Gentiana asclepiadea +, Hypericum maculatum +, Lamium maculatum +, Oreogeum montanum +, Poa nemoralis +, Polygonatum verticillatum +, Pulmonaria obscura +, Ra- nunculus lanuginosus +, Rhodiola rosea +, Rubus idaeus +, Senecio ovatus +, Stellaria nemorum +, Thalictrum aqui- legiifolium +, Urtica dioica +, E0: Pleurozium schreberi 1, Blepharostoma trichophyllum +, Dicranum montanum +, Plagiothecium curvifolium +, Tetraphis pellucida +. (4) subassociation Adenostylo-Piceetum stellarieto- sum nemorum P. Kučera subass. nov. hoc loco (nomen- clatural type: Kanka (2008), tab. 17, rel. 1, holotypus hoc loco; without differential species; original diagnosis: Šoltés (1976), tab. 3, rel. 7; Miadok (1995), p. 59, rel. 2 and p. 60, rels. 2, 5, 6; Kanka (2008), tab. 16, rels. 3, 6 and tab. 17, rel. 1) differentiates by less numerous species composi- tion and absence (or very rare occurrence) of diagnostic species of the previous three sub-communities as well as constant presence of Stellaria nemorum (here and there as subdominant species, with cover above 5 or even 25%). According to records available to the present, occurrence of Petasites albus is bound to this sub-community, howev- er, only with low frequency and insignificant cover-abun- dance. This subassociation probably represents a transi- tional unit towards the association Mnio spinosi-Piceetum. Floristically similar, yet more species-poor phytocoe- noses could be developed on non-carbonate habitats: within this subassociation is classified one relevé from glacigenic deposits close to the stream in the glacial val- ley of Ďumbier Mt. (the western Low Tatras, Miadok (1995), p. 60, rel. 2: presence of Geranium sylvaticum, Primula elatior or Aconitum firmum, Delphinium oxyse- palum, Petasites albus). Nomenclatural note. – (A) The association name was originally described as an alternative name (see Samek et al., 1957, p. 15): “Piceetum (excelsae) altherbosum. Aden- ostylo-Piceetum”. According to the current nomenclatural regulations (see Theurillat et al., 2021), such names are accepted as validly published names; the next available later syntaxonomical synonym is Adenostylo alliariae- Piceetum excelsae Březina et Hadač in Hadač et al. 1969 nom. illeg. (Art. 31). (B) Adenostylo-Piceetum Samek et al. 1957 is a younger homonym to the name Adenostylo-Piceetum Hartmann 1953 (cf. Art. 31). However, Hartmann abandoned his own name and as early as in the year 1959 when he in- troduced the name Athyrio alpestris-Piceetum Hartmann 1959 (validly published later as Athyrio alpestris-Piceetum Hartmann ex Hartmann et Jahn 1967). Though, it remains unnoticed that the name Adenostylo- -Piceetum Hartmann 1953 has a different syntaxonomical content in comparison to Athyrio alpestris-Piceetum Hart- mann ex Hartmann et Jahn 1967: while the latter name is considered to represent a natural supramontane Picea abies woodland, the former name is based on published relevés of the unit “Luzulo nemorosae-Piceetum (Schmid et Gaisberg 1936) Br.-Bl. et Sissingh in Br.-Bl. et al. 1939, Luzula sylvatica facies of Bartch & Bartsch (1940)“ (cf. Hartmann, 1953, p. XIII of the Anhang) and later clas- sified as Luzulo luzuloidis-Abietetum luzuletosum sylvaticae Oberdorfer 1957. Following the original description, this unit represents the montane and originally mixed Fagus- -Abies woodlands of the class Carpino-Fagetea of the Black Forest, due to historical land management commonly with anthropogenically changed tree species composition in favour of conifers (especially Picea abies) and as such secondary forest community of the class Carpino-Fagetea (cf. Kučera, 2012a). Therefore contrary to the traditional evaluations (cf. Exner 2007; Willner 2007, p. 240; Chytrý et al. 2013b and other authors), Adenostylo-Piceetum Hartmann 1953 and Athyrio alpestris-Piceetum Hartmann ex Hartmann et Jahn 1967 are not syntaxonomical synonyms and there is no real need to propose the latter name for conservation above Adenostylo-Piceetum Hartmann 1953 (cf. Willner (2007) vs. Kučera & Kliment (2011)). (C) Willner (2007, p. 238) proposed the name Adeno- stylo alliariae-Piceetum Zukrigl 1973 nom. illeg. (Art. 31) for a nomenclatural conservation against the older unused homonym Adenostylo-Piceetum Hartmann 1953 and other three association with the syntaxonomically synonymical names used for Norway spruce forests of the Alps. However, this proposal was based on insuffi- cient literature survey and, subsequently, ignored other older homonyms published for a natural calcareous su- pramontane Norway spruce woodland of the Western Carpathians (see Samek et al., 1957; Hadač et al., 1969 – published in German language) which have chronologi- cal priority above Zukrigl’s (1973) name (cf. Kučera & Kliment, 2011; Kučera, 2012a). Instead, the name Adenostylo alliariae-Piceetum abi- etis Samek et al. 1957 nom. corr. is here proposed for a conserved name (nomen conservandum) to have nomen- clatural priority over the unused older homonym and non-synonymous Adenostylo-Piceetum Hartmann 1953 established for secondary mixed Carpino-Fagetea commu- 21/1 • 2022, 107–151 133 Peter Kučera Natural calcareous Norway spruce woodlands in Slovakia and their syntaxonomical classification nity (see above) as well as over younger homonym Adeno- stylo alliariae-Piceetum Zukrigl 1973 nom. illeg. Mnio spinosi-Piceetum abietis Hadač et al. 1969 nom. corr. Nomenclatural type: Hadač et al. (1969), p. 269, rel. 134, lectotypus (Kučera, 2010a, p. 834). Original name: Mnio spinosi-Piceetum as. nova (Hadač et al. 1969, p. 266), i.e. Mnio spinosi-Piceetum excelsae Hadač et al. 1969 nom. inept. (Rec. 10C, Art. 44) Syntax. syn.: Oxalido-Piceetum excelsae Březina et Hadač in Hadač et al. 1969, Polysticho lonchitidis-Picee- tum W. Matuszkiewicz ex J. Matuszkiewicz 1977 Incl.: Piceetum excelsae normale Szafer et al. 1927 nom. illeg. p. p. min. (Art. 13a), Sorbo-Piceetum calcicolum Šmarda et al. 1971 facies oxalidetosum p. p. maj. Pseud: Piceetum normale sensu Szafer et al. 1923 non Beger 1922 p. p. min. (cf. also Principle II) Nomen fictum (phantom name): Sorbo-Piceetum calci- colum Pawłowski 1956 apud Šmarda et al. 1971 Non: Piceetum excelsae normale Sillinger 1933 nom. inval. (Art. 3d), Piceetum excelsae normale calcicolum Sillinger 1933 nom. illeg. (Art. 34a), Piceetum excelsae normale silicicolum Sillinger 1933 nom. illeg. (Art. 34a), Piceetum abietis oxalidetosum acetosellae silicicolum Kra- jina 1933 nom. inval. (Art. 3e), Oxalido-Piceetum auct. bohem. non Březina et Hadač in Hadač et al. 1969 Set of the most important diagnostic species: negative species differentiation. Relevé data: Hadač et al. (1969), p. 269, rels. 131, 139; Šmarda et al. (1971), tab. 18, rels. 8, 14; Kobzáková 1987 (msc.), tab. 8, rel. 7; Černušáková (1994), tab. 1, rels. 4, 5 and tab. 2, rels. 1–3, 15; Kanka (2008), tab. 14, rels. 6, 7; see fig. 3. Picea abies stands with admixture of Sorbus aucuparia (ssp. glabrata), on places with the high canopy cover with- out the latter species. Acer pseudoplatanus was originally admixed in the tree layer, Larix decidua was eventually present in regions with its autochthonous distribution, in the lower altitudes Abies alba. Among the more frequent shrub species belong only Ribes petraeum. This community considerably differs from the previous communities with its usually low-forb field layer character and with low number of present species (somewhere even less than 15–20 species) which commonly reach only low cover values (up to 5%). The number of constant species is also considerably lower. Frequent relatively low total cover of the field layer corresponds to the mentioned fea- tures (not seldom up to 50% at most, here and there only 1–3%, cf. Hadač et al. (1969), 269, 274). The constant components of the stands are only Oxa- lis acetosella, Soldanella spp. (more frequently S. carpatica was noted), Senecio nemorensis agg., Vaccinium myrtillus, Mycelis muralis, Myosotis sylvatica and Prenanthes pur- purea. In some stands among the more frequent species belong Adenostyles alliariae (usually with very low cover- abundance), Valeriana tripteris, Homogyne alpina, Gale- obdolon luteum agg., or Moneses uniflora, Corallorhiza trifida, Primula elatior or Phyteuma spicatum, Ranunculus platanifolius; on some habitats also Polystichum lonchitis, Lycopodium annotinum, Vaccinium vitis-idaea, Viola bi- flora (cf. Adamczyk, 1962). The field layer does not have a dominant species or, alternatively, Oxalis acetosella could reach cover over 50 % in some places; eventually Adenostyles alliariae or Athy- rium spp. also grow abundantly. The ground layer does not have a specific constant species according to the currently known records. In some stands the dominant moss species are Dicranum scoparium and Plagiomnium cuspidatum, constantly ac- companied by Hylocomium splendens and Brachythecium velutinum (Hadač et al., 1969, p. 274–275). Occurrence of Sphagnum girgensohnii was sporadically noted. Variability. – With respect to the low total number of recorded phytocoenological relevés (i.e. with addition of originally unclassified relevés of Hadač et al. (1969), see Methods above), the three following subcommunities are differentiated: (1) subassociation Mnio spinosi-Piceetum typicum subass. nov. hoc loco (nomenclatural type: Hadač et al. (1969), p. 269, rel. 134, holotypus hoc loco, automatical holotype sensu Art. 5b; differential species: Corallorhiza trifida, Hieracium murorum, Moneses uniflora, Primula elatior, Solidago virgaurea; original diagnosis: Hadač et al. (1969), p. 269, rels. 131, 134, 139 and p. 274, rels. 30, 32, 34, 55; Šmarda et al. (1971), tab. 18, rels. 8, 14; Kanka (2008), tab. 14, rels. 6, 7) which splits into two variants: (a) Valeriana tripteris-variant (incl. Oxalido- Piceetum Hadač et al. 1969 s. str.) (differential species: Athyrium filix-femina, Cicerbita alpina, Homogyne alpina, Luzula sylvatica, Polygonatum verticillatum, Valeriana tripteris; Brachythecium velutinum, Dicranum scoparium, Plagiomnium cuspidatum) with characteristic distinctive dominace of Oxalis acetosella, and (b) Mycelis muralis- variant (≡ Mnio spinosi-Piceetum Hadač et al. 1969 sensu strictissimo) (without differential species) which includes woodland stands with usually very the low cover of the field layer (1–3%). 21/1 • 2022, 107–151 134 Peter Kučera Natural calcareous Norway spruce woodlands in Slovakia and their syntaxonomical classification (2) subassociation Mnio spinosi-Piceetum phyteu- matetosum spicati P. Kučera subass. nov. hoc loco (nomenclatural type: Černušáková (1994), tab. 2, rel. 15, holotypus hoc loco; differential species: Athyrium distentifolium, Gentiana asclepiadea, Phyteuma spicatum, Ranunculus platanifolius, Veratrum album ssp. lobelianum; original diagnosis: Černušáková (1994), tab. 1, rel. 4 and tab. 2, rels. 1–3, 15) contains physiognomically different more or less tall-forb stands. Adenostyles alliariae-var- iant (differential species: Adenostyles alliariae, Athyrium distentifolium, Luzula sylvatica, Myosotis sylvatica, Phyteu- ma spicatum, Ranunculus platanifolius) is characterized by dominance of Adenostyles alliariae (cover up to 25–50%). In the Ribes petraeum-variant (differential species: cf. Athyrium filix-femina, Ribes petraeum) species Athyrium filix-femina dominates and differential species of the for- mer variant are absent. (3) subassociation Mnio spinosi-Piceetum melampy- retosum sylvatici P. Kučera subass. prov. (nomenclatu- ral type: Černušáková (1994), tab. 1, rel. 5, pro holoty- pus; differential species: Galium schultesii, Melampyrum sylvaticum; original diagnosis: Kobzáková (1987) (msc.), tab. 8, rel. 7; Černušáková (1994), tab. 1, rel. 5;) differs from the previous two sub-communities by absence of their differential species (Athyrium distentifolium could be present). However, this unit includes only two known rel- evés, including one relevé of Kobzáková (1987) from the non-carbonate region of the Západné Tatry Mts. (with presence of species Astrantia major, Galeobdolon lutem agg., Galium schultesii, Rubus saxatilis, Aruncus vulgaris, Ranunculus lanuginosus).12 Nomenclature. – Březina and Hadač (in Hadač et al. (1969)) validly published two new names of the syntaxo- nomically very close communities (cf. Kučera, 2012a): (1) Mnio spinosi-Piceetum proposed as a new association and (2) Oxalido-Piceetum originally proposed as nomen novum for the name Piceetum abietis oxalidetosum aceto- sellae silicicolum Krajina 1933. However, the latter name was invalidly published (see Kučera in red.) therefore the correct author citation for the respective Oxalido-Picee- tum community of the Belianske Tatry Mts (Hadač et al., 1969) is Oxalido-Piceetum excelsae Březina et Hadač in Hadač et al. 1969. These two communities are merged to one associa- tion due to their floristical and ecological similarity (see Kučera, 2012a). In respect of potential nomenclatural and also syntaxonomical problems with the name Oxa- lido-Piceetum (Kučera, in red.), the respective association 12 In respect of the relevé species composition, the original misidentification of the locality might be possible. is labelled with the unequivocal name Mnio spinosi-Picee- tum Hadač et al. 1969. Hieracio murorum-Piceetum abietis P. Kučera ass. nov. hoc loco Nomenclatural type: Kučera (2012a), p. 288, rel. 5, lec- totypus hoc loco. Set of the most important diagnostic species: E1: Agrostis capillaris, Calamagrostis villosa, Luzula luzuloides, *Stellaria nemorum, Deschampsia cespitosa, *Calamagrostis arundinacea, E0: Polytrichum formosum, Pellia endiviifolia. Relevé data and original diagnosis (see Table 3): Kučera (2002) (msc.), tab. 5, rels. 4–6; Kučera (2012a), p. 288, rel. 5 and p. 289, rels. 9–10; see fig. 2. Canopy of the currently known stands is formed only by Picea abies. However, native tree species were originally also Acer pseudoplatanus, Sorbus aucuparia, in the lower al- titudes Abies alba, and eventually sporadic Fagus sylvatica with low growth. Field layer of the hitherto known phytocoenoses is dominated by Calamagrostis villosa. Very abundant are also Stellaria nemorum and Vaccinium myrtillus. Higher covers are here and there reached by Athyrium filix-femi- na, Luzula sylvatica ssp. sylvatica or Senecio hercynicus. Frequent components of the stands are Adenostyles alli- ariae, Calamagrostis arundinacea, Dryopteris dilatata, D. expansa. Presence of calcicoles and nutrient-demanding species is reduced, however, this association unequivocally be- long to the group of calcicolous natural Norway spruce communities which is justified by presence patterns of the species D. filix-mas, Hieracium murorum, Myosotis sylvat- ica, Stellaria nemorum and occasional occurrence of spe- cies as Alchemilla sp. div., Geranium sylvaticum, Primula elatior and so on (see Kučera in prep., tab. 2). A characteristic feature of the hitherto known stands is the presence of species Agrostis capillaris, Alchemilla sp. div., Anthoxanthum odoratum, Deschampsia cespitosa, Hy- pericum maculatum, Phleum rhaeticum, Potentilla aurea etc., which indicate impact of the historical land manage- ment (high mountain grazing and deforestation). In contrast to the previous calcicolous communities, the ground layer is regularly developed with higher cover. In the ground layer Polytrichum formosum usually domi- nates, sporadically also P. commune, both species could reach cover above 5%. Frequently are growing species Dicranum scoparium and Plagiothecium curvifolium, less frequently calcicole Pellia endiviifolia. 