
ISSN 1855-3966 (printed edn.), ISSN 1855-3974 (electronic edn.)

ARS MATHEMATICA CONTEMPORANEA 24 (2024) #P4.10
https://doi.org/10.26493/1855-3974.3163.6hw

(Also available at http://amc-journal.eu)

Unifying adjacency, Laplacian, and
signless Laplacian theories*

Aniruddha Samanta †

Theoretical Statistics and Mathematics Unit, Indian Statistical Institute,
Kolkata-700108, India

Deepshikha
Department of Mathematics, Shyampur Siddheswari Mahavidyalaya,

University of Calcutta, West Bengal 711312, India

Kinkar Chandra Das ‡

Department of Mathematics, Sungkyunkwan University, Suwon 16419, Republic of Korea

Received 15 July 2023, accepted 19 May 2024, published online 17 October 2024

Abstract

Let G be a simple graph with associated diagonal matrix of vertex degrees D(G), ad-
jacency matrix A(G), Laplacian matrix L(G) and signless Laplacian matrix Q(G). Re-
cently, Nikiforov proposed the family of matrices Aα(G) defined for any real α ∈ [0, 1]
as Aα(G) := αD(G) + (1 − α)A(G), and also mentioned that the matrices Aα(G) can
underpin a unified theory of A(G) and Q(G). Inspired from the above definition, we in-
troduce the Bα-matrix of G, Bα(G) := αA(G) + (1 − α)L(G) for α ∈ [0, 1]. Note
that L(G) = B0(G), D(G) = 2B 1

2
(G), Q(G) = 3B 2

3
(G), A(G) = B1(G). In this arti-

cle, we study several spectral properties of Bα-matrices to unify the theories of adjacency,
Laplacian, and signless Laplacian matrices of graphs. In particular, we prove that each
eigenvalue of Bα(G) is continuous on α. Using this, we characterize positive semidef-
inite Bα-matrices in terms of α. As a consequence, we provide an upper bound of the
independence number of G. Besides, we establish some bounds for the largest and the
smallest eigenvalues of Bα(G). As a result, we obtain a bound for the chromatic number
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of G and deduce several known results. In addition, we present a Sachs-type result for the
characteristic polynomial of a Bα-matrix.

Keywords: Adjacency matrix, Laplacian matrix, signless Laplacian matrix, convex combination,Bα-
matrix, Aα-matrix, chromatic number, independence number.
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1 Introduction
Throughout this article, we consider G to be a simple undirected graph with vertex set
V (G) = {v1, v2, . . . , vn} and edge set E(G). The adjacency matrix of G is a symmetric
n × n matrix A(G) whose (i, j)-th entry is 1 if vi and vj are adjacent, 0 otherwise. The
degree matrix of G is a diagonal matrix D(G) whose ith diagonal entry is the degree
of the vertex vi. The Laplacian and the signless Laplacian matrix of G are the matrices,
L(G) := D(G)−A(G) andQ(G) := D(G)+A(G), respectively. If graphG is clear from
the context, we simply write A,L, and D instead of A(G), L(G), and D(G), respectively.
Adjacency, Laplacian, and signless Laplacian matrices are some of the matrices associated
with a graph which are widely studied in the literature [8, 14, 28, 18, 13, 27, 7, 9, 10]. It can
be seen that many of the spectral properties of such matrices are quite different from each
other. We will thus analyze the spectral properties of the convex combinations of A(G)
and L(G) in order to understand how uniformly the spectral behavior transforms from one
matrix to another.

Definition 1.1. For α ∈ [0, 1] the Bα-matrix of G is the convex linear combination
Bα(G) := αA(G) + (1−α)L(G) (or simply Bα = αA+ (1−α)L, if G is clear from the
context).

Remark 1.2. Note that L(G) = B0(G), D(G) = 2B 1
2
(G), Q(G) = 3B 2

3
(G), A(G) =

B1(G).

It is clear that the spectral properties of B1/2(G) and B2/3(G) are equivalent to the
spectral properties ofD(G) andQ(G), respectively. In fact,A(G), L(G), Q(G), andD(G)
can be considered as the Bα-matrix of G up to proportionality. Therefore, on the one hand,
the spectral properties of Bα(G) may reveal the common connection among the spectral
properties of all such well-known matrices. On the other hand, Bα(G) may analyze the
structural and combinatorial properties of the graph G in a better way.

Recently, Nikiforov [23] introduced a family of matrices, known asAα-matrix, which is
a convex combination of A(G) and D(G). The theory of Aα-matrices merges the theories
of the adjacency matrix and signless Laplacian matrix of graphs. Later on, much work has
been done on these matrices. We have results on the spectral radius ([1, 5, 15, 20]), the sec-
ond largest eigenvalue [4], the k-th largest eigenvalue [20], the least eigenvalue ([21, 11]),
the multiplicity of the eigenvalues ([3, 25]), positive semidefiniteness [24], the characteris-
tic polynomial [22], spectral determination of graphs [19], etc. Motivated by Nikiforov’s
work, we consider Bα-matrices and study their spectral properties. However, unlike Aα-
matrices, Bα-matrices are not always non-negative, but they obey Perron-Frobenius type

E-mail addresses: aniruddha.sam@gmail.com (Aniruddha Samanta), dpmmehra@gmail.com (Deepshikha),
kinkardas2003@gmail.com (Kinkar Chandra Das)
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results. In this article, we develop the theory of Bα-matrices to unify the theory of adja-
cency matrix, Laplacian matrix, and signless Laplacian matrix.

The paper is organized as follows. In Section 2, we list some previously known results.
Section 3 discusses the positive semidefiniteness of Bα-matrices. As a consequence, we
obtain an upper bound for the independence number. Then we present some bounds of
eigenvalues of Bα(G) in terms of maximum degree and minimum degree, chromatic num-
ber, etc., in Section 4. Besides, we obtain a lower bound for chromatic number and derive
several known results as consequences. Finally, we study the determinant and a Sachs-type
result for the characteristic polynomial of Bα(G) in Section 5.

2 Preliminaries
Let G be a simple graph with vertex set V (G) = {v1, v2, . . . , vn} and edge set E(G). If
two vertices vi and vj are adjacent, we write vi ∼ vj , and vivj denotes the edge between
them. The degree of a vertex vi is the number of edges adjacent to vi and is denoted by
dG(vi) or simply d(vi) or di. The minimum degree and the maximum degree of graph G
are denoted by δ(G) (or simply δ) and ∆(G) (or simply ∆), respectively. The complement
of a graph G is the graph G with vertex set V (G) and two vertices in G are adjacent if and
only if they are non-adjacent in G. The 0−1 incidence matrix of a graph G with n vertices
{v1, v2, . . . , vn} andm edges {e1, e2, . . . , em} is an n×mmatrixM whose (i, j)-th entry
is 1 if the vertex vi is incident on the edge ej and 0 otherwise.

The line graph of a graph G is the graph G` with vertex set E(G) and two vertices ei
and ej in G` are adjacent if the edges ei and ej have a common vertex in the graph G. The
identity matrix of order n is denoted by In (or simply I). An a × b matrix whose entries
are all ones is denoted by Ja,b (or simply J when the order is clearly understood). The
transpose of a matrix M is denoted by M t.

Lemma 2.1 ([2, Lemma 6.16]). Let G be a graph with line graph G`. If M is the 0 − 1
incidence matrix of G, then M tM = A(G`) + 2I . Moreover, if G is k-regular, then
MM t = A(G) + kI .

Since the eigenvalues of any n×n symmetric matrix S are real, we denote and ordered
the eigenvalues of S as follows:

λmax(S) = λ1(S) ≥ λ2(S) ≥ · · · ≥ λn(S) = λmin(S). (2.1)

For a graph G, sometimes we denote and arrange the eigenvalues of A(G), L(G) and
Q(G) as ρ1(G) ≥ ρ2(G) ≥ · · · ≥ ρn(G), µ1(G) ≥ µ2(G) ≥ · · · ≥ µn(G) and q1(G) ≥
q2(G) ≥ · · · ≥ qn(G), respectively. Next, we present the well known Weyl Theorem.

