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Izbira gladilne spremenljivke z optiènimi napetostnimi nanosi

Choice of Smoothing Parameter Using Photo-Elastic Coatings

Violeta Kravèenkiene1 -  Algiment Aleksa1 - Minvydas Ragulskis1 - Rimas Maskeliunas2

(1 Kaunas University of Technology, Kaunas; 2 Vilnius Gediminas Technical University, Vilnius)

V prispevku je opisana metoda izbire gladilne spremenljivke. Prikazana je na problemu fotoelastiène
analize upogibnih nihanj plo�èe. Model konènih elementov sistema temelji na aproksimaciji pomikov
vozli�è, medtem ko na postavitev zunanjih robov vpliva polje napetosti v fotoelastiènem nanosu. Vzorci
zunanjih robov, ki smo jih ustvarili brez glajenja, se na mejah med elementi vedejo nenaravno. V primeru, da
je gladilna spremenljivka prevelika, dobimo preveè zglajeno sliko, ki sicer lahko izgleda sprejemljivo,
vendar je daleè od resniène fotoelastiène slike. Predstavljen naèin izbire optimalne gladilne spremenljivke
je posplo�en za dvorazse�ne Lagrangeve konène elemente.
© 2006 Strojni�ki vestnik. Vse pravice pridr�ane.
(Kljuène besede: spremenljivke zglajene, izbor spremenljivk, plo�èe, nihanja upogibna, analize fotoelastiène)

A method of choosing a smoothing parameter is described and illustrated for the problem of a photo-
elastic analysis of the bending vibrations of a plate. The finite-element model of the system is based on an
approximation of the nodal displacements, while the formation of fringes is governed by the stress field in
the photo-elastic coating. Without smoothing the reconstructed patterns of the fringes exhibit a non-physical
behaviour at inter-element boundaries. When the smoothing parameter is too big, an over-smoothed image
is obtained, which may look acceptable but be far from the realistic photo-elastic image. The presented
strategy for the selection of the optimum smoothing parameter is generalised for two-dimensional Lagrange
finite elements.
© 2006 Journal of Mechanical Engineering. All rights reserved.
(Keywords: smoothing parameters, parameter choice, plates, bending vibrations, photo-elastic coatings)
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0 INTRODUCTION

The problem of the bending vibrations of a
plate is a common one in different engineering appli-
cations. This problem was analysed by using photo-
elastic coatings in [1]. Photo-elastic coating [2] is a
classical technique for stress analysis.

The coating has a negligible effect on the
vibrations of the plate. First, the eigenmodes are
calculated using the usual plate-bending element.
The coating is thin and the plane displacements in
the coating coincide with the displacements on the
surface of the plate, and are the same through the
thickness of the coating. The stresses in the coating
are calculated assuming conditions of plane stress.
The directions of the incident and the reflected light
are almost perpendicular to the coating.

The conventional FEM would require unac-
ceptably dense meshing to produce sufficiently

smooth photo-elastic patterns. Therefore, there is a
need to smooth the generated photo-elastic fringe
patterns representing the stress distribution, and
which are calculated from the displacement distribu-
tion. The choice of the optimum value of the smooth-
ing parameter is an important problem that is ad-
dressed in this paper.

1 CHOICE OF THE SMOOTHING PARAMETER

First, the eigenmodes of the plate are
calculated by using a displacement formulation
common in finite element analysis. Further, x, y and z
are used to denote the axes of the orthogonal
Cartesian system of coordinates. The plate-bending
element with the independent interpolation of the
displacement w and the rotations about the
appropriate axes q

x
 and q

y
 is used [3]. It is assumed

that the plate performs vibrations according to the
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eigenmode (the frequency of the excitation is about
equal to the eigenfrequency of the corresponding
eigenmode). The vibrations of the plate are
registered stroboscopically when the structure is in
the state of extreme deflections according to the
eigenmode.

The nodal variables of the plate-bending
element are the deflection of the plate w, the rotation
of the plate about the x axis q

x
  and the rotation of

the plate about the y axis q
y
. It is assumed that in the

plate v = -zq
x
 and u = zq

y
, where u  and v are the

displacements of the plate in the x and y directions,
respectively. Thus ( / 2) yu h q=  and ( / 2) xv h q= -  are
the displacements on the surface of the plate, and h
is the thickness of the plate.