21/1 • 2022, 107–151 135 Peter Kučera Natural calcareous Norway spruce woodlands in Slovakia and their syntaxonomical classification Rel. No. 1 2 3 4 5 6 Tree and shrub species E3 Picea abies 4 5 4 4 3 4 E1 Picea abies + + + . + + Sorbus aucuparia r r + + . + Acer pseudoplatanus + + + . . + Fagus sylvatica r r . . r . Salix silesiaca . . . r . . Field layer species Calamagrostis villosa 4 1 1 3 5 2 Vaccinium myrtillus 2 2 2 3 1 2 Stellaria nemorum 2 2 2 2 2 2 Dryopteris carthusiana agg. 2 1 + 2 2 2 Luzula sylvatica ssp. sylvatica 2 + + 1 1 1 Oxalis acetosella 1 + 1 + + + Luzula luzuloides 1 + + 1 1 2 Homogyne alpina + + + 1 1 2 Rubus idaeus + r + 1 + + Senecio nemorensis agg. 2 1 + . 1 + Athyrium filix-femina 2 1 + . 2 + Adenostyles alliariae 1 r + . 1 1 Calamagrostis arundinacea + + . 1 1 2 Agrostis capillaris + + . + + + Hieracium murorum r . + + + + Rel. No. 1 2 3 4 5 6 Dryopteris filix-mas + r + 2 . . Myosotis sylvatica + . . + . + Athyrium distentifolium 1 . . . + + Soldanella carpatica + + + . . . Avenella flexuosa + + . + . . Deschampsia cespitosa + . . 1 . + Rumex alpestris + . . r . + Alchemilla sp. div. . . . + + + Ranunculus repens 1 . . + . . Anthoxanthum odoratum + + . . . . Viola biflora + . + . . . Phegopteris connectilis + . . . + . Prenanthes purpurea r . . . . r Poa annua . + + . . . Veronica chamaedrys . . . r . + Campanula serrata . . . . + + Hypericum maculatum . . . . + + Ground layer species Polytrichum formosum 1 2 2 2 . 2 Plagiothecium curvifolium 1 + + . . + Dicranum scoparium + + 1 . . 1 Pellia endiviifolia . 1 + . . . Pellia sp. . . . . . + Polytrichum commune 2 2 . . . . Table 3: Original diagnosis of the association Hieracio murorum-Piceetum abietis P.  Kučera 2022 ass. nov. Tabela 3: Originalni opis asociacije Hieracio murorum-Piceetum abietis P.  Kučera 2022 ass. nov. Field and ground layer species present in one relevé only: Rel. 1: E1: Epilobium montanum +, Galium odoratum +, Primula elatior +; – E0: Brachythecium starkei +. Rel. 2: E1: Gnaphalium sp. r, Potentilla aurea r; – E0: Atrichum undulatum 2. Rel. 3: E1: Chrysosplenium alternifolium +, Maianthemum bifolium +, Phleum rhaeticum +, Allium victorialis r, Veratrum album ssp. lobelianum r; – E0: Calypogeia azurea +, Dicranella heteromalla +. Rel. 4: E1: Tussilago farfara 1, Galeopsis speciosa +, Nardus stricta +, Urtica dioica +. Rel. 5: E1: Senecio subalpinus +. Rel. 6: E1: Festuca sp. 1, Chaerophyllum hirsutum +, Geranium sylvaticum +, Phleum pratense +, Polygonatum verticillatum +; – E0: Plagiomnium rostratum +. Localities: Rel. 1: Kučera 2012a, p. 289, rel. 9 – Veľká Fatra Mts, Borišov Mt., right part of the Prvý Balov, near the ridge, 1407 m a.s.l., 19.8.2008, P. Kučera (PK173). Rel. 2: Kučera 2012a, p. 289, rel. 10 – Veľká Fatra Mts, Borišov Mt., right part of the Prvý Balov, next to the forest line near a dell/avalanche track, 1427 m a.s.l., 26.7.2006, P. Kučera (PK113). Rel. 3: Kučera 2012a, p. 288, rel. 5 – Veľká Fatra Mts, Borišov Mt., on the ridge between the Prvý Balov and Druhý Balov, 1447 m a.s.l., 23.7.2003, P. Kučera (PK63). Rel. 4: Kučera 2002 (msc.), tab. 5, rel. 5 – Veľká Fatra Mts, Borišov Mt., right part of the Prvý Balov, ca. 1400 m a.s.l., 25.8.2001, P. Kučera (PK48); originally classified as “Athyrio alpestris-Piceetum Hartmann 1959”. Rel. 5: Kučera 2002 (msc.), tab. 5, rel. 6 – Veľká Fatra Mts, Borišov Mt., right part of the Prvý Balov, ca. 1405 m a.s.l., 25.8.2001, P. Kučera (PK49); originally classified as “Athyrio alpestris-Piceetum Hartmann 1959”. Rel. 6: Kučera 2002 (msc.), tab. 5, rel. 4 – Veľká Fatra Mts, Borišov Mt., right part of the Prvý Balov, ca. 1450 m a.s.l., 25.8.2001, P. Kučera (PK45); originally classified as “Athyrio alpestris-Piceetum Hartmann 1959”. 21/1 • 2022, 107–151 136 Peter Kučera Natural calcareous Norway spruce woodlands in Slovakia and their syntaxonomical classification To the present, phytocoenoses of the association Hier- acio murorum-Piceetum were recorded only in the Veľká Fatra Mts., in the northern slopes of Borišov Mt., where they are protected within the Borišov National Nature Reserve. Originally the respective woodland stands were widely distributed on the whole main ridge of the Veľká Fatra Mts, and most probably also elsewhere within the Western Carpathians, e.g. the Malá Fatra Mts. (Stoh Mt.), the eastern Low Tatras (Veľký Bok Mt.). In all the mentioned areas, the geological background is formed by less resistant calcareous rocks of the Mráznica formation, i.e. grey marly limestones, marlstones and marly shales (Polák et al., 1997) and, consequently, the relief of the slopes is smooth-faced, without rugged ridges, rocky ribs and rock cuts and only exceptionally with boul- dery taluses. This terrain characteristic was used for exten- sive (pre-)historical deforestation, altitudinally from the ridges deeply to the horizon of the mixed montane Fagus woodland, therefore the original supramontane Norway spruce stands are usually not preserved. The recorded old stands of the Borišov Mt. are also influenced by historical (partly present) mountain grazing (see above). In places where the natural habitat development would conclude with blocking the influence of the carbonate background, phytocoenoses of the alliance Piceion abietis Pawłowski ex Pawłowski et al. 1928 nom. corr. could de- velop and replace the Hieracio murorum-Piceetum wood- land. Such stands did not preserve due to the mentioned large-scale deforestation. Higher syntaxonomical units of calcareous Norway spruce woodlands The above-presented Western Carpathian and other si- milar European syntaxa of Picea abies communities are traditionally classified within the order Athyrio-Piceetalia Hadač 1962 or, recently, under the order name “Athy- rio filicis-feminae-Piceetalia Hadač ex Hadač et al. 1969” (Kučera, 2010a; Mucina et al., 2016 and other following authors). The latter name was proposed to be the first val- idly published counterpart of the supposedly invalid name Athyrio-Piceetalia Hadač 1962. However, the correspond- ing nomenclatural construction was incorrect because two of the totally three subordinated alliances were in fact val- idly published by Hadač (1962) (cf. Kučera, in red.). Thorough revision of the original diagnoses of the al- liances Oxalido-Piceion (Krajina 1933) Březina et Hadač in Hadač 1962 and Chrysanthemo-Piceion (Krajina 1933) Březina et Hadač in Hadač 1962, i.e. Oxalidion acetosellae Krajina 1933 and Chrysanthemion rotundifolii Krajina 1933, demonstrated that later application of the respec- tive alliances is syntaxonomically incompatible with their original phytocoenotical delimitation. The factual utiliza- tion of these alliance names as pseudonyma, i.e. “Oxa- lido-Piceion auct. non (Krajina 1933) Březina et Hadač in Hadač 1962” and “Chrysanthemo-Piceion auct. non (Kra- jina 1933) Březina et Hadač in Hadač 1962” has begun in the vegetation surveys of Holub et al. (1967) and Hadač et al. (1969) and continues to the present (Kučera, in red.). As the syntaxonomical delimitation of the order Athy- rio-Piceetalia Hadač 1962 is defined by its original diag- nosis, i.e. alliances Oxalido-Piceion (Krajina 1933) Březina et Hadač in Hadač 1962 and Chrysanthemo-Piceion (Kra- jina 1933) Březina et Hadač in Hadač 1962, the common application of this order name equally corresponds to the pseudonym Athyrio-Piceetalia auct. non Hadač 1962 (Kučera, in red.). The pseudonymical approach to the name was already expressed in Hadač’s (1962, p. 53) own short ecological and floristical characteristics of the order and constantly continues to the present (cf. Mucina et al., 2016; Dubyna et al., 2019; Bergmeier, 2020). The here presented name Cortuso-Piceetalia is published to replace the pseudonym Athyrio-Piceetalia auct. non Hadač 1962. Cortuso matthioli-Piceetalia abietis P. Kučera ord. nov. hoc loco Nomenclatural type: alliance Cortuso matthioli-Piceion abietis P. Kučera 2022 (see below p. 141), holotypus hoc loco Pseudonym: Athyrio-Piceetalia auct. non Hadač 1962 Original diagnosis: Cortuso matthioli-Piceion abietis P. Kučera 2022 [see below p. 141], Melico nutantis-Pi- ceion (Kielland-Lund 1981) P. Kučera 2022 [see below p. 139], Calamagrostio variae-Pinion cembrae P. Kučera 2017 [Kučera, 2017, p. 414], Seslerio caeruleae-Pinion uncinatae Vigo 1974 [Vigo, 1974, p. 53] Differential species (see Table 4):13 E2: (Ribes petraeum); E1: Daphne mezereum, Ribes petraeum, Acer pseudoplata- nus, (Lonicera nigra); Valeriana tripteris, Primula elatior, Phyteuma spicatum, Cortusa matthioli, Polygonatum verticillatum, Hieracium murorum, Viola biflora, Myosotis sylvatica, Geranium syl- vaticum, Calamagrostis varia, Asplenium viride, Astrantia major, Cirsium erisithales, Cicerbita alpina, Leucanthe- mum rotundifolium, Galeobdolon luteum agg., Heracleum sphondylium, Polystichum lonchitis, Crepis paludosa, Mycelis 13 Species with the fidelity value (φ×100) lower that “33” are in brackets. 21/1 • 2022, 107–151 137 Peter Kučera Natural calcareous Norway spruce woodlands in Slovakia and their syntaxonomical classification Group No. 1 2 No. of relevés 95 185 Tree and shrub species E2 Ribes petraeum 16 26.5 1 – E1 Daphne mezereum 47 55.7 . – Ribes petraeum 31 36.4 3 – Acer pseudoplatanus 20 33.3 . – Lonicera nigra 37 31.3 10 – Field layer species (E1) Valeriana tripteris 74 73.7 2 – Primula elatior 56 62.2 . – Phyteuma spicatum 55 60.6 1 – Cortusa matthioli 52 59.0 . – Polygonatum verticillatum 60 57.5 6 – Hieracium murorum 61 56.3 8 – Viola biflora 47 55.7 . – Myosotis sylvatica 47 55.7 . – Geranium sylvaticum 43 51.6 1 – Calamagrostis varia 41 50.8 . – Asplenium viride 41 50.8 . – Astrantia major 39 49.2 . – Cirsium erisithales 39 49.2 . – Cicerbita alpina 38 48.3 . – Leucanthemum rotundifolium 39 48.2 1 – Galeobdolon luteum agg. 40 47.3 2 – Heracleum sphondylium 36 46.7 . – Polystichum lonchitis 36 46.7 . – Crepis paludosa 35 45.8 . – Mycelis muralis 36 44.8 1 – Fragaria vesca 32 43.3 . – Clematis alpina 31 42.4 . – Galium schultesii 32 42.3 1 – Dryopteris filix-mas 38 42.0 4 – Ranunculus platanifolius 37 41.1 4 – Soldanella marmarossiensis agg. 49 40.7 12 – Chaerophyllum hirsutum 32 40.3 2 – Epilobium montanum 32 39.3 2 – Bellidiastrum michelii 26 38.9 . – Mercurialis perennis 26 38.9 . – Soldanella carpatica 28 38.5 1 – Cardaminopsis arenosa agg. 25 38.0 . – Group No. 1 2 Sesleria caerulea 25 38.0 . – Thalictrum aquilegiifolium 22 35.3 . – Pyrethrum clusii 22 35.3 . – Senecio subalpinus 22 35.3 . – Maianthemum bifolium 26 34.6 2 – Senecio nemorensis agg. 72 34.4 37 – Chrysosplenium alternifolium 20 33.3 . – Cystopteris fragilis 20 33.3 . – Campanula rotundifolia agg. 22 31.7 2 – Cystopteris montana 18 31.3 . – Pimpinella major 18 31.3 . – Adenostyles alliariae 72 31.3 41 – Lilium martagon 19 31.0 1 – Alchemilla sp. div. 19 31.0 1 – Moneses uniflora 20 30.8 1 – Ranunculus lanuginosus 17 30.3 . – Geum rivale 17 30.3 . – Aconitum variegatum 17 30.3 . – Dentaria enneaphyllos 17 30.3 . – Rubus saxatilis 18 30.0 1 – Veratrum allbum ssp. lobelianum 46 29.9 18 – Prenanthes purpurea 57 28.5 29 – Carex digitata 15 28.2 . – Carduus glaucinus 14 27.1 . – Phyteuma orbiculare 14 27.1 . – Ranunculus breyninus 13 26.0 . – Crepis jacquinii 13 26.0 . – Sesleria tatrae 13 26.0 . – Carex sempervirens ssp. tatrorum 13 26.0 . – Calamagrostis villosa 25 – 75 49.9 Avenella flexuosa 51 – 89 42.1 Dryopteris carthusiana agg. 54 – 90 40.0 Vaccinium myrtillus 77 – 99 33.8 Lycopodium annotinum 3 – 19 25.7 Ground layer species (E0) Mnium spinosum 38 47.4 1 – Ctenidium molluscum 23 36.2 . – Tortella tortuosa 24 32.6 2 – Polytrichum formosum 19 – 71 52.7 Calypogeia integristipula . – 23 36.3 Dicranum scoparium 53 – 86 36.1 Sphagnum girgensohnii 4 – 22 26.5 Table 4: Differential table of the supramontane Norway spruce woodlands of the class Vacccinio-Piceetea Br.