let. - vol. 46 C20003 št. - no. 5 STROJNIŠKI VESTIMIK JOURNAL OF MECHANICAL ENGINEERING strani - pages 263 - 328 ISSN D039-24B0 . Stroj V . STJVAX cena BOO SIT 1 ra Ojačanje krmilnega ventila s poligonsko pretočno značilnico Gain of a Control Valve with Polygonal Flow Characteristics 1 m Prerotacijski tok na vstopu v radialni Prerotation Flow at the Entrance to a Radial Impeller 1 m Novo biorazgradljivo splošno traktorsko transmisijsko olje na osnovi oljne repice A New Biodegradable Universal Tractor Transmission Oil Based on Rapsead Oil 1 El Numerična analiza kazalnikov izkoristka nosilnosti cestnih vozil Numerical Analysis of the Capacity-Exploitation Parameters of Road Vehicles 1 m Šolski robot SLR 1 500 - razvoj in simulirni program The SLR 1 500 Training Robot -Development and Simulation Program 1 m Analiza poškodbe cevovoda iz nerjavnega jekla Analysis of a Stainless Steel Pipeline Failure © Strojni{ki vestnik 46(2000)5,263 Mese~nik ISSN 0039-2480 © Journal of Mechanical Engineering 46(2000)5,263 Published monthly ISSN 0039-2480 Vsebina Contents Strojni{ki vestnik - Journal of Mechanical Engineering letnik - volume 46, (2000), {tevilka - number 5 Razprave Bajsič, I., Bobič, M.: Ojačanje krmilnega ventila s poligonsko pretočno značilnico 264 Predin, A., Biluš, I.: Prerotacijski tok na vstopu v radialni rotor 276 Ploj, T., Kržan, B., Bedenk, J., Feldin, M.: Novo biorazgradljivo splošno traktorsko transmisijsko olje na osnovi oljne repice 291 Kolenc, J., Smerdu, I., Petelin, S.: Numerična analiza kazalnikov izkoristka nosilnosti cestnih vozil 302 Uriček, J., Poppeova, V., Zahoransky, R.: Šolski robot SLR 1500 - razvoj in simulirni program 309 Razprave v slovenščini Kmetic, D., Celin, R.: Analiza poškodbe cevovoda iz nerjavnega jekla 318 Poročila 322 Strokovna literatura 323 Osebne vesti 326 Navodila avtorjem 327 Papers Bajsič, I., Bobič, M.: Gain of a Control Valve with Polygonal Flow Characteristics Predin, A., Biluš, I.: Prerotation Flow at the Entrance to a Radial Impeller Ploj, T., Kržan, B., Bedenk, J., Feldin, M.: A New Biodegradable Universal Tractor Transmission Oil Based on Rapsead Oil Kolenc, J., Smerdu, I., Petelin, S.: Numerical Analysis of the Capacity-Exploitation Parameters of Road Vehicles Uriček, J., Poppeova, V, Zahoransky, R: The SLR 1500 Training Robot - Development and Simulation Program Papers in Slovenian Kmetic, D., Celin, R.: Analysis of a Stainless Steel Pipeline Failure Reports Professional Literature Personal Events Instructions for Authors stran 263 glTMDDC © Strojni{ki vestnik 46(2000)5,264-275 © Journal of Mechanical Engineering 46(2000)5,264-275 ISSN 0039-2480 ISSN 0039-2480 UDK 62-33:621.646.2 UDC 62-33:621.646.2 Izvirni znanstveni ~lanek (1.01) Original scientific paper (1.01) Oja~anje krmilnega ventila s poligonsko preto~no zna~ilnico Gain of a Control Valve with Polygonal Flow Characteristics Ivan Bajsi} - Miha Bobi~ Namen prispevka je prikazati pretočno značilnico, ki ima dobre lastnosti dveh standardnih značilnic krmilnih ventilov. Pretočne značilnice so primerjane glede na njihovo ojačanje. Izdelana je primerjava med vsemi tremi pretočnimi značilnicami in različnimi možnostmi izbire temena poligonske pretočne značilnice. Izračunane vrednosti so eksperimentalno ovrednotene. Dinamične lastnosti pretočnih značilnic so prikazane s simuliranjem prenosne funkcije sklenjene krmilne zanke. Matematični model, uporabljen za simuliranje prehodne funkcije na skočno motnjo, je izbran iz literature [5] in načrtuje prehodno funkcijo prvega reda. © 2000 Strojniški vestnik. Vse pravice pridržane. (Ključne besede: značilnice pretočne statične, značilnice statične poligonalne, ventili krmilni, ojačitve ventilov) The aim of the paper is to show the flow characteristics which have the advantages of two standard characteristics of the control valves. The flow characteristics were compared in terms of their gain. During the evaluation all three flow characteristics were compared as well as the possibility of choosing the vertex point of the polygonal characteristics. The results were evaluated using experimental methods. Dynamic characteristics were displayed by the means of the closed-loop response simulation. A mathematical model for the simulation of transfer function has been chosen from