Source Domain Knowledge Acquisition Using Simulated
Environment with Minimized Computing Requirements

Zvezdan Loncarevi¢!'2, Andrej Gams'?, Mihael Simoni¢!3

LJozef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia
2Jozef Stefan International Postgraduate School, Jamova cesta 39, 1000 Ljubljana, Slovenia
3 Faculty of Electrical Engineering, Traska cesta 25, 1000 Ljubljana

{zvezdan.loncarevic,andrej.gams,mihael.simonic} @ijs.si

Abstract

Transfer learning became popular technique when
learning new robotic skills. It removes burden of the need
of doing a lot of reinforcement learning iterations on the
real robotic system but puts more accent on the simu-
lation environment in order to obtain the initial source
domain knowledge. Although this method accelerates
learning, setting up the simulation environment can be
demanding in the sense of connecting all the framework
components, dealing with incompatibility issues and also
computationally expensive. In this paper, we present a
scalable framework for gathering the database of throw-
ing actions for humanoid robot Talos using open-source
tools including ROS, Gazebo and Docker. Presented
method solves the problem of compatibility issues, al-
lows easy changes in the simulated environment, enables
parallelization and also reduces computing requirements
with offering a possibility for the user to switch on or off
graphical interface. This allows the processes to run in
the background while normally using computer for every-
day work or in cloud environments and high performance
clusters, where graphical environment is not accessible.
Introspection is still possible using the web interface.

1 Introduction

Adaptation of the robotic skills is one of the crucial fa-
cilitators for the robots to enter everyday human lives [1]
and also for the fast-changing production lines to keep up
with increasing market demands. Reinforcement learn-
ing (RL) has made a lot of progress towards learning new
skills without necessary expertise knowledge, but its ap-
plication is connected mainly to the simulation environ-
ments. This is caused by the RL algorithms having rel-
atively low sample efficiency [2] thus causing the huge
amount iterations of learning required on the real robot.
Moreover, actions generated during the exploration of
these algorithms might lead to the actions that exceed the
robot limits causing the risk of damaging the equipment
and robot itself [3].

One of the most widely spread solutions for this prob-
lem is called transfer learning (TL). The main idea is to
train the robot in simulation (source domain) and then to
quickly adapt the knowledge to the real world (target do-
main) [4, 5]. When using TL, majority of the knowledge
is collected in the simulation and only small amount in

ERK'2022, Portoroz, 228-231 228

n-th Simulation container
(gzerver)

Gazebo transport
system over TCP/IP

)

Web interface container (gzweb)

Serves the web interface providing
that can connect to arbitrary

simulation | .

|

X . 5 OX'
The experiment instances

can be inspected in a web browser 'i

TALOS simulation without

vizualisation a

Remote user

Figure 1: Main components of the simulation setup.

real world. Collecting the data in simulation should be
quick and easy in theory. However, in practice this is
usually not the case because of the incompatibility prob-
lems, slow execution and communication between differ-
ent components in the system.

It has been noted earlier that most of the well-know
simulators have a high entrance barrier, due to the com-
plicated initial set up. In [6] the authors presented an open
source test bed for Unmanned Aerial Vehicles education
and research that overcomes these barriers. They lever-
aged the containers technology to carry out simulations
on the cloud, so that the end-user has no special hard-
ware requirements. Our approach shares some similarity
with [6] by relying on containerisation to ease the setup,
but is aimed at data collection and as such focuses on par-
allelization and scalability.

To our knowledge, no other frameworks that enable
simple and parallel data collection were previously pre-
sented. We test our framework using a highly complex
humanoid robot Talos and the throwing task which re-
quires additional effort in establishing communication in
order to follow the ball trajectory.

The main novelty is that we designed a scalable ap-
proach for data collection using containerisation. The
presented system allows to easily to run multiple simu-
lations simultaneously while keeping it compatible with
multiple platforms. Parallelism enables rapid data col-
lection. On top of that, changing of the experimental
setup is simple by changing parameters in a human read-
able YAML configuration file. In order for user to be
able to continue its everyday work on the same com-
puter, we also present an approach that allows enabling



and disabling graphical interface and in that way reduc-
ing the need for computing power. This also enables to
use it in cloud environments and high performance clus-
ters, where graphical environment is not accessible.