-Bl. in Br.-Bl. et al. 1939 in Slovakia with values of constancy (%) and fidelity (φ × 100) in the exponent. Table 4: Diferencialna tabela supramontanskih smrekovih gozdov razreda Vacccinio-Piceetea Br.-Bl. in Br.-Bl. et al. 1939 na Slovaškem s prikazano stalnostjo (%) in nadpisano navezanostjo (φ × 100). The relevé dataset is identical with the Tabble 2 (synoptic table of the order Cortuso matthioli-Piceetalia) and the Table 3 (synoptic table of the order Piceetalia abietis) compiled by Kučera (in prep.). Species with fidelity value (φ×100) lower than 25 are omitted. Group 1 – Cortuso matthioli-Piceetalia abietis P. Kučera 2022 ord. nov. Group 2 – Piceetalia abietis Pawłowski ex Pawłowski et al. 1928 nom. corr. 21/1 • 2022, 107–151 138 Peter Kučera Natural calcareous Norway spruce woodlands in Slovakia and their syntaxonomical classification muralis, Fragaria vesca, Clematis alpina, Galium schultesii, Dryopteris filix-mas, Ranunculus platanifolius, Soldanella marmarossiensis agg., Chaerophyllum hirsutum, Epilobium montanum, Bellidiastrum michelii, Mercurialis perennis, Soldanella carpatica, Cardaminopsis arenosa agg., Sesleria albicans, Thalictrum aquilegiifolium, Pyrethrum clusii, Senecio subalpinus, Maianthemum bifolium, Senecio nemo- rensis agg., Chrysosplenium alternifolium, Cystopteris fra- gilis, (Campanula rotundifolia agg., Cystopteris montana, Pimpinella major, Adenostyles alliariae, Lilium martagon, Alchemilla sp. div., Moneses uniflora, Ranunculus lanugi- nosus, Geum rivale, Aconitum variegatum, Dentaria ennea- phyllos, Rubus saxatilis, Veratrum allbum ssp. lobelianum, Prenanthes purpurea, Carex digitata, Carduus glaucinus, Phyteuma orbiculare, Ranunculus breyninus, Crepis jacqui- nii, Sesleria tatrae, Carex sempervirens ssp. tatrorum); E0: Mnium spinosum, Ctenidium molluscum, (Tortella tortuosa). Floristical delimitation. – The characteristic feature of communities of the order Cortuso matthioli-Piceetalia within the class Vaccinio-Piceetea is the presence of species which are – within the altitudinal vegetation zone of nat- ural Picea abies woodland and natural (mixed) Pinus cem- bra woodland, i.e. in the supramontane vegetation zone – (almost exclusively) bounded to calcareous soils: Astran- tia major, Chrysosplenium alternifolium, Crepis paludosa, Dentaria enneaphyllos, Fragaria vesca, Galium schultesii, Geranium sylvaticum, Heracleum sphondylium, Mercurialis perennis, Moneses uniflora, Mycelis muralis, Myosotis syl- vatica, Phyteuma spicatum, Polystichum lonchitis, Primula elatior, Valeriana tripteris, Viola biflora and others (see above). Only sporadically and on special habitats some species of this group could occur in the communities of the order Piceetalia abietis Pawłowski ex Pawłowski et al. 1928 (see Kučera, 2019a, tab. 1). Within the class Vaccinio-Piceetea, the fundamental dif- ferential element of the Cortuso matthioli-Piceetalia com- munities of the high mountain elevations is the presence of calciphytes, for example Asplenium viride, Calama- grostis varia, Carduus glaucinus, Cirsium erisithales, Cor- tusa matthioli, Cystopteris montana, Phyteuma orbicu- lare, Pimpinella major or Sesleria albicans. These species not seldom constitute a significant share of the species composition of phytocoenoses or of their total cover (cf. Hadač et al., 1969; Fajmonová, 1978; Fajmonová, 1986; Kučera, 2012a). Reduced presence of calciphytes is lim- ited to marginal communities of the order (e.g. Hieracio murorum-Piceetum P. Kučera 2022). The ground layer of the Cortuso matthioli-Piceetalia communities is distinguished by presence of mosses Cte- nidium molluscum, Mnium spinosum and Tortella tortuosa. In contrast to generally accepted assessments that the class Vaccinio-Piceetea represents species-poor and acid woodland vegetation (e.g. Seibert, 1992; Chytrý in Chytrý et al., 2013), the respective calcareous natural Norway spruce woodlands constitute the proof that the Vaccinio-Piceetea communities comprise species-rich and very species-rich phytocoenoses as well. The concept of Vaccinio-Piceetea diagnostic taxa should also be revised: instead of species growing within large diversity of forest and non-forest vegetation (such as Vaccinium myrtillus, V. vitis-idaea), species common for both Piceetalia abietis and Cortuso-Piceetalia abietis syntaxa should be empha- sized, i.e. (Central) European oreal species as Adenostyles alliariae, Homogyne alpina or Luzula sylvatica (cf. Kučera, in prep.). Ecological delimitation. – Development and occur- rence of the Cortuso matthioli-Piceetalia communities is dependent on trophically very favourable properties of soils which are neutral to slightly acidic (Šoltés, 1976), with intensive nitrification (Hadač et al., 1969). Soil pH could fall under 6 in deeper non-skeletal soils (Hadač et al., 1969). The soils are rendzinas (rendzic leptosols), pa- rarendzinas (subgroup of rendzic leptosols) to cambisols (calcaric cambisols) which could be decalcified and acidi- fied, however, deeper in the soil horizon they are at least neutral or slightly acidic (cf. Šály, 1986). The respective habitats are therefore found in mountain regions formed by carbonate rocks. In areas with extreme relief litosols (lithic leptosols) could be present. Nutrient supply could be blocked by thicker humus layer developed on small areas within some communities: calcifuges are bound to such places (Vaccinium myrtillus). Only sporadically, on exceptionally favourable habitats, phytocoenoses of the order Cortuso matthioli-Piceetalia could develop on weathered non-carbonate rocks, gen- erally on habitats influenced by increased moisture and nutrient supply. Syntaxonomical delimitation. – Communities of the or- der Cortuso matthioli-Piceetalia are here divided to four basic subunits which are given the rank of an alliance. (A) The alliance Cortuso matthioli-Piceion abietis P. Kučera 2022 (see below) comprises calcicolous Picea abies woodland types of the supramontane vegetation zone mainly of the Central European mountain ranges, with overlaps from the western (western Alps) to the southeast- ern part of the continent (Southern Carpathians).14 The question of the syntaxonomical classification of Norway 14 In the western half of the Alps Pinus uncinata Ramond ex DC s. str. could be admixed in more extreme habitats (cf. Ellenberg & Klötzli, 1972; Schmider & Burnand, 1988). 21/1 • 2022, 107–151 139 Peter Kučera Natural calcareous Norway spruce woodlands in Slovakia and their syntaxonomical classification spruce communities of the montane altitudes of the Di- naric mountain ranges (cf. Wraber, 1964; Wraber, 1969; Horvat et al., 1974; Zupančič, 1980; Accetto, 1993; Vukelić et al., 2010; Juvan et al., 2013 etc.) needs to be resolved in more detail: the refugial and relict occurrence of Picea abies (growing within mixed woodland phytocoe- noses with Abies, Acer, Fagus etc., i.e. more or less mar- ginal Carpino-Fagetea communities) should be carefully differentiated from the relict extragradal montane Cortuso matthioli-Piceetalia communities. (B) Calcicolous Picea abies woodlands are replaced by calcicolous Pinus cembra or mixed Pinus cembra wood- lands (mostly with Larix decidua) in the high mountain altitudes of the Alps as well as of the highest mountain ranges of the Carpathians (e.g. the Tatra Mountains). They are separated into the alliance Calamagrostio vari- ae-Pinion cembrae P. Kučera 2017 based on phytocoe- noses from the Belianske Tatry Mts (Western Carpathi- ans). The respective woodland stands were significantly negatively influenced by historical land management and only their fragments were preserved or they are completely missing in large continuous areas (cf. Kanka, 2008; Zięba et al., 2018; Zięba et al., 2019; Kučera & Barančok, 2021). Similar process could be presupposed also for large areas of the Alps outside of regions where the continuous Arolla pine woodlands were preserved up to the 20th century. (C) Geographically vicariant unit of the Pyrenees is the alliance Seslerio caeruleae-Pinion uncinatae Vigo 1974 (cf. Rivas-Martínez et al., 2001) with supramontane (to altimontane) plant communities formed by Pinus uncina- ta Ramond ex DC s. str. (and Abies alba). Data on the oc- currence of phytocoenoses of this alliance in the northern Apennines (Angelini et al., 2009; Biondi et al., 2014) are questionable from the syntaxonomical as well as ecologi- cal point of view: from this region only the occurrence of Pinus mugo s. str. is indicated (cf. Gentile, 1995; Adorni, 2016; Pignatti et al., 2017). (D) Occurrence of phytocoenoses floristically and ecologically belonging to the order Cortuso matthioli- Piceetalia is also indicated from the northern Europe (cf. Kielland-Lund, 1981; Dierßen & Dierßen, 1996). They syntaxonomically belong to the alliance Melico nutantis-Piceion (Kielland-Lund 1981) P. Kučera stat. nov. hoc loco (basionym: suballiance Melico- Piceenion Kielland-Lund 1981; see Kielland-Lund, 1981, p. 150, 176, 196).15 15 As Rivas-Martínez et al. (2011, p. 457) typified their name Linnaeo- Piceion abietis (Br.-Bl. et Sissingh in Br.-Bl. et al. 1939) Rivas-Mart. in Rivas-Mart. et al. 2011 nom. illeg. (Art. 31) with the association name Piceetum fennnoscandicum Br.-Bl. in Br.-Bl. et al. 1939, that alliance name became a syntaxonomical synonym to calcicolous Melico nutantis-Piceion However, similarly as in the Western Carpathians (see above p. 111–116), impacts of historical land manage- ment on the tree species composition of the Scandinavian woodlands should be carefully considered as Picea abies forests of the lower altitudes often represent secondary, substitutionary stands replacing potential natural mixed broadleaved forests of Quercus, Fagus, Acer spp. (E) On the contrary, into the order Cortuso matthioli- -Piceetalia (= Athyrio-Piceetalia auct. non Hadač 1962) do not belong various syntaxonomical units even if they are traditionally classified under the order name “Athy- rio-Piceetalia Hadač 1962”. For example, Sýkora (1971) differentiated a new alliance Athyrio alpestris-Piceion Sýkora 1971 within the order Athyrio-Piceetalia Hadač 1962. It is not clear whether he used the original or the pseudonymical concept of the order name (cf. Kučera, in red.); however, if the only subordinated association Athy- rio alpestris-Piceetum Hartmann ex Sýkora 1971 nom. il- leg. (Art. 31, later synonym of Athyrio alpestris-Piceetum Hartmann ex Hartmann et Jahn 1967) is considered as a syntaxon of natural Picea abies woodland then it floristi- cally belongs to the alliance Piceion abietis Pawłowski ex Pawłowski et al. 1928 nom. corr. (syntax. syn. Athyrio alpestris-Piceion Sýkora 1971) (cf. Šomšák, 1983; Exner, 2007; Kučera, 2010a; Kučera, 2010c; Kučera, 2012a; Chytrý et al., 2013b). (F) As indicated above (p. 111–116), many Picea abies forest stands of the Western Carpathians are secondary, anthropogenic forest communities with the spontaneous secondary succession of Fagus sylvatica, and they should be syntaxonomically classified within the class Carpino- -Fagetea. Besides the respective Picea forests, there were described some Abies alba syntaxa of the higher rank which are traditionally considered as Vaccinio-Piceetea syntaxa. Below are given some examples of units (or their common interpretation) which syntaxonomically do not belong into the order Cortuso matthioli-Piceetalia (= Ath- yrio-Piceetalia auct. non Hadač 1962). (F1) Hadač (Hadač, 1962; Hadač, 1965, see also Hadač et al., 1969) differentiated an independent alli- ance Abietion albae within the order “Athyrio-Piceetalia Hadač 1962”. This new syntaxon was proposed for Abies alba- and mixed Abies alba-Picea abies communities dis- tributed in the southeastern part of the Belianske Tatry Mts (northern Slovakia) and the surrounding regions. Hadač considered them for natural coniferous woodlands with naturally absent Fagus sylvatica due to continental (Kielland-Lund 1981) P. Kučera 2022: cf. the frequencies of species Ge- ranium sylvaticum, Fragaria vesca, Melica nutans, Paris quadrifolia, Con- vallaria majalis within the original diagnosis of the association Piceetum fennnoscandicum Br.-Bl. in Br.-Bl. et al. 1939 (Braun-Blanquet et al., 1939, p. 53–54; cf. also Kielland-Lund, 1981, tab. 39). 21/1 • 2022, 107–151 140 Peter Kučera Natural calcareous Norway spruce woodlands in Slovakia and their syntaxonomical classification climatic conditions. His concept was accepted in later Slovak regional or national surveys up to the present (for more detailed list see Kučera. in red.). However, the factor which actually hindered the pres- ence of F. sylvatica in the respective territory was historical land management, not presupposed continental climate. The supposed natural beechless character of the Abietion albae Hadač 1965 plant communities is of anthropogen- ic origin and they have to be classified within the class Carpino-Fagetea (Kučera, 2007; Kučera, 2010b; Kučera, 2012a; Kučera, 2012b and other works). (F2) In the recent phytocoenological survey of the Aus- trian woodlands, Exner (2007) differentiated a special group of “dry carbonate Picea abies(-Abies alba) wood- lands”, classified as the suballiance Calamagrostio variae- Abietenion (Horvat 1962) Exner et Willner in Willner et al. 2007 within the class Vaccinio-Piceetea. However, the values of Fagus sylvatica frequency in the individual Austrian communities of this suballiance and, especially, increase in frequency of Fagus in the understorey in con- trast to the canopy of the respective communities (see also Acer pseudoplatanus) as well as considerable decrease of frequency of Larix decidua (cf. Willner et al., 2007, tab. 33) indicate that spontaneous secondary succession takes place in the respective habitats and their tree species com- position was substantially anthropogenically influenced. Similarly like in the case of Abietion albae Hadač 1965 (see above), most of the respective secondary communi- ties with anthropogenically lowered presence of F. sylvat- ica syntaxonomically belong to the class Carpino-Fagetea. Further research is needed to determine which Austrian regions exactly constitute the territory where F. sylvatica should be ultimately missing only due to natural reasons (e.g. a special intramountain climate). Corresponding Abies alba communities of the alliance Calamagrostio-Abi- etion Horvat 1962 nom. invers. in the Dinarides (Horvat, 1962; Horvat et al., 1974) should also be revised for his- torical anthropogenic influences and potential secondary succession of Fagus. (F4) Similarly to the previous group, Austrian commu- nities of Abieti-Piceenion Br.