Theorem 2.2 ([17, Theorem 4.3.1]). If S1 and S2 are two Hermitian matrices of order n
and their eigenvalues are ordered as in (2.1). Then

λn+1−i(S1 + S2) ≤ λn+1−i−j(S1) + λj+1(S2), i = 1, 2, . . . , n; j = 0, 1, . . . , n− i.

Corollary 2.3. If S1 and S2 are two Hermitian matrices of order n and their eigenvalues
are ordered as in (2.1). Then

λn(S1) + λ1(S2) ≤ λ1(S1 + S2) ≤ λ1(S1) + λ1(S2).
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Let us recall the following upper bound of the largest eigenvalue of a Laplacian matrix.

Theorem 2.4 ([6]). Let G be a graph with the largest Laplacian eigenvalue µ1(G). Then

µ1(G) ≤ max
vivj∈E(G)

(di + dj).

Let S =

(
S11 S12

S21 S22

)
be a 2 × 2 block matrix, where S11 and S22 are square

matrices. If S11 is nonsingular, then the Schur complement of S11 in S is defined to be the
following matrix

S22 − S21S
−1
11 S12. (2.2)

Similarly, if S22 is nonsingular, then the Schur complement of S22 in S is S11 −
S12S

−1
22 S21. Let us recall the Schur complement formula for the determinant.

Theorem 2.5 ([2]). Let S =

(
S11 S12

S21 S22

)
be a 2× 2 block matrix, where S11 and S22

are square matrices and S11 is nonsingular. Then

detS = (detS11) det(S22 − S21S
−1
11 S12).

A matrix is irreducible if it is not similar via a permutation to a block upper triangular
matrix (that has more than one block of positive size). Note that the adjacency matrix of
a connected graph is always irreducible. Let S = (sij)n×m be a matrix, then we denote
|S| := (|sij |)n×m.

Theorem 2.6 ([17, Theorem 6.2.24]). A square matrix S of order n is irreducible if and
only if (I + |S|)n−1 > 0, entry-wise.

Theorem 2.7 ([17, Corollary 6.2.27]). Let S be an irreducibly diagonally dominant matrix
of order n. If S is Hermitian and every main diagonal entry is positive, then S is positive
definite.

3 Positive semidefiniteness of Bα(G)

Let G be a graph with Bα-matrix Bα(G) := αA(G) + (1 − α)L(G). In this section
we determine the values of α for which the matrix Bα(G) is positive semidefinite. As a
consequence, we give an upper bound of the independence number. Results obtained in
this section will be useful in the later sections.

For simplicity, we use the notation Bα, A, L, and D instead of Bα(G), A(G), L(G),
and D(G), respectively, when G is clear from the context. Some equivalent forms of Bα
in terms of A, L, and D are as follows:

Bα = αA+ (1− α)L

= (2α− 1)A+ (1− α)D

= (1− 2α)L+ αD.

Given two real matrices S = (sij)m×n and M = (mij)m×n, we use the notation
S ≥M if and only if sij ≥ mij for all i, j. For any connected graph G with n vertices and
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α (6= 1
2 ) ∈ [0, 1], we have

(I + |Bα|)n−1 = (I + |(2α− 1)A+ (1− α)D|)n−1

= (I + |2α− 1|A+ (1− α)D)n−1

≥ I + |2α− 1|A+ · · ·+ |2α− 1|n−1An−1. (3.1)

SinceG is connected, any two vertices vi and vj are joined by a path with length k ≤ n−1.
Therefore (i, j)-th entry of Ak, which counts the number of walks of length k connecting
vi and vj , is positive. Hence, from (3.1), (I + |Bα|)n−1 ≥ I + |2α − 1|A + · · · + |2α −
1|n−1An−1 > 0. Thus, by Theorem 2.6, Bα is irreducible for α (6= 1

2 ) ∈ [0, 1].
We begin the section with the following basic property of Bα(G).

Proposition 3.1. For any α ∈ [0, 1], eigenvalues of Bα(G) are real numbers.

Proof. SinceA(G) and L(G) are symmetric matrices, soBα(G) = αA(G)+(1−α)L(G)
is also a symmetric matrix. Hence, all the eigenvalues of Bα are real numbers for any
α ∈ [0, 1].

For a graph G, let λ1(Bα) ≥ · · · ≥ λn(Bα) be the eigenvalues of Bα(G). In the
following theorem, we prove that λk(Bα) is uniformly continuous for α ∈ [0, 1].

Theorem 3.2. Let Bα be the Bα-matrix of a graph G with n vertices. Then, for k ∈
{1, 2, . . . , n}, the mapping fG : [0, 1] → R defined as fG(α) = λk(Bα) is a uniformly
continuous function.

Proof. Let L and D be the Laplacian and the degree matrix of G, respectively. Then,
for any α, β ∈ [0, 1], we have Bα − Bβ = 2(β − α)L + (α − β)D. Then, for any
i ∈ {1, 2, . . . , n} and j ∈ {0, 1, . . . , n− i}, using Theorem 2.2, we obtain

λn+1−i(Bα) = λn+1−i(Bα +Bβ −Bβ)

≤ λn+1−i−j(Bα +Bβ) + λj+1(−Bβ)

= λn+1−i−j(Bα +Bβ)− λn−j(Bβ).

Thus, for any i ∈ {1, 2, . . . , n} and j ∈ {0, 1, . . . , n− i},

λn+1−i(Bα) + λn−j(Bβ) ≤ λn+1−i−j(Bα +Bβ) for all α, β ∈ [0, 1]. (3.2)

Assume that α ≤ β. By using (3.2) and Corollary 2.3, we compute

λk(Bα)− λk(Bβ) = λn+1−k(−Bβ) + λn−(n−k)(Bα)

≤ λn+1−k−(n−k)(−Bβ +Bα)

= λ1(Bα −Bβ)

≤ λ1(2(β − α)L) + λ1((α− β)D)

= 2(β − α)λ1(L) + (α− β)λn(D)

≤ |α− β|(2λ1(L) + λ1(D)).
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Also, by using (3.2) and Corollary 2.3, we obtain

λk(Bβ)− λk(Bα) ≤ λ1(Bβ −Bα)

≤ λ1(2(α− β)L) + λ1((β − α)D)

= 2(α− β)λn(L) + (β − α)λ1(D)

≤ |α− β|(2λ1(L) + λ1(D)).

Thus, |λk(Bβ)−λk(Bα)| ≤ |α−β|(2λ1(L)+λ1(D)). Hence, the mapping fG is uniformly
continuous.

Note that for a graph G (with at least an edge) on n vertices, λn(B 1
2
) = 1

2λn(D) ≥ 0

and λn(B1) = λn(A) ≤ 0. By Theorem 3.2, λn(Bα) is continuous, so there exists a
β ∈ (0, 1) such that λn(Bβ) = 0. Therefore, for a graph G (with at least an edge) on n
vertices, we define βo(G) := max{β ∈ (0, 1) : λn(Bβ) = 0}. It is simply denoted by βo
if the graph G is understood from the context.

Theorem 3.3. If G is a connected graph with n (> 1) vertices, then Bα is positive definite
for α ∈ (0, 2

3 ).

Proof. First we assume that 0 < α ≤ 1
2 . SinceG is connected and λn(Bα) = −λ1(−Bα),

by Corollary 2.3, we obtain

λn(Bα) = λn((1− 2α)L+ αD)

≥ (1− 2α)λn(L) + αλn(D)

= αλn(D) > 0.

Thus, Bα is positive definite for α ∈ (0, 1
2 ].