The paper is organized as follows. In the next section,
introduction of our framework, its main components and
connection between them are explained. Section 3 shows
example of successful usage of the presented approach
on the use-case of robotic throwing action. The paper
concludes with a short outlook and plans for the future
work. An example of configuration of the setup is given
in appendix.

2 Overview of the framework

2.1 Robot simulation and control

The Robot Operating System (ROS)provides a suitable
framework for developing complex robotic systems with
several computers running on different operating sys-
tems. Many features and tools are provided within ROS.
In our framework we use the following:

* nodes — any program that has connectivity to the
ROS network and can therefore access to and pub-
lish data across it (in our case, coordinating script,
controllers, simulation, etc.)

* topics — a message bus, in which nodes can publish
and subscribe to data provided by the other nodes,
e. g. robot joint states, ball positions, etc.

* messages — a predefined structure to en-
capsulate data to be transferred over top-
ics, e. g. robot joint states are written as
sensor_.msgs/JointState

* actions — a request/response based Remote Proce-
dure Call (RPC) interface, that is used to trigger
long-running preemptable processes (like execut-
ing trajectories) and continuously receive feedback
(i.e. to track task execution progress)

Within the ROS community, one of the most of-
ten used software for dynamical simulation of robots is
Gazebo [7]. Compared to other robot simulators, its
biggest advantage is seamless integration into ROS [8].
The robots simulated in Gazebo can be controlled us-
ing the ros_control framework, which greatly sim-
plifies the transfer of software from simulation to the real
robot. The framework provides a hardware abstraction
layer, that enables standardized access to actuators and
thus to write robot-agnostic controllers [9]. At the same
time, the same controllers can be used both in simulation
and on the real robot. For Talos robot, the access to the
robot middleware is handled by the talos_hardware
ROS package, while Gazebo configuration is provided
by the talos_hardware_gazebo package. Note that,
Gazebo is based on server-client paradigm, where the
computation is done in gzserver, and the result of simula-
tion can be shown graphically either in gzclient or gzweb.
This allows that the simulation can be done in headless
mode on a cloud environment, and the remote user can
view it over web browser as shown in Fig. 1.

229

2.2 Coordinating script

Although ROS contains standard tools for manipulating
and path planning (such as Movelt!), it is possible to write
customized high-level software for performing different
tasks with the robot in different programming languages.

As the main purpose of this system is to collect the
database and to work with simulation, we need to be
able to quickly develop or modify the task. For that pur-
pose, this standard ROS tools are connected with Mat-
lab and all the robot control is done with it. It enabled
us to use RobotBlockSet that was developed within our
lab and easily integrate the common functions that are
required when operating any of the robots. These func-
tions include direct and inverse kinematics, integration of
parametric trajectory representations, transformations be-
tween different coordinate systems for the whole spectre
of robots. This combination of matlab script and already
developed functions for controlling the robot allows us to
easily adapt the simulation to new tasks.

2.3 Containerization

Although robots can be easily controlled using ROS inter-
faces, setting the ROS environment still takes some effort
and time. Its portability and ability to work with differ-
ent coding languages makes it also dependent on differ-
ent packages and therefore prone to having compatibility
issues. This becomes a tedious process for the user, espe-
cially when the software needs to be deployed on multiple
machines to run experiments in parallel.

Our development and overall system are based on
Docker [10] to address these two issues. Docker images
are isolated read-only templates created from Docker-
files. The image can be run on any platform that supports
Docker, and it will be the same regardless of the plat-
form. The purpose of this file is to specify which software
packages and what dependencies should be installed. A
docker container is an executable instance of a docker im-
age. Docker containers, unlike virtual machines, don’t
emulate the host’s hardware, but share it instead. This in
turn means that, compared to a virtual machine, a Docker
uses fewer resources [6]. In terms of deploying simu-
lation software across multiple machines, the developer
designs the code in such a way that it runs within the
Docker container and eliminates the commonly encoun-
tered problem of unmet dependencies.