-Bl. in Br.-Bl. et al. 1939 (see Exner, 2007) represent for the substantial part anthropo- genically influenced mixed forests with secondary succes- sion of Fagus (cf. synoptic table No. 33 in Willner et al. (2007)) therefore the respective phytocoenoses should be classified within the class Carpino-Fagetea. The nomenclatural type of the alliance Abieti-Piceion (Br.-Bl. in Br.-Bl. et al. 1939) Soó 1963/ Abieti-Piceenion Br.-Bl. in Br.-Bl. et al. 1939 – the association Piceetum montanum Br.-Bl. in Br.-Bl. et al. 1939 (Willner, 2007, p. 237) – also represents mixed coniferous forest with anthropogenically induced absence of F. sylvatica. The original diagnosis of this association consists of six pub- lished relevés of Beger (1922) from the Schanfigg Valley in the eastern Switzerland and from seven unpublished relevés of J. Braun-Blanquet. Although Beger (1922, p. 70) published only such phytocoenological relevés in which F. sylvatica is admixed, there exists also ca. pure F. sylvatica stand in the vicinity of Tschiertschen (coordi- nates 46°49'33" N, 9°35'55" E, cca up to 1120 m a.s.l., cf. Google Earth). Fertile Fagus trees in this region were recorded even at 1330 m a.s.l. by Beger (1922). Beger’s relevés of Norway spruce communities from the lower montane altitudes represent secondary forests which developed under the millenia of human influence (the region is considerably deforested till the present) and as such they should be classified similarly as the Abietion albae Hadač 1965 communities of the northern Slovakia (Hadač, 1965; Hadač et al., 1969) within the class Carpi- no-Fagetea (cf. Hadač & Sofron, 1980). Subsequently, the alliance should be classified with the respect to its original diagnosis in the same way as already Oberdorfer (1957) proposed.16 It seems that the spatial delimitation of the so-called “Zwischenalpen zone”, i.e. the territory where F. sylvatica should be naturally absent (on the contrary to “Rand alpen zone”) and Picea abies and Abies alba form forests in the montane altitudes (Kuoch, 1954; Ellenberg, 1996; cf. Lau- ber et al., 2018) (see also Mayer & Hofmann, 1969; May- er, 1974; Mayer, 1984; Sauberer & Willner, 2007), have to be substantially revised with serious consideration of the impacts of historical land management: the above men- tioned Schanfigg Valley is commonly classified as the part of the Zwischenalpen zone, according Ellenberg & Klötzli (1972) even within the Zentralalpen zone; however, the preserved Fagus stand by Tschiertschen and other Fagus oc- currences towards the valley¨   opening contradict to such geobotanical classification (cf. Hess et al., 1967, p. 63). In the Western Carpathians, an analogous Fagus-free “intramountain zone” was traditionally recognized; how- ever, supposed natural absence of Fagus is, in fact, result of pre-/historical land management of the respective landscape, i.e. the intermountain basins of the Liptovská kotlina and the Popradská kotlina as well as the adjacent slopes of the surrounding mountain ranges (see Krippel, 1963; Kučera, 2012b). (F5) Mucina et al. (2016) listed the alliance name Abietion albae Issler 1931 as a synonym of the alliance 16 In respect of the characteristics of the altitudinal distribution of the as- sociation Piceetum montanum Br.-Bl. in Br.-Bl. et al. 1939 and its original table by Braun-Blanquet et al. (1939, p. 15), the following typification is proposed for nomenclatural reasons: Piceetum montanum Br.-Bl. in Br.- Bl. et al. 1939 [Braun-Blanquet et al. 1939, p. 14] Nomenclatural type: Beger 1922, p. 49–50, rel. No. 3, lectotypus hoc loco. 21/1 • 2022, 107–151 141 Peter Kučera Natural calcareous Norway spruce woodlands in Slovakia and their syntaxonomical classification Abieti-Piceion (Br.-Bl. in Br.-Bl. et al. 1939) Soó 1964 (cf. Willner, 2007, p. 237) which was presented as “Meso- philous fir forests on brown forest soils …”. However, the original diagnosis of the alliance Abietion albae Issler 1931 (Issler, 1926, tab. VI; Issler, 1931) clearly shows that the author classified in the respective units mixed Abies- Fagus communities, probably also considerably influ- enced by historical land management (see differences of Fagus abundance between canopy and understorey). They syntaxonomically belong to the class Carpino-Fagetea (cf. Boeuf et al., 2014). Slightly different is the case of the alliance Piceo--Abi- etion Ellenberg et Klötzli 1974 nom. inval. (Art. 3b), however, already the original authors classified their unit within the class Carpino-Fagetea (ut “Querco-Fagetea”, El- lenberg & Klötzli (1972), see also above “F4”). It should be also noted that Czech and Moravian phytocoenolo- gists classify Abies alba forests within the class Carpino- -Fagetea (Moravec et al., 2000; Boublík et al., 2013). Cortuso matthioli-Piceion abietis P. Kučera all. nov. hoc loco Nomenclatural type: Cirsio erisithalis-Piceetum abietis Faj- monová et P. Kučera in P. Kučera 2022 (see above p. 127), holotypus hoc loco. Syntax. syn.: Piceion excelsae Sillinger 1933 p. p. min. Pseudonyms (see Kučera in red.): Chrysanthemo-Piceion auct. non (Krajina 1933) Březina et Hadač in Hadač 1962, Oxalido-Piceion auct. non (Krajina 1933) Březina et Hadač in Hadač 1962 Original diagnosis (see the p. 119–136): Seslerio caerule- ae--Piceetum abietis Fajmonová 1978 nom. corr. et nom. cons. propos., Cirsio erisithalis-Piceetum abietis Fajmo- nová et P. Kučera in P. Kučera 2022, Fragario vescae- -Piceetum abietis P. Kučera 2022 ass. prov., Adenostylo alliariae-Piceetum abietis Samek et al. 1957 nom. corr. et nom. cons. propos., Mnio spinosi-Piceetum abietis Hadač et al. 1969 nom. corr. (incl. Oxalido-Piceetum Březina et Hadač in Hadač et al. 1969), Hieracio murorum-Piceetum abietis P. Kučera 2022 Differential species (see Table 5):17 E1: Myosotis sylvatica, Primula elatior, Fragaria vesca, Senecio nemorensis agg., Galeobdolon luteum agg., Astran- tia major, Mercurialis perennis, Dryopteris filix-mas, Ses- leria albicans, Heracleum sphondylium, Pyrethrum clusii, Chaerophyllum hirsutum, Epilobium montanum, Lilium martagon, Milium effusum, Paris quadrifolia, Rubus saxa- 17 Species with the fidelity value lower that “33” are in brackets. tilis, Pimpinella major, Cirsium erisithales, Ranunculus lanuginosus, Dentaria enneaphyllos, (Soldanella carpatica, Cicerbita alpina, Mycelis muralis, Crepis paludosa); E0: (Tortella tortuosa, Ctenidium molluscum). Floristical delimitation and characteristics. – Phyto- coenoses of the order Cortuso matthioli-Piceetalia in the Western Carpathians are divided into two altitudinally and phytochorologically different geobotanical groups with diverse postglacial and pre-/historical develop- ment. While the Arolla pine woodlands of the alliance Calamagrostio variae-Pinion cembrae survived only in the most highest mountain ranges and even there its stands were preserved only in small isolated islands (cf. Kanka, 2008; Zięba et al., 2018; vs. Kučera, 2019b; Kučera & Barančokc, 2021) due to extensive deforestation for high mountain grazing, the Cortuso-Piceion woodlands partici- pate on formation of the distinct altitudinal vegetation zone developed in all higher mountain ranges with ad- equate total elevations (however, large continuous areas were deforested too). The most noticeable differential feature of the Cortuso matthioli-Piceion phytocoenoses is the natural absence of mature Pinus cembra trees. Other species bound to high mountain altitudes are also (mostly) missing in Cortuso matthioli-Piceion: Rhodiola rosea, Festuca versicolor, Hedys- arum hedysaroides, Salix retusa etc. For the list of positive differential species see the Table 5. Lower constancies of Vaccinium vitis-idaea, Huperzia selago, Avenella flexuosa in Cortuso matthioli-Piceion stands are caused by generally less extreme habitats and thinner accumulations of raw humus as well as probably only very sporadic develop- ment of tangel humus; however, anthropogenic absence of Pinus cembra woodlands on ecologically medium habi- tats with deeper calcareous soils causes certain species bias in the presented floristical comparison of the Table 5. The canopy dominant of the Cortuso matthioli-Piceion woodlands is Picea abies to which other species are ad- mixed, most frequently Sorbus aucuparia (usually ssp. glabrata). Not seldom Acer pseudoplatanus grows in the stands, in the ecologically more extreme habitats Sorbus aria is present. Natural presence of Abies alba is presup- posed in the lower elevations of the altitudinal distribu- tion of the Cortuso matthioli-Piceion woodlands, with occurrence of Fagus sylvatica is counted only at lower alti- tudinal limit of Norway spruce altitudinal vegetation zone and only with specimens of low growth which do not have ecological impact on development and species diversity of plant communities. In the region of the Tatra Mountains and the Low Tatras autochthonous Larix decidua was originally perhaps more represented in the stands, espe- cially in more extreme habitats (in the similar way prob- 21/1 • 2022, 107–151 142 Peter Kučera Natural calcareous Norway spruce woodlands in Slovakia and their syntaxonomical classification Group No. 1 2 No. of relevés 80 15 Tree and shrub species E3 Pinus cembra . – 100 100.0 Betula carpatica . – 40 50.0 Sorbus aucuparia 35 – 67 31.7 E2 Picea abies 20 – 67 47.1 Sorbus aucuparia 29 – 73 44.6 Pinus cembra . – 27 39.2 Betula carpatica 1 – 20 30.4 Pinus mugo 14 – 40 29.6 Lonicera nigra 4 – 20 25.1 E1 Pinus cembra 1 – 47 53.2 Sorbus aucuparia 64 – 100 47.1 Betula carpatica . – 27 39.2 Picea abies 32 – 60 27.6 Field layer species (E1) Myosotis sylvatica 56 62.6 . – Primula elatior 64 51.8 13 – Fragaria vesca 38 48.0 . – Senecio nemorensis agg. 79 45.8 33 – Galeobdolon luteum agg. 46 44.9 7 – Astrantia major 45 43.8 7 – Mercurialis perennis 31 43.0 . – Dryopteris filix-mas 44 42.7 7 – Sesleria caerulea 30 42.0 . – Heracleum sphondylium 41 40.5 7 – Pyrethrum clusii 26 38.9 . – Chaerophyllum hirsutum 36 36.0 7 – Epilobium montanum 36 36.0 7 – Lilium martagon 22 35.6 . – Milium effusum 21 34.5 . – Paris quadrifolia 21 34.5 . – Rubus saxatilis 21 34.5 . – Pimpinella major 21 34.5 . – Cirsium erisithales 44 33.7 13 – Ranunculus lanuginosus 20 33.3 . – Dentaria enneaphyllos 20 33.3 . – Group No. 1 2 Soldanella carpatica 32 32.5 7 – Cicerbita alpina 42 32.5 13 – Mycelis muralis 40 30.2 13 – Crepis paludosa 39 29.0 13 – Vaccinium vitis-idaea 22 – 93 71.7 Campanula rotundifolia agg. 12 – 73 61.5 Cystopteris montana 9 – 67 59.8 Cystopteris fragilis 12 – 60 49.4 Huperzia selago 10 – 53 46.6 Sesleria tatrae 6 – 47 45.8 Avenella flexuosa 44 – 87 45.1 Bistorta major 2 – 33 40.2 Rhodiola rosea 2 – 33 40.2 Gymnocarpium dryopteris 16 – 53 38.9 Festuca versicolor . – 20 33.3 Hedysarum hedysaroides . – 20 33.3 Dryopteris carthusiana agg. 49 – 80 32.6 Calamagrostis varia 36 – 67 30.4 Pyrola rotundifolia 1 – 20 30.4 Myosotis alpestris 1 – 20 30.4 Luzula luzuloides 24 – 53 30.4 Salix retusa . – 13 26.7 Salix reticulata . – 13 26.7 Bistorta vivipara . – 13 26.7 Astragalus norvegicus . – 13 26.7 Ranunculus alpestris . – 13 26.7 Saxifraga wahlenbergii . – 13 26.7 Helianthemum grandiflorum . – 13 26.7 Androsace chamaejasme . – 13 26.7 Gentiana punctata . – 13 26.7 Bartsia alpina . – 13 26.7 Dryas octopetala . – 13 26.7 Saxifraga paniculata . – 13 26.7 Moehringia muscosa . – 13 26.7 Ground layer species (E0) Tortella tortuosa 29 41.0 . – Ctenidium molluscum 28 39.9 . – Plagiothecium undulatum . – 13 26.7 Mylia taylorii . – 13 26.7 Ptilidium ciliare . – 13 26.7 Table 5: Differential table of the alliances of the order Cortuso matthioli-Piceetalia P. Kučera 2022 ord. nov. in Slovakia with values of constancy (%) and fidelity (φ×100) in the exponent. Tabela 5: Diferencialna tabela zvez redu Cortuso matthioli-Piceetalia P. Kučera 2022 ord. nov. na Slovaškem s prikazano stalnostjo (%) in nadpisano navezanostjo (φ×100). The relevé dataset is identical with the Table 2 (synoptic table of the order Cortuso matthioli-Piceetalia) compiled by Kučera (in prep.). Species with fidelity value (φ×100) lower than 25 are omitted. Group 1 – Cortuso matthioli-Piceion abietis P. Kučera 2022 ord. nov., Group 2 – Calamagrostio variae-Pinion cembrae P. Kučera 2017 21/1 • 2022, 107–151 143 Peter Kučera Natural calcareous Norway spruce woodlands in Slovakia and their syntaxonomical classification ably also Betula carpatica). The current Larix abundance is increased (or on the contrary decreased) by silvicultural interventions and by historical land management. Regular components of the understorey are in particu- lar species Daphne mezereum, Lonicera nigra, Ribes petrae- um and R. alpinum. Pinus mugo naturally occurs on more rocky habitats. Characteristic