Next we assume that 1
2 < α < 2

3 . Then 0 < 2α − 1 < 1 − α. Now Bα = (2α − 1)A +
(1− α)D. Let (Bα)ij be the (i, j)-th entry of Bα. Then, for i ∈ {1, 2, . . . , n}, we have

|(Bα)ii| = |(1− α) di| = (1− α) di > (2α− 1) di = |2α− 1| di =

n∑
j=1, j 6=i

|(Bα)ij |.

Thus, Bα is strictly diagonally dominant with positive diagonal entries. Also, Bα is irre-
ducible. Therefore, by Theorem 2.7, Bα is positive definite for α ∈ ( 1

2 ,
2
3 ).

Corollary 3.4. If G is a graph with no isolated vertices, then Bα is positive definite for
α ∈ (0, 2

3 ).

Next corollary gives a lower bound of βo(G). For simplicity, we use βo instead of
βo(G).

Corollary 3.5. If G is a graph with no isolated vertices, then βo ≥ 2
3 .

Proof. By Theorem 3.2, fG(α) := λn(Bα) is continuous. By Corollary 3.4, λn(Bα) > 0
for α ∈ (0, 2

3 ). Also, λn(B1) < 0. Therefore, βo ≥ 2
3 .

Theorem 3.6. Let G be a graph with no isolated vertices. Then Bα is positive semidefinite
if and only if α ∈ [0, βo].
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Proof. Let G be a graph with n vertices {v1, v2, . . . , vn}. Set βo := βo(G). Suppose
α ∈ [0, βo]. For α ∈ (0, 2

3 ), by Corollary 3.4, Bα is positive definite. Assume that
2
3 ≤ α ≤ βo. Then −α ≥ −βo, that is, α (2βo − 1) ≥ βo (2α − 1) which implies
α

2α−1 ≥
βo

2βo−1 . Note that for any x = (x1, x2, . . . , xn)t ∈ Rn, we obtain

xtBα x = xt αD x + xt (1− 2α)Lx

= α

n∑
i=1

di x
2
i + (1− 2α)

∑
vjvi∈E(G)

(xi − xj)2. (3.3)

Then, for any x = (x1, x2, . . . , xn)t ∈ Rn and using (3.3), we obtain

0 ≤ xtBβo
x = βo

n∑
i=1

di x
2
i + (1− 2βo)

∑
vjvi∈E(G)

(xi − xj)2

which implies ∑
vjvi∈E(G)

(xi − xj)2 ≤ βo
2βo − 1

n∑
i=1

di x
2
i ≤

α

2α− 1

n∑
i=1

di x
2
i .

Thus,

xtBαx = α

n∑
i=1

di x
2
i + (1− 2α)

∑
vjvi∈E(G)

(xi − xj)2 ≥ 0 for any x ∈ Rn.

Hence,
λn(Bα) = min{xtBαx : x ∈ Rn, ‖x‖ = 1} ≥ 0.

Therefore, Bα is positive semidefinite for all α ∈ [0, βo].

To prove the converse, it is enough to prove that if α ∈ (βo, 1], then Bα is not positive
semidefinite. Suppose there exists an α ∈ (βo, 1] such that λn(Bα) ≥ 0. By Theorem 3.2,
the function fG(α) := λn(Bα) is continuous and λn(B1) < 0, so there exist a β ∈ [α, 1)
such that λn(Bβ) = 0. This contradicts that βo is the largest number in (0, 1) for which
λn(Bβo) = 0. Hence, λn(Bα) < 0 for all α ∈ (βo, 1].

A symmetric matrix M is called indefinite if there exist two nonzero vectors x and y
such that yTMy > 0 > xTMx, where xT denotes the transpose of x.

Corollary 3.7. For a graph G with no isolated vertices, Bα is indefinite if and only if
α ∈ (βo, 1].

Proof. First we assume that Bα is indefinite. Set βo := βo(G). Then λ1(Bα) > 0 and
λn(Bα) < 0. Thus, α ∈ (βo, 1].

Conversely, suppose α ∈ (βo, 1]. Then λn(Bα) < 0. Also, α > βo >
1
2 . Hence, by

Corollary 2.3, we have

λ1(Bα) = λ1((2α− 1)A+ (1− α)D)

≥ λ1((2α− 1)A) + λn((1− α)D)

= (2α− 1)λ1(A) + (1− α)λn(D)

> 0.

Hence, Bα is indefinite.
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In the next theorem, we find βo for regular graphs.

Theorem 3.8. If G is an r-regular graph with smallest adjacency eigenvalue ρn(G). Then

βo(G) =
r − ρn(G)

r − 2ρn(G)
.

Proof. Set βo := βo(G). Then

0 = λn(Bβo) = λn

(
(2βo − 1)A+ (1− βo)D

)
= λn

(
(2βo − 1)A+ (1− βo)rI

)
= (2βo − 1)λn(A) + (1− βo)r.

This gives βo =
r − λn(A)

r − 2λn(A)
.

Let us recall the following Hoffman bound of independence number α(G) of an r-
regular graph G with n vertices in terms of ρn(G).

α(G) ≤ − ρn(G)

r − ρn(G)
n.

In light of the above result, we obtain a close relation between the independence number
α(G) of a regular graph G and βo(G).

Proposition 3.9. Let G be an r-regular graph of n vertices with independence number
α(G) and βo := βo(G). Then

α(G) ≤ n
(

1− βo
βo

)
.

4 On eigenvalues
The spectral radius of a matrix is the maximum value among the absolute values of all
eigenvalues of that matrix. For any Bα-matrix, we first show a partial Perron-Frobenius
type result (that is, λ1(Bα) is the spectral radius of Bα). Then we compute the eigenvalues
of Bα(G) for complete graph and complete bipartite graph. Thereafter, we obtain some
lower and upper bounds on the largest eigenvalue of Bα(G) of graph G in terms of ∆ and
δ. As a consequence, we deduce some known results. In addition, we establish an upper
bound on the smallest eigenvalue of Bα(G) in terms of the chromatic number. Finally, we
derive a bound on the chromatic number in terms of βo(G).

It is to be observed that Bα-matrices are not always non-negative. Therefore, Perron-
Frobenius Theorem is not directly applicable. However, we can still conclude that the
spectral radius of a Bα-matrix is the same as its largest eigenvalue.

Theorem 4.1. For any α ∈ [0, 1], the spectral radius of Bα of a connected graph G is
λ1(Bα).

Proof. For α ∈ [0, 1
2 ], Bα is positive semidefinite by Theorem 3.3. Hence, λ1(Bα) is the

spectral radius of Bα. Let α ∈ ( 1
2 , 1]. Then 2α−1 > 0 and henceBα = (2α−1)A+(1−

α)D is a non-negative matrix. Also, Bα is irreducible. Therefore, by Perron-Frobenius
Theorem, λ1(Bα) is the spectral radius of Bα.
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4.1 The spectrum of Bα-matrix for complete and complete bipartite graphs

In this subsection, we determine the eigenvalues of Bα-matrices of the complete graph and
the complete bipartite graph.

Proposition 4.2. If G is a complete graph with n vertices, then eigenvalues of Bα(G) are
(1− α)n− α with multiplicity n− 1 and (n− 1)α with multiplicity 1.

A complete bipartite graph with vertex partition size a and b is denoted by Ka,b. Since
the eigenvalues of the adjacency matrix of a complete bipartite graph are known, so we
compute the eigenvalues of Bα(Ka,b) for α ∈ [0, 1).

Proposition 4.3. For α ∈ [0, 1), the eigenvalues ofBα(Ka,b) are (1−α)a with multiplicity
b− 1, (1− α)b with multiplicity a− 1, and
(1− α)(a+ b)±

√
(1− α)2(a− b)2 + 4(2α− 1)2ab

2
.