The eigenmodes of the plate are obtained in
the usual way, assuming that the coating has no
effect on the motion of the plate.
The stresses in the coating are calculated as:

        (1),

where:

        (2)

        (3)

and {s} is the vector of the components of stresses
s

x
, s

y
 and t

xy
, assuming that the coating is in the

state of plain stress; N
i
 is the i-th shape function of

the finite element; E
c
 is the modulus of elasticity of

the coating; n
c 
is the Poisson�s ratio of the coating;

and {d} is the vector of generalised displacements
of the eigenmode.

The field of the components of stresses
incorporating its smoothing is determined as
described in detail in [4]. Furthermore, {d

x
} denotes

the vector of the nodal values of s
x
; {d

y
} denotes the

vector of nodal values of s
y
; {d

xy
} denotes the vector

of nodal values of t
xy

. The nodal values {d
x
}, {d

y
}

and  {d
xy

} are obtained from the following systems
of linear algebraic equations:

        (4)

where [N] is the row of the shape functions of the
finite element; [B*] is the matrix of the derivatives of
the shape functions (the first row with respect to x;
the second row with respect to y); l is the smoothing
parameter; e

i
 stands for the domain of the i-th finite

element; summation denotes the direct stiffness
procedure.

 When the smoothing parameter is too small
the reconstructed images are of unacceptable quality
because of the non-physical behaviour of the stress
field as a result of its calculation from the
displacement formulation. When the parameter is too
big an over-smoothed image is obtained, which may
look acceptable but be far from the real photo-elastic
image.

The problem is to determine the optimum
value of the smoothing parameter l. This can be
solved for a one-dimensional problem with linear
elements ([5] and [6]). In our problem l corresponds
to Ak in [6] and 1 corresponds to hp in [6]. Thus the
condition derived in [6] in our notation takes the
form:

        (5),

where l is the length of the one-dimensional element.
This gives the optimum value of the

smoothing parameter:

        (6),

or the optimum element size:

        (7).
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So in order to obtain results which appear
acceptable it is necessary to increase the smoothing
parameter or to apply a finer finite-element mesh, or
both.

For one-dimensional Lagrange elements
instead of l the maximum distance between the
consecutive nodes is to be used and the optimum
value of the smoothing parameter is determined from:

        (8),

or the optimum element size is determined from:

        (9),

where the value of the coefficient R is determined on
the basis of numerical experiments for a given
element order.

For two-dimensional Lagrange elements
instead of l the following value in the equations (8)
and (9) is to be used:

   
   (10),

where lx is the maximum distance between the
consecutive nodes in the direction of the local x
coordinate and lh is the maximum distance between
the consecutive nodes in the direction of the local h
coordinate.

The vector of polarisation is assumed to be
given as:

      (11),

where a is the angle of the vector of polarisation
with the x axis.

Furthermore, the quadratic Lagrange element is
used. In order to calculate the distance between the first
pair of consecutive nodes the mapping between the
variable [ ]1, 0x Î -  and [ ]1, 1x Î -%  is introduced:

      (12).

Then:

      (13),

where:

      (14),

and s denotes the length of the curve.

In order to calculate the distance between
the next pair of consecutive nodes the mapping
between the variable [ ]0, 1x Î  and x%  is introduced:

      (15).

Then:

      (16),

where /ds dx  is given by Equation (14).
The two-dimensional Lagrange element is

shown in Fig. 1. Thus, the curve lengths between
the consecutive nodes for the one-dimensional
quadratic Lagrange element with the nodes 1, 2 and
3: 1 and 2, 2 and 3 are calculated. Then the curve
lengths between the consecutive nodes for the one-
dimensional quadratic Lagrange element with the
nodes 4, 5 and 6: 4 and 5, 5 and 6 are calculated.
Then the curve lengths between the consecutive
nodes for the one-dimensional quadratic Lagrange
element with the nodes 7, 8 and 9: 7 and 8, 8 and 9 are
calculated. Then the curve lengths between the
consecutive nodes for the one-dimensional quadratic
Lagrange element with the nodes 1, 4 and 7: 1 and 4,
4 and 7 are calculated. Then the curve lengths
between the consecutive nodes for the one-
dimensional quadratic Lagrange element with the
nodes 2, 5 and 8: 2 and 5, 5 and 8 are calculated.
Then the curve lengths between the consecutive
nodes for the one-dimensional quadratic Lagrange
element with the nodes 3, 6 and 9: 3 and 6, 6 and 9 are
calculated. These calculations are performed as
described previously. Then the maximum distance
between the consecutive nodes is determined and
the smoothing parameter for the element is obtained
from Equation (8).