feature of the prevalent part of commu- nities of the alliance Cortuso matthioli-Piceion is the high species diversity (sporadically over 80 species in one rel- evé). Important part of the field layer of phytocoenoses is presence of calciphytes, for example Cirsium erisithales, Asplenium viride, Bellidiastrum michelii, Cardaminopsis arenosa agg., Rubus saxatilis, Pimpinella major, in some cases they are dominant components of stands Calama- grostis varia, Cortusa matthioli, Sesleria albicans. Distinctive diagnostic feature of the alliance Cor- tuso matthioli-Piceion against the alliance Piceion abietis Pawłowski ex Pawłowski et al. 1928 (order Piceetalia abi- etis Pawłowski ex Pawłowski et al. 1928) is also the pres- ence of very numerous group of species which almost exclusively grows only in the former alliance when con- sidering the communities of natural mountain Norway spruce woodlands. This group consists of species which require nutrient-rich habitats, for example Valeriana trip- teris, Primula elatior, Polygonatum verticillatum, Phyteuma spicatum, Myosotis sylvatica, Geranium sylvaticum, Hera- cleum sphondylium, Fragaria vesca, Mercurialis perennis, Lilium martagon, Thalictrum aquilegiifolium, Paris quad- rifolia, Dentaria enneaphyllos and many more. Species common in the so-called acid Norway spruce woodlands, and usually common in lower lying upper montane mixed Fagus woodlands as well, e.g. Oxalis ace- tosella, Luzula sylvatica ssp. sylvatica, Homogyne alpina, Prenathes purpurea, Dryopteris dilatata, D. expansa, are also abundant in the phytocoenoses of the alliance Cor- tuso-Piceion. Adenostyles alliariae is a field layer dominant of subunits of the various floristically and ecologically distinct communities. Outspoken calcifuges (Vaccinium myrtillus, Avenella flexuosa, Calamagrostis villosa, V. vitis- idaea a pod.) usually reach only low cover values or they are completely missing. For the ground layer of the Cortuso matthioli-Piceion woodlands presence of species Mnium spinosum, Tortella tortuosa, Ctenidium molluscum, Plagiochila asplenioides, Rhizomnium punctatum is characteristic. Common wood- land species Dicranum scoparium, Hylocomium splendens, Plagiothecium curvifolium, Rhytidiadelphus triquetrus, Pol- ytrichum formosum and others are usually present as well. Nomenclatural note. – The alliance names “Chrysan- themo-Piceion Březina et Hadač in Hadač 1962” as well as “Oxalido-Piceion Březina et Hadač in Hadač 1962” were used in the previously published regional and interna- tional surveys for the respective syntaxon of calcicolous natural Norway spruce woodlands. As Kučera (in red.) extensively explained, the original diagnoses of these syn- taxa considerably differ from their traditional use which corresponds to their application as pseudonyma Chrysan- themo-Piceion auct. non (Krajina 1933) Březina et Hadač in Hadač 1962 and Oxalido-Piceion auct. non (Krajina 1933) Březina et Hadač in Hadač 1962. Therefore new name Cortuso matthioli-Piceion abietis was proposed to replace the mentioned pseudonyma. The proposal to establish such new alliance represent a return to the previous conception of Kučera (2007). Conclusions The second version and at the same time third part of the syntaxonomical revision of the communities tradition- ally classified within the class Vaccinio-Piceetea Br.-Bl. in Br.-Bl. et al. 1939 from the territory of the Slovak West- ern Carpathians is presented. It is dedicated to Norway spruce woodlands which are classified within the order Cortuso matthioli-Piceetalia (= Athyrio-Piceetalia auct. non Hadač 1962). The revision is based on careful data selec- tion made in effort to separate the natural supramontane Norway spruce woodlands from the secondary Picea abies phytocoenoses in which evident secondary succession of Fagus sylvatica is in progress and which as such belong to the class Carpino-Fagetea Jakucs ex Passarge 1968. The variety of the Western Carpathian Norway spruce vegeta- tion types found on carbonate rocks in habitat series from the most extreme habitats with shallow soils to more deep soils decalcified in the upper soils horizon is classified within six associations arranged in the following scheme: Cortuso matthioli-Piceetalia abietis P. Kučera 2022 ord. nov. Cortuso matthioli-Piceion abietis P. Kučera 2022 all. nov. 1. Seslerio caeruleae-Piceetum abietis Fajmonová 1978 nom. corr. et nom. cons. propos. 2. Cirsio erisithalis-Piceetum abietis Fajmonová et P. Ku- čera in P. Kučera 2022 3. Fragario vescae-Piceetum abietis P. Kučera 2022 ass. nov. prov. 4. Adenostylo alliariae-Piceetum abietis Samek et al. 1957 nom. corr. et nom. cons. propos. 5. Mnio spinosi-Piceetum abietis Hadač et al. 1969 nom. corr. 6. Hieracio murorum-Piceetum abietis P. Kučera 2022 ass. nov. 21/1 • 2022, 107–151 144 Peter Kučera Natural calcareous Norway spruce woodlands in Slovakia and their syntaxonomical classification Acknowledgments My sincere thanks belong to R. Bouef for valuable help with literature, especially old Fagus- and Abies-syntaxa names as well as to librarians of the Slovak National Library in Martin and to librarians I. Pekárová and I. Gažiová (Institute of Botany SAS, Bratislava). I would like to also thank to J.-P. Theurillat for the various no- menclatural advices provided in the recent years and to Ch. Schaffer of the Revierforstamt Tschiertschen-Praden for confirmation of the existence of Fagus woodland near Tschiertschen (Switzerland). Finally, I would like to thank to the anynomous reviewers for their correction to the manuscript and especially for their inspiring comments. Peter Kučera  https://orcid.org/0000-0002-8508-616X Funding This study was funded by the Slovak grant agency VEGA, project No. 2/0119/19. References Accetto, M. (1993). Mraziščna smrečja (Asplenio-Piceetum R. Kuoch 1954 var. geogr. Omphalodes verna var. geogr. nova) v koliševkah Kočevske. Gozdarski vestnik, 51(10), 426–445. Adamczyk, B. (1962). Studia głeboznawco-fitosocjologiczne w Dolinie Małej Łaki w Tatrach. Acta Agraria et Silvestria, Seria leśna II: 45–116. Adorni, M. (2016). La vegetazione legnosa in Emilia. Censimento e analisi delle fitocenosi arboree e arbustive. Istituto per i Beni Artistici Culturali e Naturali della Regione Emilia-Romagna. http://online. ibc.regione.emilia-romagna.it/I/libri/pdf/La_vegetazione_legnosa_in_ Emilia.pdf Angellini, P., Bianco, P., Cardillo, A., Francescato, C., & Oriolo, G. (2009). Gli habitat in Carta della Natura. Schede descrittive degli habitat per la cartografia alla scala 1:50.000. Istituto Superiore per la Protezione e la Ricerca Ambientale. http://www.isprambiente.gov.it/it/ pubblicazioni/manuali-e-linee-guida/gli-habitat-in-carta-della-natura- schede-descrittive-degli-habitat-per-la-cartografia-alla-scala-1-50.000 Bartsch, J., & Bartsch, M. (1940). Vegetationskunde des Schwarzwaldes. Pflanzensoziologie, 4, 1–234. Beger, H. K. E. (1922). Assoziationsstudien in der Waldstufe des Schanfiggs. Mitteilungen aus dem Botanischen Museum der Universität Zürich, 46: 1–148. Bergmeier, E. (2020). Die Vegetation Deutschlands – eine vergleichende Übersicht der Klassen, Ordnungen und Verbände auf Grundlage der EuroVegChecklist. Tuexenia, 40: 19–32. https://doi. org/10.14471/2020.40.024 Biondi, E., Blasi, C., Allegrezza, M., Anzellotti, I., Azzella, M. M., Carli, E., Casavecchia, S., Copiz, R., Del Vico, E., Facioni, L., Galdenzi, D., Gasparri, R., Lasen, C., Pesaresi, S., Poldini, L., Sburlino, G., Taffetani, F., Vagge, I., Zitti, S., & Zivkovic, L. (2014). Plant communities of Italy: The Vegetation Prodrome. Plant Biosystems, 148(4), 728–814. https://doi.org/10.1080/11263504.2014.948527 Boeuf, R., Simler, N., Holveck, P., Hum, Ph., Cartier, D., & Ritz, F. (2014). Les végétations forestières d’Alsace. Vol. I. (Textes): Réferentiel des types forestiers du type générique au type élémentaire – Relations entre les stations forestières, les communautés forestières, les habitats et les espèces végétales patrimoniales. Office National de Forêts, Ministère de l’Alimentation, de l’Agriculture et de la Pêche. Boublík, K., Douda, J., Hédl, R., & Chytrý, M. (2013). Mezofilní a vlhké opadavé listnaté lesy (Carpino-Fagetea). In M. Chytrý (ed.), J. Douda, J. Roleček, J. Sádlo, K. Boublík, R. Hédl, M. Vítková, D. Ze- lený, J. Navrátilová, Z. Neuhäuslová, P. Petřík, J. Kolbek, Z. Lososová, K. Šumberová, R. Hrivnák, D. Michalcová, K. Žáková, J. Danihelka, L. Tichý, V. Zouhar, O. Hájek, & M. Kočí, Vegetace České republiky. 4. Lesní a křovinová vegetace (pp. 193–295). Nakladatelství Academia. Braun-Branquet, J., Sissingh, G., & Vlieger, J. (1939). Prodromus der Pflanzengesellschaften: Prodrome des Groupements végétaux. Fasz. 6. Klasse der Vaccinio-Piceetea (Nadelholz- und Vaccinienheiden-Verbände der eurosibirisch-nordamerikanischen Region). Comité International du Prodrome Phytosociologique. Braun-Blanquet, J., Pallmann, H., & Bach, R. (1954). Pflanzensoziologische und bodenkundliche Untersuchungen im Schweizerischen Nationalpark und seinen Nachbarngebieten. II. Vegetation und Böden der Wald- und Zwergstrauchgesellschaften (Vaccinio-Piceetalia). Ergebnisse der wissenschaftlichen Untersuchungen des schweizerischen Nationalparks (Neue Folge), IV, 1–200. Chifu, T. (2014). Vaccinio-Piceetea Br.-Bl. in Br.-Bl. et al. 1939. In T. Chifu (Ed.), & I. Irimia, Diversitatea fitosociologică a vegetaţiei României. III. Vegetaţia pădurilor şi tufişurilor (pp. 462–510). Institulul European. Chytrý, M., Tichý, L., Holt, J., & Botta-Dukát, Z. (2002a). Determination of diagnostic species with statistical fidelity measures. Journal of Vegetation Science, 13(1), 79–90. https://doi. org/10.1111/j.1654-1103.2002.tb02025.x Chytrý, M., Exner, A., Hrivnák, R., Ujházy, K., Valachovič, M., & Willner, W. (2002b). Context-dependence of diagnostic species: A case study of the central european spruce forests. Folia geobotanica, 37(4), 403–417. https://doi.org/10.1007/BF02803255 Chytrý, M. (ed.), Douda, J., Roleček, J., Sádlo, J., Boublík, K., Hédl, R., Vítková, M., Zelený, D., Navrátilová, J., Neuhäuslová, Z., Petřík, P., Kolbek, J., Lososová, Z., Šumberová, K., Hrivnák, R., Michalcová, D., Žáková, K., Danihelka, J., Tichý, L., Zouhar, V., Hájek, O., & Kočí, M. (2013a). Vegetace České republiky. 4. Lesní a křovinová vegetace. Nakladatelství Academia. Chytrý, M., Zelený, D., Navrátilová, J., & Sádlo, J. (2013b). Boreokontinentální jehličnaté lesy (Vaccinio-Piceetea). In M. Chytrý (Ed.), J. Douda, J. Roleček, J. Sádlo, K. Boublík, R. Hédl, M. Vítková, D. Zelený, J. Navrátilová, Z. Neuhäuslová, P. Petřík, J. Kolbek, Z. Lososová, K. Šumberová, R. Hrivnák, D. Michalcová, K. Žáková, J. Danihelka, L. Tichý, V. Zouhar, O. Hájek, & M. Kočí, Vegetace České republiky. 4. Lesní a křovinová vegetace (pp. 380–432). Nakladatelství Academia. Coldea, G. (2015). Classe Vaccinio-Piceetea Br.-Bl. in Br.-Bl. et al. 1939. In G. Coldea (Ed.), A. Indreica, & A. Oprea, Les associations végétales de Roumanie. Tome 3. Les associations forestiéres et arbustives (pp. 198–238). Presa Universitară Clujeană. Černušáková, D. (1994). The climax spruce stands from Osobitá. Biologia (Bratislava), 49(1), 31–40. Dierßen, K., & Dierßen, B. (1996). Vegetation Nordeuropas. Eugen Ulmer. 21/1 • 2022, 107–151 145 Peter Kučera Natural calcareous Norway spruce woodlands in Slovakia and their syntaxonomical classification Domin, K. (1923). A Phytogeographical Outline of the Zonal Division in the Western Carpathians, besides some general remarks on the main forest trees. Spisy vydávané Přírodovědeckou fakultou Karlovy university, 1, 1–44. Dubyna, D. V., Dziuba, T. P., Iemelianova, S. M., Bagrikova, N. O., Borysova, O.V., Borsukevych, L. M., Vynokurov, D. S., Gapon, S. V., Gapon, Yu. V., Davydov, D. A., Dvoretskyi, T. V., Didukh, Ya. P., Zhmud, O. I., Kozyr, M. S., Konishchuk, V. V., Kuzemok, A. A., Pashkevich, N. A., Ryff, L. E., Solomakha, V. A., Felbaba-Klushyna, L. M., Fitsailo, T. V., Chorna, G. A., Chorney, I. I., Shelyag-Sosonko, Yu. R., & Iakushenko, D. M. (2019). Prodromus roslynnosti Ukrajiny. Naukova Dumka. Eggler, J. (1952). Pflanzendecke des Schöckels. Landesmuseum Joanneum. Ellenberg, H. (1963). Vegetation Mitteleuropas mit den Alpen in kausaler, dynamischer und historischer Sicht. Eugen Ulmer. Ellenberg, H. (1996). Vegetation Mitteleuropas mit den Alpen in ökologischer, dynamischer und historischer Sicht (5th ed.). Eugen Ulmer. Ellenberg, H., & Klötzli, F. (1972). Waldgesellschaften und Waldstandorte der Schweiz. Mitteilungen der Schweizerischen Anstallt für das forstliche Versuchswesen, 48(4), 587–930. Exner, A., Willner, W., & Grabherr, G. (2002). Picea abies and Abies alba forests of the Austrian Alps: Numerical classification and ordination. Folia geobotanica, 37(4), 365–382. https://doi. org/10.1007/BF02803254 Exner, A. (2007). Piceetalia Pawł. 1928. Eurosibirische Fichten- und Fichten-Tannenwälder. In W. Willner, G. Grabherr (Eds), A. Drescher, Ch. Eichberger, A. Exner, R. F. Wilfried, S. Grabner, P. Heiselmayer, P. Karner, F. Starlinger, N. Sauberer, & G. M. Steiner, Die Wälder und Gebüsche Österreichs: Ein Bestimmungswerk mit Tabellen. 1 Textband (pp. 184–208). Elsevier. Fajmonová, E. (1978). K syntaxonómii spoločenstiev radu Athyrio- Piceetalia Hadač 62 v Západných Karpatoch. Biológia (Bratislava), 33(7), 551–563. Fajmonová, E. (1983). Cenotické optimum druhov a druhová diferenciácia fytocenóz asociácie Cortuso-Fagetum a Cortuso-Piceetum. Biológia (Bratislava), 38(5), 461–467. Fajmonová, E. (1986). K variabilite asociácie Cortuso-Piceetum na Slovensku. Preslia, 58(1), 43–54. Faško, P., Lapin, M., & Pecho, J. (2008). 