Proof. Let Ja,b and Jb,a be the square matrices of order a × b and b × a, respectively, of
all ones. Then

Bα(Ka,b) = Bα = (2α− 1)A+ (1− α)D

= (2α− 1)

(
0 Ja,b

Jb,a 0

)
+ (1− α)

(
bIa 0

0 aIb

)

=

(
(1− α)bIa (2α− 1)Ja,b

(2α− 1)Jb,a (1− α)aIb

)
.

For i ∈ {2, 3, . . . , a}, let the vector x(i) = (xi1, x
i
2, . . . , x

i
a+b)

t of order a+ b be defined as

xij =


1 for j = 1,

−1 for j = i,

0 otherwise.

Then {x(2),x(3), . . . ,x(a)} is a linearly independent set of eigenvectors corresponding to
the eigenvalue (1− α)b. Thus, Bα has eigenvalue (1− α)b with multiplicity a− 1.

For i ∈ {a + 2, a + 3, . . . , a + b}, let the vector x(i) = (xi1, x
i
2, . . . , x

i
a+b)

t of order
a+ b be defined as

xij =


1 for j = a+ 1,

−1 for j = i,

0 otherwise.

Then {x(a+2),x(a+3), . . . ,x(a+b)} is a linearly independent set of eigenvectors corre-
sponding to the eigenvalue (1− α)a. Thus, Bα has eigenvalue (1− α)a with multiplicity
b− 1.
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Let α ∈ [0, 1). Then, by using Theorem 2.5, we compute

det(Bα) =

∣∣∣∣∣ (1− α) b Ia (2α− 1) Ja,b

(2α− 1) Jb,a (1− α) a Ib

∣∣∣∣∣
= det

(
(1− α) b Ia

)
det

(
(1− α)a Ib − (2α− 1) Jb,a

(
(1− α) b Ia

)−1

(2α− 1) Ja,b

)

= (1− α)a ba det

(
(1− α)aIb − (2α− 1)2Jb,a

1

(1− α)b
IaJa,b

)

= (1− α)a ba det

(
(1− α)aIb −

a(2α− 1)2

(1− α)b
Jb,b

)

= (1− α)a ba(1− α)b−1 ab−1

(
(1− α) a− a (2α− 1)2

(1− α)

)
.

Let x and y be the remaining eigenvalues of Bα(Ka,b). Then

xy
(

(1− α) a
)b−1(

(1− α) b
)a−1

=

= (1− α)a ba (1− α)b−1 ab−1

(
(1− α) a− a (2α− 1)2

(1− α)

)
.

Thus we obtain

xy = b(1− α)

(
(1− α)a− a(2α− 1)2

(1− α)

)
= (1− α)2ab− (2α− 1)2ab. (4.1)

Since the sum of the eigenvalues is equal to the trace of the matrix, we obtain

x+ y + (b− 1)(1− α)a+ (a− 1)(1− α)b = (1− α)ab+ (1− α)ab,

that is, x = (1− α)(a+ b)− y. Substitute the value of x in (4.1), we obtain

y2 − (1− α)(a+ b)y + (1− α)2ab− (2α− 1)2ab = 0.

This gives

y =
(1− α)(a+ b)±

√
(1− α)2(a− b)2 + 4(2α− 1)2ab

2
.

Hence the eigenvalues of Bα(Ka,b) are (1 − α)a with multiplicity b − 1, (1 − α)b with

multiplicity a− 1 and
(1− α)(a+ b)±

√
(1− α)2(a− b)2 + 4(2α− 1)2ab

2
.
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4.2 Bounds on the largest eigenvalue

For a connected graph G with vertex set V (G) = {v1, v2, . . . , vn}, the distance between
two vertices vi and vj is denoted by d(vi, vj) and is defined to be the length of the short-
est path between them. We now establish some lower and upper bounds on the largest
eigenvalue of Bα(G) of graph G.

Theorem 4.4. Let G be a connected graph with the minimum degree δ. Then, for any
α ∈ [0, 1]

λ1(Bα) ≥ αδ.

Proof. First we assume that α ∈ [0, 1
2 ], that is, 2α − 1 ≤ 0. Let x = (x1, x2, . . . , xn)t ∈

Rn be an eigenvector of Bα corresponding to λ1(Bα) such that xk = min
1≤i≤n

xi < 0. Then

λ1(Bα)xk = (2α− 1)
∑

vj :vkvj∈E(G)

xj + (1− α)dkxk ≤ (2α− 1) dkxk + (1− α)dk xk

= αdkxk.

Therefore, λ1(Bα) ≥ αdk ≥ αδ.
Next we assume that α ∈ ( 1

2 , 1], that is, 2α − 1 > 0. Then Bα is irreducible and
non-negative. Therefore, by Perron-Frobenius Theorem, Bα has a Perron eigenvector x =
(x1, x2, . . . , xn)t > 0 corresponding to the eigenvalue λ1(Bα). Let xk = min

1≤i≤n
xi > 0.

Then we have

λ1(Bα)xk = (2α− 1)
∑

vj :vjvk∈E(G)

xj + (1− α)dkxk ≥ (2α− 1)dkxk + (1− α)dkxk

= αdkxk.

Thus, λ1(Bα) ≥ αdk ≥ αδ, for α ∈ ( 1
2 , 1]. Hence, λ1(Bα) ≥ αδ for all α ∈ [0, 1].

Let NG(v1) denote the set of vertices of G which are adjacent to v1. Let NG[v1] :=
NG(v1) ∪ {v1}.

Theorem 4.5. Let G be a graph with at least one edge and maximum degree ∆. Then, for
any α ( 6= 1

2 ) ∈ [0, 1],

λ1(Bα) ≥ Y

Z
,

where Y and Z are given by

Y =
[
α2 (3α− 1)2 (∆ + 1)2

(
2αm2 + (1− α)m3

)
+ (1− α) (2α− 1)2

× (2∆ + 5α− 3α2)2 ∆
]
P 2 + 4 (2α− 1)2 (∆ + 1)

[
(2α− 1) ∆ (2∆ + 5α− 3α2)

+ α (3α− 1) (∆ + 1)m3

]
PQ+ 4 (2α− 1)2 (∆ + 1)2

[
2αm1 + (1− α) (∆ +m3)

]
Q2,

(4.2)
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Z =
[
(2α− 1)2 (2∆ + 5α− 3α2)2 + α2 (3α− 1)2 (∆ + 1)2 (n−∆− 1)

]
P 2

+ 4∆ (∆ + 1)2 (2α− 1)2Q2 (4.3)

with

P = (2α− 1)
(

(α− 1) (3α− 2) ∆ + 2
)

and Q = 16α2 − 6α3 − 10α+ 2, (4.4)

andm1 = |E(NG(v1))|, is the number of edges in the setNG(v1),m2 = |E(V (G)\NG[v1])|,
is the number of edges in the set V (G)\NG[v1],m3 is the number of edges betweenNG(v1)
and V (G)\NG[v1], and the vertex v1 has degree ∆.

Proof. Let v1 be the maximum degree vertex of degree ∆ inG. Also let S = {v2, v3, . . . , v∆+1}
be the set of vertices adjacent to v1 inG. Let x = (x1, x2, . . . , xn)t be any non-zero vector.
Using Rayleigh quotient, we obtain

xtBαx ≤ λ1(Bα)xtx, that is, λ1(Bα) ≥
2α

∑
vivj∈E(G)

xixj + (1− α)
∑

vivj∈E(G)

(xi − xj)2

n∑
i=1

x2
i

.

(4.5)

We consider the following two cases:

Case1. (α−1) (3α−2) ∆+2 6= 0. In this case P = (2α−1)
(

(α−1) (3α−2) ∆+2
)
6= 0

as α 6= 1
2 . Setting

xi =



1− 2− 5α+ 3α2

2(∆ + 1)
for i = 1,

16α2 − 6α3 − 10α+ 2

(2α− 1)
(

(α− 1) (3α− 2) ∆ + 2
) for i = 2, 3, . . . ,∆ + 1,

α(3α− 1)

2(2α− 1)
Otherwise.