2.4 Modules

The core of the presented approach is modular design.
Essentially, we have four types containers communicat-
ing between each other as shown in Fig. 2. The con-
tainers are isolated, but can communicate using TCP/IP
protocol, similarly as different computers do in a local
network:

* ROS Master is running in a container based on the
freely available ros :melodic Docker image. It
is responsible for initiating and terminating con-
nections between ROS nodes, as well as keeping
track of topics and actions.



ros:melodic
/rosmaster

\

mathworks/matlab

/co tor

ijs/talos_sim
/sim 1

ijs/talos_sim

/sim_2

Figure 2: Connectivity between the containers comprising the proposed system. Each rectangle represents a Docker container
(image name is given in bold, and container name is given in italics). TCP/IP connections between containers are given with full
lines. Optional connections are shown with dashed lines. For persistent storage, a database is provided as a separate Docker volume

on the local filesystem (dash-dotted line).

MATLAB CONTAINER

/xobotblockset_
talos_node

Coordinatingscript

€= ROsaction interface

= ROS topicinterface

/sim n
/gazebo

ROS_CONTROL
PLIG-N

/sim n/
robot_state
_publisher

Figure 3: ROS connections between the coordinating script running in the Matlab container and a simulation instance in Gazebo
container. The coordinating script itself is a ROS node, that subscribes to joint states via ROS topic interface, and can send/interact
with goals of the joint trajectory controller using ROS Action interface. Each simulation container consists of a body controller
spawner node, robot state publisher and simulator node. The body controller spawner loads the joint trajectory controller plugin for
each of the robot limbs. The robot state publisher advertises this information over the ROS network. The Gazebo simulator node

runs the gzserver.

e Each simulation instance is running in a
ijs/talos_sim-based container. It con-
tains PAL Robotics’ TALOS simulation stack!
along with customisations needed to simulate the
process of interest (in our case ball and throwing
tool models were added).

e The data collection script is running in a
mathworks/mat lab-based container. It coor-
dinates the data collection process by starting and
tracking the simulation instances.

* Optionally, a web server can be initialized using
the 1js/talos_viz image. It allows the oper-
ator to introspect the state of the arbitrary simu-
lation instance, simply by opening a web browser
(cf. Fig. 4).

As we mention previously, communication between
the nodes is one of the main characteristics of ROS. In
this case, the coordinating script running in the Matlab
container is a ROS node, and it is able to communicate
with the simulation instance in the Gazebo container us-
ing the ROS topics and actions, as shown in Fig. 3.

'https://github.com/pal-robotics/talos_
simulation

230

2.5 Usage and scalability

The framework aims at ease of use and scalability. The
entire system can be started using docker compose
up command, which runs all the above mentioned con-
tainers. It is configured to automatically initialize the
needed services. An example configuration is given in
the appendix.

3 Throwing use-case

Figure 4: Example of using the developed approach for collect-
ing the data in Gazebo environment

As mentioned in the introduction, we presented use
of this approach on the robotic throwing action [11]. For
this purpose, we used the model of full-sized humanoid
robot Talos that was equipped with the throwing spoon -
Fig. 4. When learning to throw at the requested target,
robot needs a lot of trials. The idea is to use simulation as



the source domain to gather the huge database and train
neural network to predict trajectory parameters based on
the desired target. Later, with only few shots this knowl-
edge would be adapted to the target domain - real world.

4 Conclusion and future work

In this paper, we have presented an approach that allows
us to gather the huge amount of data in a short period
of time. Docker containers enabled our system to be
lightweight and compatible with the multiple platforms
while avoiding the compatibility issues between pack-
ages that usually may arise when setting up the simula-
tion. Possibility of turning visualization on or off reduces
the need for hardware resources while still allowing us to
easily check the learning process when necessary. Also,
easy and fast set-up procedure allows us to run simula-
tion on multiple computers within the same network thus
enabling great amount of parallelization. On top of that,
possibility of controlling the robot through simple Matlab
script allows quick modification of parameters and con-
trol of robot behaviour thus making this useful also to
some other tasks like reinforcement learning.