20-Year extraordinary climatic period in Slovakia. Meteorologický časopis, 11(3): 99–105. http://www.shmu.sk/sk/?page=31 Fischer, M. A. (ed.), Oswald, K., Adler, W., Gottschlich, G., Englmai- er, P., Danner, J., Schuhwerk, F., Hörandl, E., Grims, F., Walter, J., Starmühler, W., Saukel, J., Mrkvicka, A. Ch., Speta, F., Wilhalm, Th., Dietrich, G., Greimler, J., Polatschek, A., Willner, W., Teppner, H., Kästner, A., Gregor, Th., Kirschner, J., Zidorn, Ch. H. W., Schmidt, P. A., Schneeweiß, G. M., Zernig, K., Essl, F., Karrer, G., Hohla, M. Stöhr, O., et al. (2008). Exkursionsflora von Österreich, Liechtenstein und Südtirol: Bestimmungsbuch für alle in Republik Österreich, im Fürstentum Liechtenstein und in der Autonomen Provinz Bozen / Südtirol (Italien) wildwachsenden sowie die wichtigsten kultivierten Gefäßpflanzen (Farnpflanzen und Samenpflanzen) mit Angaben über ihre Ökologie und Verbreitung. Land Oberösterreich, Oberösterreichische Landesmuseen. Fleischer, P., & Chmiel, J. (2010). Lesy. In A. Koutná, & B. Chovancová (Eds.), Tatry – Príroda (pp. 279–298). Nakladatelství Miloš Uhlíř – Baset. Foggi, B., Nardi, E., & Rossi, G. (2001). Nomenclatural notes and typification in Sesleria Scop. (Poaceae). Taxon, 50(4): 1101–1106. https://doi.org/10.2307/1224726 Futák, J. (1972). Činitele pôsobiace na rozšírenie rastlín. In J. Bako, J. Berta, O. Ferianc, Z. Feriancová-Masárová, O. Fusán, J. Futák, S. Hejný, A. Jurko, L. Korbel, M. Kurpelová, M. Lukniš (scientific red.), Ľ. Mičian, J. Michalko, Š. Petrovič, Z. Schmidt, E. Šimo, F. Vilček, & M. Zaťko, Slovensko. Príroda (pp. 408–412). Obzor. Gentile, S. (1995). Vegetazione a Pinus uncinata Mill. var. rostrata Ant. nella catena montuosa dello spartiacque ligure-emiliano. Fitosociologia, 29, 95–101. Grebenščikov, O., Michalko, J., Hlaváček, A., Zahradníková, K., & Brillová, D. (1956). Geobotanický a floristický náčrt Kubínskej Hole. Biologické práce, 2(5), 1–92. Hadač, E. (1962). Übersicht der höheren Vegetationseinheiten des Tatragebirges. Vegetatio, 9(1-2), 46–54. Hadač, E. (1965). Poznámky k syntaxonomii karpatských jedlin. Biológia (Bratislava), 20(8), 592–599. Hadač, E., & Sofron, J. (1980). Notes on Syntaxonomy of Cultural Forest Communities. Folia geobotanica et phytotaxonomica, 15(3), 245–258. https://doi.org/10.1007/BF02851808 Hadač, E., Březina, P., Ježek, V., Kubička, J., Hadačová, V., Vondráček, M. et al. (1969). Die Pflanzengesellschaften des Tales „Dolina Siedmich prameňov“ in der Belaer Tatra. Vydavateľstvo Slovenskej akadémie vied. Haeupler, H. (1970). Vorschläge zur Abgrenzung der Höhenstufen der Vegetation im Rahmen der Mitteleuropakartierung. Göttinger Floristische Rundbriefe, 4, 3–15. Hančinský, L. (1972). Lesné typy Slovenska. Príroda. Hančinský, L. (1977). Príspevok k rekonštrukcii pôvodného rozšírenia lesných spoločenstiev a ich drevinového zloženia na území Tatranského národného parku na podkladoch lesníckej typológie, histórie a onomastiky. Zborník prác o Tatranskom národnom parku, 19, 97–126. Hartmann, F. K. (1953). Waldgesellschaften der deutschen Mittelgebirge und des Hügellandes: Nach ihren wichtigsten soziologischen und standörtlichen Merkmalen in einer vorläufigen Übersicht zusammengestellt. Umschaudienst des Forschungsausschusses „Landschaftspflege und Landschaftsgestaltung“ der Akademie für Raumforschung und Landesplanung, 4–6, 139–182. Hartmann, F. K. (1959). Q. Naturnahe Waldgesellschaften Deutschlands in regionaler und standortökologischer Anordnung (mit Ausnahme des Alpengebietes). In R. Müller (Ed.), H. Beyer, A. Bonnemann, J. Braeuer, K. Christopeit, H. Eberts, K. Evers, R. Geiger, H. Gläser, F. K. Hartmann, D. von Hegel, H.-H., Heitmüller, H. H. Hilf, F. Klose, E. Kussmann, W. V. Laer, E. Mammen, H. Mayer-Wegelin, W. Meyer, F. Nüsslein, J. Oelkers, K. von Raben, M. Reinhold, E. Rohmeder, E. Röhrig, H. Schmidt, F. Schwerdtfeger, J. Speer, G. Speidel, A. Freiherr von Vietinghoff-Riesch, K. F. Wentzel, & W. Wittich, Grundlagen der Forstwirtschaft in Übersicht, Zahl, Tabelle, Regel, Vorschrift, Gesetz (pp. 765–790). M. & H. Schaper. Hartmann, F. K., & Jahn, G. (1967). Ökologie der Wälder und Landschaften. Band 1. Waldgesellschaften des mitteleuropäischen Gebirgsraumes nördlich der Alpen: Tabellen, Grundlagen und Erläuterungen. Gustav Fischer. Hennekens S. M. (c1998–2020). Turboveg for Windows. Interna- tional single user version. Ver. 2.149a. [Computer software]. S. M. 21/1 • 2022, 107–151 146 Peter Kučera Natural calcareous Norway spruce woodlands in Slovakia and their syntaxonomical classification Hennekens, © 1998–2020. Comprehensive database management system designed for the storage, selection, and export of vegetation data (relevés). http://www.synbiosys.alterra.nl/turboveg/ Hennekens, S. M., & Schaminée, J. H. J. (2001). Turboveg, a comprehensive database management system for vegetation data. Journal of Vegetation Science, 12(4), 589–591. https://doi. org/10.2307/3237010 Heß, E., Landolt, E., & Hirzel, R. (1967). Flora der Schweiz und angrenzender Gebiete. Band I: Pteridophyta bis Caryophyllaceae. Birkäuser Verlag. Historická ortofotomapa Slovenska (s. d.). Centrum excelentnosti pre podporu rozhodovania v lese a krajine, TU Zvolen, Zvolen. Historická ortofotomapa © GEODIS SLOVAKIA, s.r.o., Historické LMS © Topografický ústav Banská Bystrica. Retrieved February 22, 2021, from http://mapy.tuzvo.sk/HOFM/. Holub, J., & Jirásek, V. (1967). Zur Vereinheitlichung der Terminologie in der Phytogeographie. Folia geobotanica et phytotaxonomica, 2(1), 69–113. https://doi.org/10.1007/BF02851755 Holub, J., Hejný, S., Moravec, J., & Neuhäusl, R. (1967). Übersicht der höheren Vegetationseinheiten der Tschechoslowakei. Rozpravy Československé akademie věd, Řada matematických a přírodních věd, 77(3), 1–76. Horvat, I. (1962). Vegetacija planina Zapadne Hrvatske. Sa 4 karte biljnih zajednica sekcije Sušak. JAZU. Horvat, I., Glavač, V., & Ellenberg, H. (1974). Vegetation Südosteuropas. VEB Gustav Fischer. Issler, E. (1926). Les associations végétales des Vosges méridionales et de la Plaine Rhénane avoisinante. Première Partie: Les forêts (fin). Bulletin de la Société d’histoire naturelle de Colmar, Nouvelle série, 19, 1–109. Issler, E. (1931). Les associations silvatiques haut-rhinoises: Classification sociologique des Forêts du département du Haut-Rhin à l’exclusion du Sundgau et du Jura alsacien (avec une carte). Bulletin de la Société Botanique de France, 73(6), 62–141. https://doi.org/10.10 80/00378941.1926.10832847 Issler, E. (1942). Vegetationskunde der Vogesen. Pflanzensoziologie, 5, 1–192. Jahn, G. (1977). Die Fichtenwaldgesellschaften in Europa. In H. Schmidt-Vogt, G. Jahn, & D. Vogellehner, Die Fichte. Band I: Taxonomie Verbreitung Morphologie Ökologie Waldgesellschaften (pp. 468–560). Paul Parey. Jahn, G. (1985). Chorological phenomena in spruce and beech communities. Vegetatio, 59(1-3), 21–37. Jalas, J., & Suominen, J. (Eds.) (1973). Atlas Florae Europaeae. Distribution of Vascular Plants in Europe. 2. Gymnospermae (Pinaceae to Ephedraceae). The Committee for Mapping the Flora of Europe & Societas Biologica Fennica Vanamo. Jankovská, V. (1984). Late Glacial Finds of Pinus cembra L. in the Lubovnianská kotlina Basin. Folia geobotanica et phytotaxonomica, 19(3), 323–325. https://doi.org/10.1007/BF02853098 Jankovská, V. (1991). Vývoj vegetačního krytu podtatranských kotlin od konce doby ledové po současnost. Zborník prác o Tatranskom národnom parku, 31, 73–84. Jankovská, V., Chromy, P., & Nižnianská, M. (2002). Šafárka – first palaeobotanical data of the character of Last Glacial vegetation and landscape in the West Carpathians (Slovakia). Acta Palaeobotanica, 42(1), 39–50. Jankovská, V., Baroň, I., Nývlt, D., Krejčí, O., & Krejčí, V. (2018). Last Glacial to Holocene vegetation succession recorded in polyphase slope-failure deposits on the Maleník Ridge, Outer Western Carpathians. Quaternary International, 470 (Part A), 38–52. https:// doi.org/10.1016/j.quaint.2017.10.048 Jarolímek, I., Šibík, J., Hegedüšová, K., Janišová, M., Kliment, J., Kučera, P., Májeková, J., Michálková, D., Sadloňová, J., Šibíková, I., Škodová, I., Uhlířová, J., Ujházy, K., Ujházyová, M., Valachovič, M., & Zaliberová, M. (2008a). A list of vegetation units of Slovakia. In I. Jarolímek, & J. Šibík (Eds.), Diagnostic, constant and dominant species of the higher vegetation units of Slovakia (pp. 295–329). VEDA, vydavateľstvo Slovenskej akadémie vied. Jarolímek, I., Šibík, J., Tichý, L., & Kliment, J. (2008b). Diagnostic, constant and dominant species of the higher veegtation units of Slovakia. In I. Jarolímek, J. Šibík (Eds.), K. Hegedüšová, M. Janišová, J. Kliment, P. Kučera, J. Májeková, D. Michálková, J. Sadloňová, I. Šibíková, I. Škodová, J. Uhlířová, K. Ujházy, M. Ujházyová, M. Valachovič, & M. Zaliberová, Diagnostic, constant and dominant species of the higher vegetation units of Slovakia (pp. 9–294). VEDA, vydavateľstvo Slovenskej akadémie vied. Jäger, E. J. (Ed.), Arndt, St., Bräutigam, S., Buttler, K. P., Fischer, M. A., Fröhner, S. E., Gerstberger, P., Gutte, P., Hand, R., Hanelt, P., Henker, H., Jage, H., Jeßen, St., Kirschner, J., Krisch, H., Kutzelnigg, H., Müller, F., Pistrick, K., Polatschek, A., Pusch, J., Rostanski, K., Schmidt, P. A., Scholz, H., Stolle, J., Uhlemann, I., Vitek, E., Weber, H. E., Welk, E., Wiegler, G., Wisskirchen, R., Mahn, E.-G., Zech, H., Mörchen, G., Fukarek, L., Stein, B., & Kästner, A. (2017). Rothmaler – Exkursionsflora von Deutschland. Gefäßpflanzen: Grundband. Springer Spektrum. https://doi.org/10.1007/978-3-662-49708-1 Jeník, J., & Lokvenc, T. (1962). Die alpine Waldgrenze im Krkonoše Gebirge. Rozpravy Československé akademie věd, Řada matematických a přírodních věd, 72(1), 1–68. Jirásek, J. (2002). Třída: Vaccinio-Piceetea Br.-Bl. in Braun-Blanquet, Sissingh et Vlieger 1939. In M. Husová, J. Jirásek, & J. Moravec (Eds.), Přehled vegetace České republiky. Svazek 3. Jehličnaté lesy (pp. 18–86). Academia. Juvan, N., Košir, P., Marinšek, A., Paušič, A., & Čarni, A. (2013). Differentiation of the Piceetalia and Athyrio-Piceetalia forests in Slovenia. Tuexenia, 33, 25–48. Kanka, R. (2008). Lesy Belianskych Tatier. VEDA, vydavateľstvo Slovenskej akadémie vied. Kaplan, Z. (Ed.-in-chief ), Danihelka, J., Chrtek, J., jun., Kirschner, J., Kubát, K., Štech, M., Štěpánek, J. (Eds.), Batoušek, P., Bureš, P., Businský, R., Čáp, J., Dančák, M., Ducháček, M., Duchoslav, M., Dvořák, V., Ekrt, L., Filippov, P., Grulich, V., Hrčka, D., Hroneš, M., Hrouda, L., Hroudová, Z., Jehlík, V., Kabátová, K., Király, G., Kirschnerová, L., Kobrlová, L., Kočí, K., Koutecký, P., Krahulec, F., Kúr, P., Lepší, M., Mandák, B., Ponert, J., Prančl, J., Pyšek, P., Řepka, R., Sádlo, J., Suda, J., Šída, O., Šmarda, P., Šprynař, P., Štěpánková, J., Trávníček, B., Trávníček, P., Uher, J., Vašut, R. J., Větvička, V., Zázvorka, J., Zelený, V., Skoumalová, A., & Smrčinová, E. (2019). Klíč ke květeně České republiky (2nd ed.). Academia. Kielland-Lund, J. (1981). Die Waldgesellschaften SO-Norwegens. Phytocoenologia, 9(1/2), 53–250. 21/1 • 2022, 107–151 147 Peter Kučera Natural calcareous Norway spruce woodlands in Slovakia and their syntaxonomical classification Klika, J. (1926). Poznámky ke geobotanickému výzkumu Velké Fatry. Sborník Přírodovědecké společnosti v M. Ostravě, 3(1924–25), 38–85. Klika, J. (1929). Lesní typy v rámci našeho lesního geobotanického prozkumu a jejich vztah k lesnictví. Sborník Československé akademie zemědělské, 4, 229–284. Klika, J. (1936). Das Klimax-Gebiet der Buchenwälder in den Westkarpathen. Beihefte zum Botanischen Centralblatt, Abteilung B., Systematik, Pflanzengeographie, 55, 373–418. Klika, J. (1944). B. Společenstva jevnosnubných rostlin. In J. Klika, & E. Hadač (Eds.), Rostlinná společenstva střední Evropy. Příroda, 36(8), 257–259 & 36(9), 281–295. Kobzáková, D. (1987). Fytocenologicko-ekologické pomery klimaxových smrečín pravých svahov Tichej doliny v Západných Tatrách. [Unpublished Master’s thesis]. Prírodovedecká fakulta Univerzity Komenského. Kočický, D., & Ivanič, B. (2011). Geomorfologické členenie Slovenska [online]. Štátny geologický ústav Dionýza Štúra. Retrieved February 22, 2021, from http://apl.geology.sk/temapy/ Körner, C. (2012). Alpine Treelines: Functional Ecology of the Global High Elevation Tree Limits. Springer. https://doi.org/10.1007/978-3- 0348-0396-0 Krajčí, J. (2008). Smrečiny severovýchodnej časti Nízkych Tatier – okolie Veľkého Boku. Phytopedon, 7(1-2), 94–103. Krajčí, J. (2009). Lesné spoločenstvá okolia Veľkého Boku. [Unpublished doctoral dissertation]. Ústav krajinnej ekológie SAV. Krajčí, J., & Barančok, P. (2009). Lesné spoločenstvá okolia Veľkého Boku. In P. Turis, & Ľ. Vidlička (Eds), Príroda Nízkych Tatier, 2 (pp. 77–85). Správa národného parku Nízke Tatry. Krajina, V. (1933). Die Pflanzengesellschaften des Mlynica-Tales in den Vysoké Tatry (Hohe Tatra): Mit besonderer Berücksichtigung der ökologischen Verhältnisse. II. Teil. Beihefte zum Botanischen Centralblatt, Abt. II, 51(1), 1–224. Krippel, E. (1963). Postglaciálny vývoj lesov Tatranského národného parku. Biologické práce, 9(5), 1–44. Kubát, K. (Ed.-in-chief and ed.), Hrouda, L., Chrtek, J., jun., Kaplan, Z., Kirschner, J., Štěpánek, J. (Eds.), Bělohlávková, R., Bureš, P., Busin- ský, R., Čáp, J., Danihelka, J., Dostálek, J., jun., Drábková, L., Filippov, P., Grulich, V., Havlíček, P., Hrčka, D., Hrouda, L., Hroudová, V., Hroudová, Z., Chrtek, J., sen., Jehlík, V., Kirschnerová, L., Koblížek, J., Kočí, K., Kovanda, M., Krahulec, F., Křísa, B., Kúr, P., Mandák, B., Marhold, K., Plocek, A., Procházka, F., Pyšek, P., Řepka, R., Slavík, B., Slavíková, Z., Suda, J., Šída, O., Šmarda, P., Štech, M., Štěpánková, J., Trávníček, B., Větvička, V., Zázvorka, J., Zelený, V., & Skoumalová- Hadačová, A. (2002). Klíč ke květeně České republiky. Academia. Kubinská, A. (Ed.) & Janovicová, K. (1998). Machorasty. In K. Mar- hold, & F. Hindák (Eds.), Zoznam nižších a vyšších rastlín Slovenska (pp. 297–331). VEDA, vydavateľstvo Slovenskej akadémie vied. Kubíček, F., & Jurko, A. (1975). Waldgesellschaften des östlichen Orava-Gebietes. Biologické práce, 21(3). 