(4.6)

Since m1 = |E(NG(v1))|, m2 = |E(V (G)\NG[v1])|, and m3 is the number of edges
between NG(v1) and V (G)\NG[v1], we obtain

∑
vivj∈E(G)

xixj =
(2∆ + 5α− 3α2) (16α2 − 6α3 − 10α+ 2)

2(∆ + 1) (2α− 1)
(

(α− 1) (3α− 2) ∆ + 2
) ∆

+
(16α2 − 6α3 − 10α+ 2)2

(2α− 1)2
(

(α− 1) (3α− 2) ∆ + 2
)2 m1 +

α2 (3α− 1)2

4 (2α− 1)2
m2

+
α(3α− 1) (16α2 − 6α3 − 10α+ 2)

2(2α− 1)2
(

(α− 1) (3α− 2) ∆ + 2
) m3,
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∑
vivj∈E(G)

(xi − xj)2 =

 (2∆ + 5α− 3α2)

2(∆ + 1)
− 16α2 − 6α3 − 10α+ 2

(2α− 1)
(

(α− 1) (3α− 2) ∆ + 2
)
2

∆

+

 16α2 − 6α3 − 10α+ 2

(2α− 1)
(

(α− 1) (3α− 2) ∆ + 2
) − α(3α− 1)

2(2α− 1)

2

m3,

and
n∑
i=1

x2
i =

(2∆ + 5α− 3α2)2

4(∆ + 1)2
+

(16α2 − 6α3 − 10α+ 2)2

(2α− 1)2
(

(α− 1) (3α− 2) ∆ + 2
)2 ∆

+
α2(3α− 1)2

4(2α− 1)2
(n−∆− 1).

Using the above results in (4.5), we obtain

λ1(Bα) ≥ Y

Z
as

2α
∑

vivj∈E(G)

xixj + (1− α)
∑

vivj∈E(G)

(xi − xj)2 =
Y

4 (2α− 1)2 (∆ + 1)2 P 2

and
n∑
i=1

x2
i =

Z

4 (2α− 1)2 (∆ + 1)2 P 2
,

where Y , Z and P are given by (4.2), (4.3) and (4.4), respectively. Moreover, the equality
holds if and only if x = (x1, x2, . . . , xn)t is an eigenvector corresponding to the eigenvalue
λ1(Bα) of Bα, where xi is given in (4.6).

Case2. (α−1) (3α−2) ∆+2 = 0. In this case P = (2α−1)
(

(α−1) (3α−2) ∆+2
)

= 0.
Thus we obtain

Y = 4 (2α−1)2 (∆+1)2
[
2αm1+(1−α) (∆+m3)

]
Q2 and Z = 4∆ (∆+1)2 (2α−1)2Q2.

Setting

xi =


0 for i = 1,

1 for i = 2, 3, . . . ,∆ + 1,

0 Otherwise.

Since m1 = |E(NG(v1))|, m2 = |E(V (G)\NG[v1])|, and m3 is the number of edges
between NG(v1) and V (G)\NG[v1], we obtain∑

vivj∈E(G)

xixj = m1,
∑

vivj∈E(G)

(xi − xj)2 = ∆ +m3 and
n∑
i=1

x2
i = ∆.
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Using the above results in (4.5), we obtain

λ1(Bα) ≥ 2αm1 + (1− α) (∆ +m3)

∆
=
Y

Z
.

Moreover, the equality holds if and only if x = (0, 1, . . . , 1︸ ︷︷ ︸
∆

, 0, . . . , 0︸ ︷︷ ︸
n−∆−1

)t is an eigenvector

corresponding to the eigenvalue λ1(Bα) of Bα.

Corollary 4.6. Let G be a graph of order n with m edges and maximum degree ∆. Then

ρ1(G) ≥ 2m

n

with equality if and only if G is a regular graph.

Proof. For adjacency matrix, α = 1, that is, B1 = B1(G) = A(G). For α = 1, from
Theorem 4.5, we obtain

P = 2 = Q, Y = 32 (∆+1)2 (∆+m1+m2+m3) = 32 (∆+1)2m and Z = 16 (∆+1)2 n

and hence
ρ1(G) = λ1(B1) ≥ Y

Z
=

2m

n
.

Moreover, the equality holds if and only if x = (1, 1, . . . , 1)
t is an eigenvector corre-

sponding to the eigenvalue λ1(B1) (= ρ1(G)) of B1, that is, if and only if G is a regular
graph.

Corollary 4.7. Let G be a graph of order n with m edges and maximum degree ∆. Then

µ1(G) ≥ ∆ + 1.

If G is connected, then the above equality holds if and only if ∆ = n− 1.

Proof. For Laplacian matrix, α = 0, that is, B0 = B0(G) = L(G). For α = 0, from
Theorem 4.5, we obtain

P = −2 (∆+1), Q = 2, Y = 16 ∆(∆+1)2
(

(∆+1)2 +
m3

∆

)
and Z = 16 ∆ (∆+1)3.

and hence
µ1(G) = λ1(B0) ≥ Y

Z
= ∆ + 1 +

m3

∆ (∆ + 1)
≥ ∆ + 1

as m3 ≥ 0.
Suppose that G is connected. Then the equality holds if and only if

x =

 ∆

∆ + 1
,− 1

∆ + 1
, . . . ,− 1

∆ + 1︸ ︷︷ ︸
∆

, 0, . . . , 0︸ ︷︷ ︸
n−∆−1


t

is an eigenvector corresponding to the

eigenvalue λ1(B0) (= µ1(G)) of B0 and m3 = 0. Since G is connected, then ∆ = n− 1.
If ∆ = n− 1, then one can easily see that µ1(G) = n = ∆ + 1. This completes the proof
of the result.
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Corollary 4.8. Let G be a graph of order n with m edges and maximum degree ∆. Then

q1(G) ≥ 4m

n

with equality if and only if G is a regular graph.

Proof. For signless Laplacian matrix, α = 2
3 , that is, B2/3 = B2/3(G) = 1

3 Q(G). For
α = 2

3 , from Theorem 4.5, we obtain

P =
2

3
= Q, Y =

64

243
(∆+1)2 (∆+m1+m2+m3) =

64

243
(∆+1)2m, Z =

16

81
(∆+1)2 n

and hence
1

3
q1(G) = λ1(B2/3) ≥ Y

Z
=

4m

3n
, that is, q1(G) ≥ 4m

n
.

Moreover, the equality holds if and only if x = (1, 1, . . . , 1)
t is an eigenvector correspond-

ing to the eigenvalue λ1(B2/3) (= 1
3 q1(G)) of B2/3, that is, if and only if G is a regular

graph.

The lower bounds found in Corollaries 4.6-4.8 are classical. One can find all of them
in [26].

Remark 4.9. In the following Table, we give a comparison between the exact value of
λ1(Bα) (Proposition 4.3) and the lower bound on λ1(Bα) obtained in Theorem 4.5 for the
graph G = K1,24.

α Exact value of λ1(Bα) Y
Z

0 25 25

0.1 22.317 22.317

0.2 19.658 19.654

0.3 17.035 16.997

0.4 14.469 13.675

0.6 9.703 1.978

0.7 7.718 0.936

0.8 6.232 0.250

0.9 5.334 0.361

1 4.899 1.92

Table 1. Comparison of the largest eigenvalue λ1(Bα) and Y
Z .

Next, we observe that the following upper bound is continuous on α.