Fig. 1. Node numbering of the two-dimensional
Lagrange quadratic finite element
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2 RESULTS OF ANALYSIS

A circular plate with fixed internal radius
performing harmonic vibrations according to the fourth
eigenmode is analysed. It is considered that the plate is
experiencing resonant vibrations on an eigenmode: the
loading is assumed to be harmonic with the frequency
of the eigenmode and not orthogonal to it.

The isolines of the absolute value of the
difference of the principal stresses are presented in
Fig. 2.

The lines of the principal directions of the stresses
corresponding to the darkest parts from the images of the
isoclinics (composite isoclinic pattern) are shown in Fig.
3. The composite isoclinic pattern is presented for the
values of ( )1 / 20ia p= - , where i = 1, �, 10.

In order to investigate the effect of different
values of the coefficient R the zoomed part of the

time averaged photo-elastic images for the plane
polariscope with different values of R are presented
in Fig. 4. It is evident that a smaller value of R gives
bigger values of the smoothing parameter and thus
a more realistic image.

3 CONCLUSIONS

The recommendations for the choice of the
smoothing parameter in the smoothing procedure
for the analysis of the bending vibrations of a plate
by using photo-elastic coatings are presented.

As an illustration of the analysis the isolines
of the absolute value of the difference of the principal
stresses are obtained and the composite isoclinic
pattern is produced. Those two drawings are the
basis for the interpretation of the results of photo-
elastic analysis.

Fig. 2. Isolines of the absolute value of the
difference of the principal stresses

Fig. 3. Composite isoclinic pattern for the values
of ( )1 / 20ia p= - , where i = 1, �, 10

Fig. 4. Zoomed time-averaged photo-elastic images for the plane polariscope with a) R=6, b) R=12
a) b)



Strojni�ki vestnik - Journal of Mechanical Engineering 52(2006)4, 237-241

241Choice of Smoothing Parameter - Choice of Smoothing Parameter

Authors� Addresses:Violeta Kravèenkiene
Algiment Aleksa
Prof.Dr. Minvydas Ragulskis
Department of Mathematical Research in Systems
Kaunas University of Technology
Studentø str. 50, LT-51368
Kaunas, Lithuania
Minvydas.Ragulskis@ktu.lt

Dr. Rimas Maskeliunas
Department of Printing Machines
Vilnius Gediminas Technical University
J. Basanaviciaus str. 28
LT - 03224 Vilnius, Lithuania
pgmas@me.vtu.lt

Prejeto:     
  20.9.2005

Sprejeto:      
23.2.2006

Odprto za diskusijo: 1 leto
Received: Accepted: Open for discussion: 1 year

4 REFERENCES

[1] Saunoriene L., Ragulskis M., Maskeliunas R., Zubavièius L. (2005) Analysis of bending vibrations of a
plate using photo-elastic coatings. Journal of Vibroengineering, 2005, Vol. 7(2), p. 1-6.

[2] Kobayashi A. S. (1993) Handbook on experimental mechanics, Second Edition. SEM.
[3] Bathe K. J. (1982) Finite element procedures in engineering analysis. P. 738. Prentice-Hall, New Jersey.
[4] Ragulskis M., Ragulskis L. (2004) Plotting isoclinics for hybrid photoelasticity and FEM analysis. Experi-

mental Mechanics. 2004. Vol. 44, No. 3. P. 235-240.
[5] Ragulskis M., Kravèenkiene V. (2005) Adaptive conjugate smoothing of discontinuous fields. Lecture

Notes in Computer Science. 2005. Vol. 3401-0463. P. 463-470. Springer Verlag.
[6] Barauskas R. (1998) Basis of the finite element method. P. 376. Technologija, Kaunas.