83–128. Kubíček, F., Šomšák, L., Šimonovič, V., & Szabo, J. (1992). Produkčno-ekologická a fytocenologická charakteristika bylinnej vrstvy lesných ekosystémov troch tatranských dolín (Furkotská, Siedmich prameňov, Zadné Meďodoly). Zborník prác o Tatranskom národnom parku, 32, 273–305. Kubíček, F., Šimonovič, V., Minarčic, P., & Šomšák, L. (1996). Produkčná analýza bylinnej vrstvy niektorých menej zastúpených vápencových smrečín a jedlín Tatranského národného parku. Štúdie o Tatranskom národnom parku, 1(34), 89–108. Kučera, P. (2002). Lesné spoločenstvá Belianskej doliny vo Veľkej Fatre. [Unpublished Master’s thesis]. Prírodovedecka fakulta Univerzity Komenského. Kučera, P. (2007). Západokarpatské smrečiny: Komentovaný literárny prehľad. [Spruce woodlands of the Western Carpathians: A commented literature survey]. [Unpublished doctoral dissertation]. Botanický ústav Intitute of botany SAS. Kučera, P. (2010a). Nomenclatural types of Picea abies syntaxa reported from Slovakia. Biologia (Bratislava), 65(5), 832–836. https://doi. org/10.2478/s11756-010-0103-x Kučera, P. (2010b). Remarks to Abietion albae and its syntaxa. Acta botanica Universitatis Comenianae, 45, 3–12. Kučera, P. (2010c). Smrečiny Veľkej Fatry a priľahlých pohorí. [Unpublished doctoral dissertation]. Botanický ústav Intitute of botany SAS. Kučera, P. (2011a). Use of descriptive statistics in phytosociology. Acta Botanica Universitatis Comenianae, 46, 63–74. Kučera, P. (2011b). O pôvodnosti smrečín Poľany. Bulletin Slovenskej botanickej spoločnosti, 33(2), 199–219. Kučera, P. (2012a). Vegetačný stupeň smrečín v Západných Karpatoch – rozšírenie a spoločenstvá: Spis so zvláštnym zreteľom na pohorie Veľká Fatra. Botanická záhrada UK v Bratislave. Kučera, P. (2012b). Remarks on the intramontane continentality of the Western Carpathians defined by the absence of Fagus sylvatica. Thaiszia – Journal of Botany, 22(1), 65–82. Kučera, P. (2012c). Zhodnotenie údajov o rozšírení stupňa smrečín v Spišskej Magure a poznámky k výskytu jedlín. Naturae tutela, 16(1), 11–26. Kučera, P. (2013a). Horské bukové lesy v Západných Karpatoch. [2.2] Veterné hole, skupina Hornej lúky. Natura Carpatica, 56, 17–34. Kučera, P. (2013b). Two notes to syntaxa names stemmed from Polish geobotanical studies. Hacquetia, 12(1), 133–140. https://doi. org/10.2478/HACQ-2013-0004 Kučera, P. (2014a). Horské bukové lesy v Západných Karpatoch. 2.1 Veterné hole, masív Veľkej lúky. Natura Carpatica, 55, 39–68. Kučera, P. (2014b). Jedľové a jedľovo-smrekové lesy na geobotanickej mape Slovenska. Bulletin Slovenskej botanickej spoločnosti, 36(1), 65–78. Kučera, P. (2015a). Errata k článkom o horských bukových lesoch v Západných Karpatoch. Natura Carpatica, 56, 109–114. Kučera, P. (2015b). On the Occurrence of Natural Norway Spruce Woodland in the Pieniny Mts (Western Carpathians). Acta Silvatica & Lignaria Hungarica, 11(2), 123–138. https://doi.org/10.1515/aslh- 2015-0010 Kučera, P. (2017). Two groups of Pinus cembra forest communities in the Tatras. Acta Botanica Hungarica, 59, 389–425. https://doi. org/10.1556/034.59.2017.3-4.7 21/1 • 2022, 107–151 148 Peter Kučera Natural calcareous Norway spruce woodlands in Slovakia and their syntaxonomical classification Kučera, P. (2019a). Syntaxonomical classification of wet woodlands with Picea abies in Slovakia. Ukrainian Botanical Journal, 76(4), 316–343. https://doi.org/10.15407/ukrbotj76.04.316 Kučera, P. (2019b). Pinus cembra communities in the Tatras – comments to the study of Zięba et al. Tuexenia, 39. 161–180. https:// doi.org/10.14471/2019.39.013 Kučera, P. (in prep.). Prehľad spoločenstiev triedy Vaccinio-Piceetea Br.- Bl. in Br.-Bl. et al. 1939 na Slovensku. Msc., in prep. Kučera, P. (in red.). On the pseudonymous syntaxonomical application of the order Athyrio-Piceetalia Hadač 1962. In red. Kučera, P., & Barančok, P. (2021). Contribution to knowledge on the variability of Arolla pine woodlands of the northeastern Tatra Mountains. Contribuţii Botanice, LVI, 29–43. https://doi. org/10.24193/Contrib.Bot.56.3 Kučera, P., & Kliment, J. (2011). On the nomenclature and syntaxonomy of the phytosociological survey “Die Wälder und Gebüsche Österreichs”: examples of the class Piceetea excelsae Klika 1948. Thaiszia – Journal of Botany, 21(2), 85–92. Kučera, P., Bernátová, D., & Obuch, J. (2009). Demänovská dolina bezbuková? Naturae tutela, 13(1), 31–42. Kulczyński, S. (1928). Zespoły roślin w Pieninach. – Die Pflanzenassoziationen der Pieninen. Bulletin International de l’Académie Polonaise des Sciences et des Lettres, Classe des Sciences Mathématiques et Naturelles, Série B., Sciences Natureles, 1928(Suppl. II., 1927), 57–203. Kuoch, R. (1954). Wälder der Schweizer Alpen im Verbreitungsgebiet der Weißtanne. Mitteilungen der Schweizerischen Anstallt für das forstliche Versuchswesen, 30, 133–260. Lakatosová, A. (1971). Fytocenologické pomery asociácie Adenostylo- -Piceetum (Sill. 33) comb. nova v centrálnokarpatskej oblasti. In Ľ. Dzubinová, E. Fajmonová, A. Lakatosová, P. Pitoniak, J. Šimeková, R. Šoltés, & E. Véghová, Syntaxonomická charakteristika niektorých lesných spoločenstiev s prihliadnutím k výskytu druhu Sorbus aucuparia L. na Slovensku (pp. 230–231). [s. n.]. Lapin, M., Štastný, P., & Chmelík, M. (2005). Detection of climate change in the Slovak mountains. Hrvatski meteorološki časopis, 40(40), 101–104. https://hrcak.srce.hr/hmc Lauber, K., Wagner, G., & Gygax, A. (2018). Flora Helvetica. Haupt Verlag. Löve, D. (1970). Subarctic and Subalpine: Where and What? Arctic and Alpine Research, 2(1), 63–73. https://doi.org/10.2307/1550141 Marhold, K. (Ed.), Goliašová, K., Hegedüšová, Z., Hodálová, I., Jurkovičová, V., Kmeťová, E., Letz, R., Michalková, E., Mráz, P., Peniašteková, M., Šípošová, H., Ťavoda, O. (1998). Papraďorasty a semenné rastliny. In K. Marhold, & F. Hindák (Eds.), Zoznam nižších a vyšších rastlín Slovenska (pp. 333–687). VEDA, vydavateľstvo Slovenskej akadémie vied. Matuszkiewicz, J. (1977). Przegląd fitosocjologiczny zbiorowisk leśnych Polski. Cz. 4. Bory świerkowe i jodłowe. Phytocoenosis, 6(3), 151–226. Matuszkiewicz, W. (1981). Przewodnik do oznaczania zbiorowisk roślinnych Polski. Państwowe Wydawnictwo Naukowe. Matuszkiewicz, W. (1984). Die Karte der potenziellen natürlichen Vegetation von Polen. Braun-Blanquetia, 1, 1–100. Matuszkiewicz, W. (2014). Przewodnik do oznaczania zbiorowisk roślinnych Polski. Wydawnictwo Naukowe PWN. Mayer, H. (1974). Ökologie der Wälder und Landschaften. Band 3. Wälder des Ostalpenraumes: Standort, Aufbau und waldbauliche Bedeutung der wichtigsten Waldgesellschaften in den Ostalpen samt Vorland. Gustav Fischer. Mayer, H. (1984). Wälder Europas. Gustav Fischer. Medwecka-Kornaś, A. (1972). Zespoły leśne i zaroślowe. In W. Szafer, K. Zarzycki (Eds.), A. Medwecka-Kornaś, J. Kornaś, S. Pawłowska, B. Pawłowski, A. Środoń, & A. Kozłowska, Szata roślinna Polski. Tom I (pp. 383–441). Państwowe Wydawnictwo Naukowe. Mereďa, P., Majerová, M, Somlyay, L., Pekárik, L., & Hodálová, I. (2019). Genome size variation in the Western Carpathian Sesleria (Poaceae) species. Plant Systematics and Evolution, 305(10), 845–864. https://doi.org/10.1007/s00606-019-01622-1 Meusel, H., Jäger, E., & Weinert, E. (1965). Vergleichende chorologie der zentraleuropäischen Flora. Text. VEB Gustav Fischer Verlag. Miadok, D. (1995). Vegetácia ŠPR Ďumbier. Univerzita Komenského v Bratislave. Michalko, J., & Berta J. (1972). Lesné spoločenstvá. In J. Bako, J. Berta, O. Ferianc, Z. Feriancová-Masárová, O. Fusán, J. Futák, S. Hejný, A. Jurko, L. Korbel, M. Kurpelová, M. Lukniš, (Scientific red.), Ľ. Mičian, J. Michalko, Š. Petrovič, Z. Schmidt, E. Šimo, F. Vilček, & M. Zaťko, Slovensko. Príroda (pp. 486–531). Obzor. Michalko, J., Berta, J., Magic, D., & Maglocký, Š. (1980). Potenciálna prirodzená vegetácia. In: Atlas Slovenskej socialistickej republiky. Slovenská akadémia vied. Slovenský úrad geodézie a kartografie. Michalko, J. (Ed.), Berta, J., & Magic, D. (1986). Geobotanická mapa ČSSR. Slovenská socialistická republika. Textová časť a mapy. Veda. Minďáš, J. (1999). Vertical climatic ranges of forest trees in Western Carpathian region. Acta instituti forestalis Zvolen, 9, 29–41. Mirek, Z., & Piękoś-Mirkowa, H. (1992). Plant cover of the Western Carpathians. Veröffentlichungen des Geobotanischen Institutes der ETH, Stiftung Rübel, 107, 116–150. Moravec, J., Husová, M., & Neuhäuslová, Z. (2000). Fagetalia sylvaticae Pawłowski in Pawłowski, Sokołowski et Wallisch 1928. In J. Moravec (Ed.), M. Husová, M. Chytrý, & Z. Neuhäuslová, Přehled vegetace České republiky. Svazek 2, Hygrofilní, mezofilní a xerofilní opadavé lesy (pp. 14–201). Academia. Societas pedologica Slovaca (2014). Morfogenetický klasifikačný systém pôd Slovenska: bazálna referenčná taxonómia (2nd ed.). NPPC – Výskumný ústav pôdoznalectva a ochrany pôdy. Mucina, L., Maglocký, Š. (Eds.), Balátová-Tuláčková, E., Banásová, V., Berta, J., Dúbravcová, Z., Fajmonová, E., Hadač, E., Hejný, S., Jarolímek, I., Kontriš, J., Krahulec, F., Krippelová, T., Michalko, J., Michalko, M., Neuhäusl, R., Oťaheľová, H., Paclová, L., Petrík, A., Rybníček, K, Ščepka, A., Šomšák, L., Špániková, A, Uhlířová, J., & Zaliberová, M. (1985). A list of vegetation units of Slovakia. Documents phytosociologiques N. S., 9, 175–220. Mucina, L., Bültmann, H., Dierßen, K., Theurillat, J., Raus, T., Čarni, A., Šumberová, K., Willner, W., Dengler, J., García, R. G., Chytrý, M., Hájek, M., Di Pietro, R., Iakushenko, D., Pallas, J., Daniëls, F. J., Bergmeier, E., Santos Guerra, A., Ermakov, N., Valachovič, M., Schaminée, J. H., Lysenko, T., Didukh, Y. P., Pignatti, S., Rodwell, J. 21/1 • 2022, 107–151 149 Peter Kučera Natural calcareous Norway spruce woodlands in Slovakia and their syntaxonomical classification S., Capelo, J., Weber, H. E., Solomeshch, A., Dimopoulos, P., Aguiar, C., Hennekens, S. M., & Tichý, L. (2016). Vegetation of Europe: hierarchical floristic classification system of vascular plant, bryophyte, lichen, and algal communities. Applied Vegetation Science, 19(Suppl. 1), 3–264. https://doi.org/10.1111/avsc.12257 Neuhäusl, R. (1994). Vegetační mapování. In J. Moravec, D. Blažková, S. Hejný, M. Husová, J. Jeník, J. Kolbek, F. Krahulec, V. Krečmer, Z. Kropáč, R. Neuhäusl, Z. Neuhäuslová-Novotná, K. Rybníček, E. Rybníčková, V. Samek, & J. Štěpán, Fytocenologie (Nauka o vegetaci) (pp. 306–322). Academia. Neuhäuslová, Z. Blažková, D., Grulich, V., Husová, M., Chytrý, M., Jeník, J., Jirásek, J., Kolbek, J., Kropáč, Z., Ložek, V., Moravec, J., Prach, K., Rybníček, K., Rybníčková, E., & Sádlo, J. (2001). Mapa potenciální přirozené vegetace České republiky. Academia. Neuhäuslová-Novotná, Z. (1994). Rozšíření rostlinných společenstev a jejich funkce v krajině. In J. Moravec, D. Blažková, S. Hejný, M. Husová, J. Jeník, J. Kolbek, F. Krahulec, V. Krečmer, Z. Kropáč, R. Neuhäusl, Z. Neuhäuslová-Novotná, K. Rybníček, E. Rybníčková, V. Samek, & J. Štěpán, Fytocenologie (Nauka o vegetaci) (pp. 277–305). Academia. Nižnanská, M. (1983). Beitrag zur Rekonstruktion der Waldbestände im östlichen Teil des Gebirges Slovenské Rudohorie mit Hilfe der Holzkohlenanalyse. Acta Facultatis rerum naturalium Universitatis Comenianae, Botanica, 30, 65–87. Oberdorfer, E. (1957). Süddeutsche Pflanzengesellschaften. Pflanzensoziologie, 10, 1–564. Pawłowski, B. (1928). Guide des excursions en Pologne. I. Partie. Guide de l’excursion botanique dans les Monts Tatras (Environs du lac „Morskie Oko“ et du massif des „Czerwone Wierchy): Accompagné de le caractéristique géobotanique générale des Tatras. Orbis. Pawłowski, B. (1956). Flora Tatr: Rośliny naczyniowe. Tom I. Państwowe wydawnictwo naukowe. Pignatti, S. (1998). La foresta boreale di conifere. In S. Pignatti, A.Bartoli, C. Blasi, G. Bolognini, F. Clauser, M. Codogno, M. De Lillis, G. Dowgiallo, A. Lapresa, P. L. Nimis, S. Piersanti, G. Pignatti, & P. Rombolà, I boschi d’Italia: Sinecologia e biodiversità (pp. 125– 169). UTET. Pignatti, S., & Pignatti, E. (2014). Plant Life of the Dolomites: Vegetation Structure and Ecology. Springer. https://doi. org/10.1007/978-3-642-31043-0 Pignatti, S., Guarino, R., & La Rosa, M. (Eds.) (2017). Flora d’Italia. 