Theorem 4.10. Let G be a connected graph with maximum degree ∆. Then, for any
α ∈ [0, 1],

λ1 (Bα) ≤

(2− 3α) ∆ if α ∈ [0, 1
2 ],

α∆ if α ∈ ( 1
2 , 1].
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Proof. First we assume that α ∈ [0, 1
2 ]. Then, by using α ≥ 0, (1−2α) ≥ 0, Corollary 2.3,

and Theorem 2.4, we have

λ1(Bα) = λ1

(
αD + (1− 2α)L

)
≤ λ1(αD) + λ1

(
(1− 2α)L

)
≤ α∆ + (1− 2α)(2∆).

That is, λ1(Bα) ≤ (2− 3α)∆ for all α ∈ [0, 1
2 ].

Next we assume that α ∈ ( 1
2 , 1]. That is, 2α− 1 > 0. Let x = (x1, x2, . . . , xn)t be an

eigenvector of Bα corresponding to the eigenvalue λ1(Bα) such that xk = max
1≤i≤n

xi > 0.

Then we obtain

λ1(Bα)xk = (2α− 1)
∑

vj :vjvk∈E(G)

xj + (1− α) dk xk

≤ (2α− 1) dk xk + (1− α) dk xk

= αdk xk

≤ α∆xk.

Therefore, λ1(Bα) ≤ α∆ for all α ∈ ( 1
2 , 1].

For α ∈ [0, 1] and non-negative integers a and b, define

fα(a, b) =
(1− α) (a+ b) +

√
(1− α)2 (a− b)2 + 4(2α− 1)2 ab

2
.

Theorem 4.11. Let G = (U, W, E) be a connected bipartite graph, where |U | = a,
|W | = b. For α ∈ [0, 1],

λ1(Bα) ≤ fα(a, b) (4.7)

with equality if and only if G ∼= Ka,b.

Proof. Without loss of generality, assume that a ≥ b. Now, from Proposition 4.3, we have
fα(a, b) = λ1(Bα(Ka,b)). Since, by definition, B0 = B0(G) = L(G) and G ⊆ Ka,b, by
(edge) interlacing and Proposition 4.3,

λ1(B0) = µ1(G) ≤ a+ b = f0(a, b).

Since B 1
2

= B 1
2
(G) = 1

2 D(G), we have

λ1(B 1
2
) =

1

2
∆(G) ≤ 1

2
∆(Ka,b) =

1

2
a = f 1

2
(a, b).

As B1 = B1(G) = A(G), by (vertex) interlacing and Proposition 4.3, we have

λ1(B1) = ρ1(G) ≤ ρ1(Ka,b) = f1(a, b).

So we have to prove the result in (4.7) for 0 < α < 1
2 and 1

2 < α < 1. Let x =
(x1, x2, . . . , xn)T be an eigenvector corresponding to the largest eigenvalue λ1(Bα) of
Bα. Then Bαx = λ1(Bα)x. We consider two cases:

Case1. 1
2 < α < 1. Let xi = max

1≤k≤n
xk. Without loss of generality, we can assume that

vi ∈ U . Let xj = max
vk∈W

xk. For vi ∈ U , we obtain

λ1(Bα)xi = (1− α) dixi + (2α− 1)
∑

vk:vivk∈E(G)

xk ≤ (1− α) dixi + (2α− 1) dixj ,
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that is, [
λ1(Bα)− (1− α) di

]
xi ≤ (2α− 1) dixj . (4.8)

Similarly, for vj ∈W , we obtain[
λ1(Bα)− (1− α) dj

]
xj ≤ (2α− 1) djxi. (4.9)

From the above two results, we obtain[
λ1(Bα)−(1− α) b

] [
λ1(Bα)− (1− α) a

]
≤

≤
[
λ1(Bα)− (1− α) di

] [
λ1(Bα)− (1− α) dj

]
≤(2α− 1)2 di dj ≤ (2α− 1)2 ab. (4.10)

Thus we obtain

λ1(Bα)2 − (1− α) (a+ b)λ1(Bα) + (1− α)2 ab− (2α− 1)2 ab ≤ 0,

that is,

λ1(Bα) ≤
(1− α) (a+ b) +

√
(1− α)2 (a− b)2 + 4(2α− 1)2 ab

2
= fα(a, b).

The first part of the proof is done.

Suppose that equality holds. Then all inequalities in the above argument must be equal-
ities. From equalities in (4.8) and (4.9), we obtain xk = xi for all vk ∈ NG(vj) ⊆ U and
x` = xj for all v` ∈ NG(vi) ⊆ W . From equality in (4.10), we obtain di = b and dj = a.
Since G is a connected bipartite graph, one can easily prove that xk = xi for all vk ∈ U
and x` = xj for all v` ∈W . For vi, vk ∈ U , we have

λ1(Bα)xi = (1− α) dixi + (2α− 1)
∑

vk:vivk∈E(G)

xk = b
[
(1− α)xi + (2α− 1)xj

]
and

λ1(Bα)xi = dk

[
(1− α)xi + (2α− 1)xj

]
.

Thus we have

b
[
(1− α)xi + (2α− 1)xj

]
= dk

[
(1− α)xi + (2α− 1)xj

]
,

that is, (
b− dk

) [
(1− α)xi + (2α− 1)xj

]
= 0.

Since all the elements in Bα are non-negative, by Perron-Frobenius theorem in matrix
theory, we obtain that all the eigencomponents corresponding to the spectral radius λ1(Bα)
are non-negative. SinceG is connected, xi ≥ xj > 0. From the above with 1

2 < α < 1, we
must have dk = b for any vk ∈ U . Similarly, d` = a for any v` ∈W . Hence G ∼= Ka,b.

Case2. 0 < α < 1
2 . Let xi = max1≤k≤n xk. Without loss of generality, we can assume

that vi ∈ U . Let xj = minvk:vivk∈E(G) xk. For vi ∈ U , we obtain

λ1(Bα)xi = (1− α) dixi + (2α− 1)
∑

vk:vivk∈E(G)

xk ≤ (1− α) dixi + (2α− 1) dixj ,
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that is, [
λ1(Bα)− (1− α) di

]
xi ≤ (2α− 1) dixj .

Similarly, for vj ∈W , we obtain[
λ1(Bα)− (1− α) dj

]
xj ≥ (2α− 1) djxi.

Since α < 1
2 , from the above two results, we obtain[

λ1(Bα)− (1− α) di

] [
λ1(Bα)− (1− α) dj

]
xi

≤(2α− 1) di

[
λ1(Bα)− (1− α) dj

]
xj

≤(2α− 1)2 di dj xi,

that is, [
λ1(Bα)− (1− α) di

] [
λ1(Bα)− (1− α) dj

]
≤ (2α− 1)2 di dj ,

that is, [
λ1(Bα)− (1− α) b

] [
λ1(Bα)− (1− α) a

]
≤ (2α− 1)2 ab.

Thus we obtain

λ1(Bα)2 − (1− α) (a+ b)λ1(Bα) + (1− α)2 ab− (2α− 1)2 ab ≤ 0,

that is,

λ1(Bα) ≤
(1− α) (a+ b) +

√
(1− α)2 (a− b)2 + 4(2α− 1)2 ab

2
= fα(a, b).

Suppose that equality holds. Similarly as Case1, one can easily prove that G ∼= Ka,b.

Conversely, let G ∼= Ka,b. By Proposition 4.3, we obtain

λ1(Bα) =
(1− α) (a+ b) +

√
(1− α)2 (a− b)2 + 4(2α− 1)2 ab

2
= fα(a, b).

This completes the proof of the theorem.

4.3 Bounds on the smallest eigenvalue

We establish an upper bound on the smallest eigenvalue of a Bα-matrix in terms of the
chromatic number. Then, we characterize the extremal graphs for some cases. Finally,
some known results are derived as a consequence.