In the future, we plan to test the possibility of run-
ning similar approach on a High Performance Comput-
ing Cluster. In order to do that, we first need to prepare
Singularity containers based on Docker images. In or-
der to release a full open source solution, we also plan to
prepare the coordinating script in Python.

A Example docker-compose configuration

networks:
ros:
driver: bridge
services:
rosmaster:
image: ros:melodic
command: roscore
environment:
— "ROS_HOSTNAME=rosmaster"
networks:
- ros
sim_1:
image: ijs/talos_sim
depends_on:
- rosmaster
command: roslaunch talos_gazebo \
throwing.launch gui:=false
environment:
- "ROS_MASTER_URI=http://rosmaster:11311"
- "ROS_HOSTNAME=sim_1"
networks:
- ros
viz_1:
image: ijs/talos_viz
command: npm start
environment:
~ "GAZEBO_MASTER_URI=http://sim_1:11345"
ports:
- "8080:8080"
networks:
- ros
coordinator:
image: mathworks/matlab
volumes:
- ros_toolbox:/opt/ros_toolbox_matlab
- database:/home/user/database
command: matlab -nodisplay -r data_collection.m

--prefix /opt/ijs/gzweb_talos

Acknowledgement: This work has received funding
from the program group Automation, robotics, and biocy-
bernetics (P2-0076) supported by the Slovenian Research
Agency.

231

References

[1] J. Peters, J. Kober, K. Muelling, O. Kroemer, and
G. Neumann, “Towards robot skill learning: From
simple skills to table tennis,” in European Confer-
ence on Machine Learning (ECML), 2013.

[2] A. Long, A. Blair, and H. van Hoof, “Fast and
data efficient reinforcement learning from pixels via
non-parametric value approximation,” 2022.

[3] J. Garcia, Fern, and o Ferndndez, “A comprehen-
sive survey on safe reinforcement learning,” Jour-
nal of Machine Learning Research, vol. 16, no. 42,
pp. 1437-1480, 2015.

[4] Y. Chebotar, A. Handa, V. Makoviychuk, M. Mack-
lin, J. Issac, N. Ratliff, and D. Fox, “Closing the
sim-to-real loop: Adapting simulation randomiza-
tion with real world experience,” in International
Conference on Robotics and Automation (ICRA),
pp- 8973-8979, 2019.

[5] W. Zhao, J. P. Queralta, and T. Westerlund, “Sim-
to-real transfer in deep reinforcement learning for
robotics: a survey,” in IEEE Symposium Series on
Computational Intelligence (SSCI), pp. 737-744,
2020.

[6] M. Schmittle, A. Lukina, L. Vacek, J. Das, C. P.
Buskirk, S. Rees, J. Sztipanovits, R. Grosu, and
V. Kumar, “OpenUAV: A UAV testbed for the CPS
and robotics community,” in ACM/IEEE 9th In-
ternational Conference on Cyber-Physical Systems
(ICCPS), pp. 130-139, 2018.

[7] N. Koenig and A. Howard, “Design and use
paradigms for gazebo, an open-source multi-robot
simulator,” in IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), vol. 3,
pp. 2149-2154 vol.3, 2004.

[8] M. Korber, J. Lange, S. Rediske, S. Steinmann, and
R. Gliick, “Comparing popular simulation environ-
ments in the scope of robotics and reinforcement
learning,” CoRR, vol. abs/2103.04616, 2021.

[9] S. Chitta, E. Marder-Eppstein, W. Meeussen,
V. Pradeep, A. Rodriguez Tsouroukdissian,
J. Bohren, D. Coleman, B. Magyar, G. Raiola,
M. Lidtke, and E. Fernandez Perdomo,
“ros_control: A generic and simple control
framework for ros,” The Journal of Open Source
Software, 2017.

[10] D. Merkel, “Docker: lightweight Linux containers
for consistent development and deployment,” Linux
Journal, vol. 2014, no. 239, p. 2, 2014.

[11] Z. Loncarevi¢, T. Petri¢, and A. Gams, “Fitting con-
strained trajectory with high variability into redun-
dant robot workspace,” in Advances in Service and
Industrial Robotics (A. Miiller and M. Brandstotter,
eds.), (Cham), pp. 167-175, Springer International
Publishing, 2022.