1. Edagricole. Pišút, I. (ed.), Guttová, A., Lackovičová, A., & Lisická, E. (1998). Lichenizované huby (lišajníky). In K. Marhold, & F. Hindák (Eds.), Zoznam nižších a vyšších rastlín Slovenska (pp. 229–295). VEDA, vydavateľstvo Slovenskej akadémie vied. Plesník, P. (1956). Horná hranica lesa v Krivánskej Malej Fatre. Lesnícky časopis Slovenskej akadémie vied, 2(2), 97–123. Plesník, P. (1961). Všeobecná charakteristika Slovenska. In M. Lukniš, & P. Plesník, Nížiny, kotliny a pohoria Slovenska (pp. 7–38). Osveta. Plesník, P. (1966). Horná hranica lesa na Veľkom Choči. Geografický časopis, 18(1), 56–76. Plesník, P. (1971). Horná hranica lesa vo Vysokých a Belanských Tatrách. Vydavateľstvo Slovenskej akadémie vied. Plesník, P. (1975). Horná hranica lesa v Lúčanskej Malej Fatre. Zborník Pedagogickej fakulty Univerzity Komenského v Bratislave so sídlom v Trnave, Prírodné vedy, Geografia, 4, 103–130. Plesník, P. (1978). The Upper Timberline in the Veľká (Great) Fatra Mountain. Acta Facultatis rerum naturalium Universitatis Comenianae, Geographica, 16, 7–56. Plesník, P. (1995). Fytogeografické (vegetačné) členenie Slovenska. Geografický časopis, 47(3), 149–181. Plesník, P. (2004). Všeobecná biogeografia. Univerzita Komenského v Bratislave. Podani, J. (2001a). SYNTAX 2000 [Computer software]. J. Podani, Budapest. Multivariate Data Analysis Package. © J. Podani. http:// podani.web.elte.hu/SYN2000.html Podani, J. (2001b). SYN-TAX 2000: Computer Program for Data Analysis in Ecology and Systematics. User’s Manual. Scientia Publishing. Pokorný, P., Jankovská, V., & Horáček, I. (2015). České Hercynikum versus Západní Karpaty: Klíčové biogeografické rozhraní Evropy v posledním glaciálu. Zprávy České botanické společnosti, 50(2), 165–180. Polák, M., Bujnovský, A., Kohút, M. (Eds.), Filo, I., Pristaš, J., Havrila, M., Vozár, J., Mello, J., Rakús, M., Buček, S., & Lexa, J. (1997). Geologická mapa Veľkej Fatry. Ministerstvo životného prostredia Slovenskej republiky. Pott, R. (1992). Die Pflanzengesellschaften Deutschlands. Eugen Ulmer. QGIS.org (2021). QGIS Geographic Information System. QGIS Association. http://www.qgis.org Randuška, D. (1986). Typologická klasifikácia lesov v SSR. In D. Randuška, J. Vorel, & K. Plíva Fytocenológia a lesnícka typológia (pp. 143–220). Príroda. Rastlinné spoločenstvá Slovenska (1995–). VEDA, vydavateľstvo Slovenskej akadémie vied, Bratislava. Renaux, B., Timbal, J., Gauberville, Ch., Thébaud, G., Bardat, J., Lalanne, A., Royer, J.-M., & Seytre, L. (2019). Contribution au Prodrome des végétations de France: les Carpino betuli-Fagetea sylvaticae Jakucs 1967. Documents Phytosociologiques, 11, 1–424. Rivas-Martínez, S. (1968). Estudio fitosociológico de los bosques y matorrales pirenaicos del piso subalpino. Publicaciones del Instituto de biologia aplicada, 44, 5–44. Rivas-Martínez, S., Fernández-González, F., Loidi, J., Lousã, M., & Penas, A. (2001). Syntaxonomical checklist of vascular plant communities of Spain and Portugal to association level. Itinera Geobotanica, 14, 5–341. Rivas-Martínez, S., Asensi, A., Díez-Garretas, B., Molero, J., Valle, F., Cano, E., Costa, M., Villar, L., Díaz, T. E., Prieto, J. A. F., Llorens, L., del Arco, M., Fernández, F., Sánchez-Mata, D., Penas, Á., Herrero, L., del Río, S., Masalles, R., Ladero, M., Amor, Á., Izco, J., Amigo, J., Loidi, J., Navarro, G., Cantó, P., Alcaraz, F., Báscones, J. C., & Soriano, P. (2011). Mapa de series, geoseries y geopermaseries de vegetación de España [Memoria del mapa de vegetación potencial de España, 2011]. Parte II. Itinera Geobotanica, 18(1), 1–424. Rothmaler, W. (1950). Allgemeine Taxonomie und Chorologie der Pflanzen: Grundzüge der speziellen Botanik. Wilhelm Gronau. 21/1 • 2022, 107–151 150 Peter Kučera Natural calcareous Norway spruce woodlands in Slovakia and their syntaxonomical classification Rothmaler, W. (1955). Allgemeine Taxonomie und Chorologie der Pflanzen: Grundzüge der speziellen Botanik (2nd ed.). Wilhelm Gronau. Samek, V., Jančařík, V., Kriesl, A., & Materna, J. (1957). Lesní společenstva severního úbočí Vysokých Tater (Část I. Javorová dolina). Lesnícky časopis, 3(1), 3–38. Sauberer, N., & Willner, W. (2007). Kurze Einführung in die Natur- und Landschaftsgeschichte Österreichs. In W. Willner, G. Grabherr (Eds.), A. Drescher, Ch. Eichberger, A. Exner, R. F. Wilfried, S. Grabner, P. Heiselmayer, P. Karner, F. Starlinger, N. Sauberer, & G. M. Steiner, Die Wälder und Gebüsche Österreichs: Ein Bestimmungswerk mit Tabellen. 1 Textband (pp. 19–25). Elsevier. Schmider, P., & Burnand, J. (1988). Waldgesellschaften im Fürstentum Liechtenstein. Kommentar zur vegetationskundlichen Kartierung der Wälder. Regierung des Fürstentums Liechtenstein. Seibert, P. (1992). Klasse: Vaccinio-Piceetea Br.-Bl. in Br.-Bl. et al. 39. In Th. Müller, E. Oberdorfer, & P. Seibert, Süddeutsche Pflanzengesellschaften. Teil IV. Wälder und Gebüsche. A. Textband (pp. 53–80). Gustav Fischer. Sillinger, P. (1933). Monografická studie o vegetaci Nízkých Tater. Sbor pro výzkum Slovenska a Podkarpatské Rusi. Svoboda, P. (1939). Lesy Liptovských Tater: Studie o dřevinách a lesních společenstvech se zvláštním zřetelem k vlivům antropozoickým. Opera Botanica Čechica, 1, 1–164. Stanová, V., Valachovič, M. (eds), Šeffer, J., Lasák, R., Galvánek, D., Dražil., T. Jarolímek, I., Zaliberová, M., Oťaheľová, H., Maglocký, Š., Kliment, J., Dúbravcová, Z., Uhliarová, E., Hrivnák, R., Ujházy, K., Petrík, A., Uhlířová, J., Bernátová, D., & Dítě, D. (2002). Katalóg biotopov Slovenska. DAPHNE – Inštitút aplikovanej ekológie. Sýkora, T. (1971). Lesní rostlinná společenstva Jizerských hor. Knižnice Jizerských hor, 11, 1–60. Szafer, W., Pawłowski, B., & Kulczyński, S. (1923). Die Pflanzen- assoziationen des Tatra-Gebirges 1. Teil: Die Pflanzenassoziationen des Chochołowska-Tales. Bulletin International de l’Académie Polonaise des Sciences et des Lettres, Classe des Sciences Mathématiques et Naturelles, Série B, Sciences Natureles, 1923 (Suppl. 1923), 1–65. Szafer, W., Kulczyński, S., Pawłowski, B., Stecki, K., & Sokołowski, M. (1927). Pflanzenassoziationen des Tatra-Gebirges: III, IV und V Teil, (Tafeln 1–12). Bulletin International de l’Académie Polonaise des Sciences et des Lettres, Classe des Sciences Mathématiques et Naturelles, Série B, Sciences Naturelles 1927 (Suppl. 2, 1926), 1–144. Šály, R. (1986). Pôdne pomery. In K.Vestenický, I. Vološčuk, I. (Supervisors), Z. Ambros, D. Bernátová, J. Bohuš, A. Bujnovský, A. Čaputa, J. Darola, Š. Fekete, M. Gajdoš, J. Galvánek, J. Kadlečík, J. Kliment, I. Kristek, R. Lacko, J. Lazebníček, V. Ložek, R. Midriak, P. Mitter, V. Peciar, B. Piskún, I. Pišút, M. Polák, V. Stockmann, J. Svatoň, R. Šály, K. Škovirová, & Z. Žuffová, Veľká Fatra: Chránená krajinná oblast (pp. 56–68). Príroda. Šibík, J. (2012). Slovak Vegetation Database. Biodiversity & Ecology, 4, 429. https://doi.org/10.7809/b-e.00216. Šilc, U., & Čarni, A. (2012). Conspectus of vegetation syntaxa in Slovenia. Hacquetia, 11(1), 113–164. Šimurdová, B. (2001). Sekundárne smrekové lesy v povodí Hnilca. Bulletin Slovenskej botanickej spoločnosti, 23, 141–147. Školek, J. (1995a). Rastlinné spoločenstvá v ŠPR Demänovská dolina v Nízkych Tatrách. Naturae tutela, 3, 77–100. Školek, J. (1995b). The association Carici albae-Piceetum, a new forest community from the Western Carpathians. Oecologia Montana, 4, 41–48. Školek, J. (2003). Vegetácia Národnej prírodnej rezervácie Ďumbier v Nízkych Tatrách. Naturae tutela, 7, 17–29. Šmarda, J. et al. (1971). K ekologii rostlinných společenstev Doliny Sedmi pramenů v Belanských Tatrách. Práce a štúdie Československej ochrany prírody, Séria III, 4, 1–208. Šoltés, R. (1969). Sorbus aucuparia L. vo Vysokých Tatrách. [Unpublished Master’s thesis]. Prírodovedecká fakulta Univerzity Komenského. Šoltés, R. (1976). Phytozönotische Analyse des Verbandes Vaccinio- -Piceion Br.-Bl. 1938 in den Westkarpaten. Acta Facultatis rerum naturalium Universitatis Comenianae, Botanica, 24, 139–167. Šomšák, L. (1998). Flóra a fauna v rastlinných spoločenstvách strednej Európy: (Aplikovaná biocenológia). AP. Thébaud, G., Roux, C., Bernard, Ch.-É., & Delcoigne, A. (2014). Guide d’identification des végétations du nord du Massif central: Associa- tions végétales et habitat naturels. Presses universitaires Blaise Pascal. Theurillat, J.-P., Willner, W., Fernández‐González, F., Bültmann, H., Čarni, A., Gigante, D., Mucina, L., & Weber, H. (2021). International Code of Phytosociological Nomenclature. 4th edition. Applied Vegetation Science, 24, Article12491. https://doi.org/10.1111/ avsc.12491 Tichý, L. (c1998–2020). JUICE. Ver. 7.1.25. [Computer software]. L. Tichý, Brno. Program for analysis and classification of phytosociological tables and other quantitative ecological data sets. http://www.sci.muni.cz/botany/juice/ Tichý, L. (2002). JUICE, software for vegetation classification. Journal of Vegetation Science, 13(3), 451–453. https://doi. org/10.1111/j.1654-1103.2002.tb02069.x Tichý, L., & Chytrý, M. (2006). Statistical determination of diagnostic species for site groups of unequal size. Journal of Vegetation Science, 17(6), 809–818. https://doi.org/10.1111/j.1654-1103.2006.tb02504.x Tison, J.-M., & de Foucault, B. (Eds.) (2014). Flora Gallica: Flore de France. Biotope. Tüxen, R. (1955). Das System der nordwestdeutschen Pflanzengesellschaften. Mitteilungen der Floristisch-soziologischen Arbeitsgemeinschaft N. F., 5, 155–176. Tüxen, R. (1956). Die heutige potentielle natürliche Vegetation als Gegenstand der Vegetationskartierung. Angewandte Pflanzensoziologie, 13, 3–42. Uhlířová, J., & Bernátová, D. (1986). Nové lokality bradáčika srdcovitého (Listera cordata (L.) R. Br.) vo Veľkej Fatre a Slovenskom raji. Biológia (Bratislava), 41(5), 495–497. Ujházyová, M., Ujházy, K., Máliš, F., Slezák, M., & Hrivnák, R. (2021) Syntaxonomical revision of the order Fagetalia sylvaticae Pawłowski ex Pawłowski et al. 1928 in Slovakia. Biologia (Bratislava), 76(7), 1929–1968. https://doi.org/10.2478/s11756-020-00661-1 Unar, J., Unarová, M., & Šmarda, J. (1984). Vegetační poměry Tomanovy doliny a Žlebu spod Diery v Západních Tatrách: Část 1. Fytocenologické tabulky. Folia Facultatis scientiarum naturalium Universitatis Purkynianae Brunensis, Biologia 35(10), 1–104. 21/1 • 2022, 107–151 151 Peter Kučera Natural calcareous Norway spruce woodlands in Slovakia and their syntaxonomical classification Valachovič, M., Štubňová, E., Senko, D., Kochjarová, J., & Coldea, Gh. (2019). Ecology and species distribution pattern of Soldanella sect. Soldanella (Primulaceae) within vegetation types in the Carpathians and the adjacent mountains. Biologia (Bratislava), 74(7), 733–750. https://doi.org/10.2478/s11756-019-00200-7 Valachovič, M. et al. (msc.) Rastlinné spoločenstvá Slovenska. 6. Lesná a krovinová vegetácia. VEDA, vydavateľstvo Slovenskej akadémie vied. In prep. Viceníková, A., & Polák, P. (Eds.) (2003). Európsky významné biotopy na Slovensku. Štátna ochrana prírody SR, DAPHNE – Inštitút aplikovanej ekológie. Vigo, J. (1974). A propos des forêts de conifêres calcicoles des Pyrénées orientales. Documents phytosociologiques, 7-8, 51–54. Vigo, J. (1979). Les forêts de conifêres des Pyrénées catalanes: Essai de revision phytocenologique. Documents phytosociologiques N. S., 4, 929–941. Voško, M., Kukla, J., Klubica, D., & Bublinec, E. (1990). Analýza ekologických faktorov a štruktúry lesných ekosystémov monitorovacích plôch. Zborník prác o Tatranskom národnom parku, 30: 227–275. Vukelić, J., Alegro, A., & Šegota, V. (2010). Altimontanska-subalpska smrekova šuma s obrubljenim gladcem (Laserpitio krapfii-Piceetum abietis ass. nova) na sjevernom Velebitu (Hrvatska). Šumarski list, 134(5-6), 211–226. Willner, W. (2007). Nomenklatorischer Anhang. In W. Willner, G. Grabherr (Eds.), A. Drescher, Ch. Eichberger, A. Exner, R. F. Wilfried, S. Grabner, P. Heiselmayer, P. Karner, F. Starlinger, N. Sauberer, & G. M. Steiner, Die Wälder und Gebüsche Österreichs: Ein Bestimmungswerk mit Tabellen. 1 Textband (pp. 219–245). Elsevier. Willner, W., Grabherr, G. (eds), Drescher, A., Eichberger, Ch., Exner, A., Wilfried, R. F., Grabner, S., Heiselmayer, P., Karner, P., Starlinger, F., Sauberer, N., & Steiner, G. M. (2007). Die Wälder und Gebüsche Österreichs: Ein Bestimmungswerk mit Tabellen. 2 Tabellenband. Elsevier. Willner, W., Theurillat, J.-P., Pallas, J., & Mucina, L. (2015). On the nomenclature of some high-rank syntaxa of European forest vegetation. Phytocoenologia, 45(1–2), 175–181. https://doi. org/10.1127/phyto/2015/0036 Wraber, M. (1964). Eine neue Fichtenwaldgesellschaft am Übergang der Ostalpen in das dinarische Gebirge. Acta botanica Croatica, Vol. extraord., 125–132. Wraber, M. (1969). Subalpinski smrekov gozd na Kočevskem in njegova horološko-ekološka problematika. Varstvo narave, 6, 91–104. Wraber, M. 1(970). Die obere Wald- und Baumgrenze in den slowenischen Hochgebirgen in ökologischer Betrachtung. Mitteilungen der Ostalpin-dinarischen Gesellschaft für Vegetationskunde, 11, 235–248. Zahradníková-Rošetzká, K. (1957). Príspevok ku kvetene Demänovskej doliny. Biologické práce, 3(4), 1–60. Zięba, A., Różański, W., & Szwagrzyk, J. (2018). Syntaxononomy of relic Swiss stone pine (Pinus cembra) forests in the Tatra Mountains. Tuexenia, 38, 155–176. https://doi.org/10.14471/2018.38.004 Zięba, A., Różański, W., Bukowski, M., Ciesielska, B., & Szwagrzyk, J. (2019). Distribution and habitat conditions of Pinus cembra forests in the Tatra Mountains. Dendrobiology, 81, 86–96. https://doi. org/10.12657/denbio.081.010 Zlatník, A. (1957). Využití generálních typologických map k tvoření územních celků a jejich význam pro lesnickou praxi. Sborník Vysoké školy zemědělské a lesnické v Brně, 1957(2): 75–89. Zlatník, A. (1959). Přehled slovenských lesů podle skupin lesních typů. Spisy Vědecké laboratoře biogeocenologie a typologie lesa Lesnické fakulty Vysoké školy zemědělské v Brně, 1959(3), 1–92. Zlatník, A. (1970). Ekologicko-synekologický, cenologický a fytogeografický výskum na trvalých výskumných plochách. Zborník prác o Tatranskom národnom parku, 12, 79–152. Zlatník, A. (1975). Ekologie krajiny a geobiocenologie jako vědecký podklad ochranu přírody a krajiny. TIS – Svaz pro ochranu přírody a krajiny, Vysoká škola zemědělská v Brně. Zlatník, A. (1976). Přehled skupin typů geobiocénů původně lesních a křovinných v ČSSR. (Předběžné sdělení). Zprávy Geografického ústavu ČSAV, 12(3–4), 55–64. Zlatník, A. (1978). Lesnická fytocenologie. Státní zemědělské nakladatelství. Zukrigl, K. (1973). Montane und subalpine waldgesellschaften am Alpenostrand unter mitteleuropäischem, pannonischen und illyrischen Einfluß. Mitteilungen der forstlichen Bundes-versuchsanstalt Wien, 101, 1–387. Zupančič, M. (1980). Smrekovi gozdovi v mraziščih Dinarskega Gorstva Slovenije. Slovenska akademija znanosti in umetnosti.