Theorem 4.12. Let G be a graph of n vertices, m (> 0) edges and chromatic number χ.
Then, for any α ∈ [0, 1],

λn (Bα) ≤ 2m

n

(
χ (1− α)− α

χ− 1

)
. (4.11)
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Proof. Set Bα := Bα(G). Partition the vertex set V (G) as χ number of subsets V1, V2,
. . . , Vχ, where each subset contains the vertices having the same colour. For each j ∈
{1, 2, . . . , χ}, define a vector x := (x1, x2, . . . , xn)t as follows:

xi =

{
χ− 1 for vi ∈ Vj

−1 otherwise.

Then

||x|| 2 =

n∑
i=1

x2
i = (χ− 1)2 |Vj |+ (n− |Vj |) = χ (χ− 2) |Vj |+ n.

For j ∈ {1, 2, . . . , χ}, define mj =
∑
v∈Vj

d(v). Now,

〈Bαx, x〉 = 〈(2α− 1)Ax, x〉+ 〈(1− α)Dx, x〉.

Note that
〈Ax, x〉 = 2

∑
vivj∈E(G)

xi xj = 2 (1− χ)mj + 2 (m−mj)

and

〈Dx, x〉 =
∑
vi∈V

di x
2
i = (χ− 1)2mj + (2m−mj) = χ (χ− 2)mj + 2m.

Thus we obtain

〈Bαx, x〉 = (2α− 1) 〈Ax, x〉+ (1− α) 〈Dx, x〉
= 2 (2α− 1) (1− χ)mj + 2 (2α− 1) (m−mj) + (1− α)χ (χ− 2)mj

+ 2 (1− α)m

= 2mα+
(
χ− α (χ+ 2)

)
χmj .

Using Rayleigh quotient, we obtain

λn (Bα) ||x||2 ≤ 〈Bαx, x〉.

Therefore, by the above inequalities, we have

λn(Bα)
(
χ (χ− 2) |Vj |+ n

)
≤ 2mα+

(
χ− α (χ+ 2)

)
χmj ,

that is,
χ∑
j=1

λn(Bα)
(
χ (χ− 2) |Vj |+ n

)
≤

χ∑
j=1

(
2mα+

(
χ− α (χ+ 2)

)
χmj

)
,

that is,
λn(Bα)

(
(χ2 − 2χ)n+ nχ

)
≤ 2χ2m− 2αχ2m− 2mχα.

Therefore,

λn (Bα) ≤ 2m

n

(
χ (1− α)− α

χ− 1

)
.
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In the next couple of results, we partially characterize the graphs attaining the equality
in (4.11) of Theorem 4.12. The proofs technique is similar to the one used in [21].

Theorem 4.13. Let G be a bipartite graph of n vertices with m edges. Then, for any
α ∈ [0, 1],

λn(Bα) ≤ 2m

n
(2− 3α). (4.12)

Equality occurs if and only if either α = 2
3 , or G is regular with α ≥ 1

2 .

Proof. Set λn := λn(Bα). For any x = (x1, x2, . . . , xn)t ∈ Rn, by Rayleigh quotient, we
obtain

λn x
t x ≤ xtBα x that is, λn

n∑
i=1

x2
i ≤ α

n∑
i=1

di x
2
i +(1−2α)

∑
vivj∈E(G), i<j

(xi−xj)2.

Let V (G) = V1 ∪ V2 be the vertex partition of G such that no two vertices of V1 (resp V2)
are adjacent. Take x = (x1, x2, . . . , xn)t, where the component xi = 1 if vi ∈ V1, and
xi = −1 otherwise. Then

λn(Bα) ≤ 2m

n
(2− 3α).

The first part of the proof is done.

If the equality holds in (4.12), then Bα x = λnx. Suppose vi ∈ V1 and vj ∈ V2. From
the i-th and j-th equation of Bαx = λnx, we obtain

λn = di(2− 3α) and λn = dj(2− 3α), that is, ( di − dj )(2− 3α) = 0.

Therefore, for the arbitrariness of vi and vj , either α = 2
3 or G is regular. If G is r-regular

and α < 1
2 , then

λn(Bα) = λn

(
(1−α)D+ (2α− 1)A

)
= (1−α) r+ (2α− 1) ρ1 = α r <

2m

n
(2− 3α)

as ρ1 = r (G is bipartite). Hence either α = 2
3 , or G is regular with α ≥ 1

2 .

Conversely, let α = 2
3 . Then Q(G) = 3B 2

3
(G) and hence λn(B 2

3
) = 1

3 qn(G) = 0 =
2m
n (2− 3α) as G is bipartite.

Let G be a r-regular bipartite graph with α ≥ 1
2 . Then ρn = −r. Since α ≥ 1

2 , we
obtain

λn(Bα) = λn

(
(1−α)D+(2α−1)A

)
= (1−α) r+(2α−1) ρn = (2−3α) r =

2m

n
(2−3α).

In [21], the authors defined a class of graphs Λ in the following:
Let Λ be the class of graphs H = (V,E) such that H is a regular χ-partite graph

(χ ≥ 3) with n/χ vertices in every part, where χ|n, and every vertex has d
χ−1 adjacent

vertices in every other part (d is the degree of each vertex in H).
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Theorem 4.14. Let G be a graph with chromatic number χ such that

λn (Bα) =
2m

n

(
χ (1− α)− α

χ− 1

)
. (4.13)

where 0 ≤ α ≤ 1. Then

(1) for α = 1
2 , G is regular,

(2) for χ = 2, G is bipartite with α = 2
3 , or G is regular bipartite with α ≥ 1

2 .

(3) for α ∈ [0, 1]
(
α 6=

{
1
2 ,

χ
χ+1

}
, χ ≥ 3

)
, G ∈ Λ.

Proof. (1) Suppose that α = 1
2 . Then by Remark 1.1 and (4.13), we obtain δ

2 = λn(B 1
2
) =

m
n , that is, 2m = n δ, that is, nδ ≤

n∑
i=1

di = 2m = nδ, that is,
n∑
i=1

di = nδ, that is, G is

regular.

(2) Suppose χ = 2. Then λn(Bα) = 2m
n (2 − 3α). By Theorem 4.13, G is bipartite with

α = 2
3 , or G is regular bipartite with α ≥ 1

2 .

(3) We assume that α ∈ [0, 1] and α 6=
{

1
2 ,

χ
χ+1

}
with χ ≥ 3.

Set λn := λn(Bα). Let us partition the vertex set V (G) into χ number of color classes
V1, V2, . . . , Vχ. For j ∈ {1, 2 . . . , χ}, define x(j) := (xj1, x

j
2, . . . , x

j
n) as follows:

xji =

{
χ− 1 for vi ∈ Vj ,

−1 otherwise.

Then by Theorem 4.12, λn (Bα) ≤ 2m
n

(
χ (1−α)−α

χ−1

)
. Since equality occurs in the above

inequality, so by Rayleigh quotient and Theorem 4.12, x(1), . . . ,x(χ) are all eigenvectors
of Bα corresponding to the eigenvalue λn.

Claim1 : G is regular.
Let 1 ≤ k 6= ` ≤ χ. Suppose vs ∈ Vk and vt ∈ V`. Comparing the s-th components
of the matrix equation Bαx(k) = λnx

(k), we obtain λn(χ − 1) = ds (χ − αχ − α).
Similarly, comparing the t-th components of the matrix equation Bαx(`) = λnx

(`), we
have λn(χ − 1) = dt (χ − αχ − α). Then (ds − dt)(χ − αχ − α) = 0. Since α 6= χ

χ+1
and vs, vt are arbitrary, so G is regular.

Claim2 : |V1| = · · · = |Vχ| = n
χ , where χ|n.

By Claim 1, G is regular, so 1 := (1, 1, . . . , 1)t is an eigenvector of Bα. Also, Bα is
symmetric, so 1 ⊥ x(k) for k = 1, 2, . . . , χ. Therefore, |Vk|(χ− 1) + (−1)(n−|Vk|) = 0.
That is, |Vk| = n

χ , for k = 1, 2, . . . , χ.

Claim3 : Every vertex is adjacent to d
χ−1 vertices in every other part, where d is the

regularity of G.
Suppose vs ∈ V1 and it is adjacent with r2, r3, . . . , rχ number of vertices in the partitions
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V2, V3, . . . , Vχ, respectively. For vs ∈ V1, from Bαx
(k) = λn x

(k), we obtain

(−1)λn = (1− α)(−1)ds + (2α− 1)

 χ∑
i=2,i6=k

(−1)ri + (χ− 1)rk

 ,

where 2 ≤ k ≤ χ. From this we have the following χ− 1 equations:

(−1)λn = (1− α)(−1)ds + (2α− 1)
(

(χ− 1)r2 + (−1)r3 + · · ·+ (−1)rχ

)
(−1)λn = (1− α)(−1)ds + (2α− 1)

(
(−1)r2 + (χ− 1)r3 + · · ·+ (−1)rχ

)
· · · · · · · · ·
· · · · · · · · ·

(−1)λn = (1− α)(−1)ds + (2α− 1)
(

(−1)r2 + (−1)r3 + · · ·+ (χ− 1)rχ

)
.

Since α 6= 1
2 , so from the above, we have r2 = r3 = · · · = rχ = d

χ−1 as G is regular by
Claim1. Also vs is arbitrary, therefore the Claim3 is done.

Hence G ∈ Λ.

In the next result, we partially obtain the converse of the Theorem 4.14. One can verify
that if α = 1

2 and G is regular, then the equality (4.13) holds. Moreover, the equality
(4.13) holds for any bipartite graph with α = 2

3 , or any regular bipartite graph with α ≥ 1
2 .

Therefore, we consider the remaining converse part of the Theorem 4.14. Since the proof
technique of the following result is similar to [21, Theorem 5.1], we omit the proof.

Theorem 4.15. If G ∈ Λ and α ( 6= 1
2 ) ∈ [0, 1], then

2m

n

(
χ(1− α)− α

χ− 1

)
is an eigen-

value of Bα(G) with multiplicity χ− 1.

The next result is known (see to [12]); however, it can be deduced from Theorem 4.12
by taking α = 2

3 .

Corollary 4.16 ([12]). Let G be graph of order n with m edges and chromatic number χ.
Then

qn(G) ≤ 2m

n

(
χ− 2

χ− 1

)
.

Corollary 4.17. Let G be graph of order n with m edges and chromatic number χ such
that

qn(G) =
2m

n

(
χ− 2

χ− 1

)
.

Then G is either bipartite or G ∈ Λ.

Proof. Proof follows from Theorem 4.14.

As a consequence of Theorem 4.12, a lower bound of the chromatic number of G is
deduced.

Corollary 4.18. If G is a graph with chromatic number χ and βo := βo(G), then

χ ≥ βo
1− βo

.
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5 On the determinant
In this short section, we present the determinant and the Sachs-type formula for the coeffi-
cients of the characteristic polynomial of Bα(G). Then, we obtain some known results as
a consequence.

A spanning elementary subgraphH of a graphG is a spanning subgraph ofG such that
each component of H is either a cycle or an edge. For a spanning elementary subgraph
H , p(H) and c(H) denote the number of components and the number of cycles in H ,
respectively. Now, we present the well known Harary’s formula [16] for the determinant of
the adjacency matrix of a graph.

Proposition 5.1. Let G be a graph with V (G) = {v1, v2, . . . , vn}. Also let A(G) be the
adjacency matrix of G. Then,

det (A(G)) =
∑
H

(−1)n−p(H) 2 c(H),

where summation is over all spanning elementary subgraphs H of G.

Motivated by the notion of spanning elementary subgraphs and for the purpose of the
main result in this section, we define the following.

Definition 5.2. Modified Elementary Subgraph: A subgraph H of a graph G is called a
modified elementary subgraph if each component of H is either a vertex, an edge, or a
cycle.

Let H be a modified elementary subgraph. Denote by c(H), c1(H), and c2(H) the
number of components in a subgraphH which are cycles, edges, and vertices, respectively.
Let p(H) := c(H) + c1(H) + c2(H) be the number of components in H . Also, let
C2(H) be the collection of isolated vertices in H . In the following result, we present
a Harary-type formula [16] for the determinant of Bα-matrices. For a graph G, since
det(L(G)) = det(B0(G)) = 0, so we derive a formula of det(Bα(G)) for α ∈ (0, 1].

Theorem 5.3. Let G be a graph with V (G) = {v1, v2, . . . , vn}. Then, for any α ∈ (0, 1],

det (Bα(G)) =
∑
H

(−1)n−p(H) 2 c(H) (1−α) c2(H) (2α−1)n−c2(H)

 ∏
vi∈C2(H)

dG(vi)

 ,

(5.1)
where summation is over all spanning modified elementary subgraphs H of G.

Proof. Consider Bα(G) = (2α− 1)A(G) + (1− α)D(G) = (bij)n×n. We have

det (Bα(G)) =
∑
π

sgn(π) b1π(1) b2π(2) · · · bnπ(n), (5.2)

where summation is over all permutations of 1, 2, . . . , n. Since every permutation π has
a cycle decomposition, so a cycle of length 1, 2 and more corresponds to a vertex, an
edge, and a cycle, respectively in the graph G. Thus, each term b1π(1)b2π(2) · · · bnπ(n)

corresponds to a spanning modified elementary subgraph of G.

Also, each spanning modified elementary subgraph H corresponds to 2c(H) terms in
the summation (5.2) as each cycle is associated to a cyclic permutation in two ways. If π is
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a permutation corresponding to a spanning modified elementary subgraph H , then

sgn (π) = (−1)n−number of cycles in the cyclic decomposition of π

= (−1)n−c(H)−c1(H)−c2(H) = (−1)n−p(H)

and

b1π(1) b2π(2) · · · bnπ(n)

=(1− α)c2(H)

 ∏
vi∈C2(H)

dG(vi)

 (2α− 1)2c1(H) (2α− 1)n−2c1(H)−c2(H)

=(1− α)c2(H)

 ∏
vi∈C2(H)

dG(vi)

 (2α− 1)n−c2(H).

Therefore,

det (Bα(G)) =
∑
H

(−1)n−p(H) 2 c(H) (1− α)c2(H) (2α− 1)n−c2(H)

 ∏
vi∈C2(H)

dG(vi)

 ,

where summation is over all spanning modified elementary subgraphs H of G .

In the next corollary, we obtain a Sachs-type formula for the coefficients of the charac-
teristic polynomial of Bα(G).

Corollary 5.4. Let φ(Bα) = λn + a1λ
n−1 + a2λ

n−2 + · · ·+ an−1λ+ an be the charac-
teristic polynomial of Bα(G). Then

ak =
∑
H

(−1) p(H) 2 c(H) (1− α)c2(H) (2α− 1)n−c2(H)

 ∏
vi∈C2(H)

dG(vi)

 ,

where summation is over all modified elementary subgraphs H of G with k vertices.

Proof. The proof follows from Theorem 5.3 and recalling that ck is (−1)k times the sum
of k × k principal minors of Bα(G).

One can observe that Proposition 5.1 can also be deduced as a consequence of the
Theorem 5.3.

Corollary 5.5. Let G be a graph with V (G) = {v1, v2, . . . , vn}. Also let Q(G) be the
signless Laplacian matrix of G. Then,

det (Q(G)) =
∑
H

(−1)n−p(H) 2 c(H)

 ∏
vi∈C2(H)

dG(vi)

 ,

where summation is over all spanning modified elementary subgraphs H of G.

Proof. Setting α = 2
3 in the formula (5.1) of Theorem 5.3, we obtain the result.
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