the literature [5] and anticipates the response of the first order lag. © 2000 Journal of Mechanical Engineering. All rights reserved. (Keywords: static flow characteristics, polygonal characteristics, control valve, valve gain) 0 UVOD Velika težava pri krmilnih sistemih s prenosnikom toplote je uporaba krmilnih ventilov s sorazmerno statično pretočno značilnico, saj izvedba te značilnice, v nasprotju z linearno, terja zelo dolge gibe ventilov. To pomeni daljše izvajalne čase in zato počasnejši odgovor sistema. Teže je tudi doseči večje krmilno razmerje. Zaradi tega se je pri teh sistemih pojavilo prizadevanje po uporabi krmilnih ventilov z linearno statično pretočno značilnico. Problem nastane pri krmiljenju manjših pretokov tekočin zaradi izredno velikega ojačenja te značilnice pri majhnih gibih. Ker je ojačenje na izvršilnem členu zelo veliko, je zato tudi ojačenje vsega sistema veliko. Sistem postane nestabilen, zato se pojavijo nihanja pri krmiljeni veličini npr. temperaturi. Problem še ne bi bil tako velik, če se ne bi s temi nihanji pojavila nihanja v pretoku tekočin, kar pomeni nenehno odpiranje in zapiranje ventila ter pogona. To jima zmanjša dobo trajanja, saj je doba trajanja teh naprav odvisna od števila gibov in ne toliko od staranja materiala. 0 INTRODUCTION The greatest problem with heat-exchanger control systems is the use of control valves with proportional static-flow characteristics, because they require very long spindle travels, when compared to valves with linear-flow characteristics. This causes longer execution times and therefore a slower system response. It is also harder to reach a larger control ratio. As a result of these problems, there was a tendency to use valves with linear-fluid-flow characteristics in such systems. Problems occur when controlling the small flows, due to a very large gain during the initial part of the valve’s travel. Large valve gain results in a large gain of the whole control loop, and the system becomes unstable because of large system gain which causes the control values i.e. the temperature to oscillate. The problem is made worse because the fluid flow starts to oscillate too, which results in frequent opening and closing of the valve and actuator. The expected useful life of the valve is therefore reduced, because the service life does not depend much on the materials’ ageing, but on the number of working cycles. grin^(afcflM]SCLD ^BSfirTMlliC | stran 264 I. Bajsi} - M. Bobi~: Oja~anje krmilnega ventila - Gain of a Control Valve Za rešitev tega problema, izvedbe nespremen-ljivega ojačenja ventila v celotnem gibu krmilnega ventila, ali vsaj nižje ojačenje pri manjših gibih, ob hkratnem kratkem gibu ter velikem krmilnem razmerju je bila uporabljena poligonska pretočna značilnica ventila. 1 MATEMATIČNI MODEL Najprej je treba poznati ojačenje ventila [3]. Tega definiramo kot odvod prostorninskega toka tekočine po relativnem gibu: The solution to this problem - a valve with constant gain through the whole valve travel or at least lower gain by smaller travels, while keeping short travels and a large control ratio - is the use of polygonal valve characteristics. 1 MATHEMATICAL MODEL First, we have to determine the valve gain [3]. This is defined as the differential between volume fluid flow and relative travel: Kv = dq dX (1). Zapis pove, za koliko se bo spremenil pretok ob spremembi giba ventila. V našem primeru lahko vzamemo relativne vrednosti. Ob upoštevanju linearne pretočne značilnice [4]: It shows the change of flow when the valve travel is being changed. Our example allows for relative values. Considering the linear-flow characteristics, [4]: F=1--X+- R R in sorazmerne pretočne značilnice [4]: and the proportional-flow characteristics, [4]: 1 F= eX ln R (2) (3), dobimo za linearno pretočno značilnico, z upoštevanjem mere linearnosti a, ojačenje krmilnega ventila: the linear-flow characteristics have the following control valve gain with respect to authority a: Kv = a< a + (1-a) za sorazmerno pretočno značilnico pa: Kv = a\ a + (1-a) 1- 1 X + 1 R J R (4) (5). Oba poteka ojačenj za nespremenljivo krmilno razmerje R = 50 in tri različne mere linearnosti (a = 1, a = 0,5 in a = 0,1) sta prikazana na sliki 1. Slika prikazuje povečanje ojačenja pri manjšem gibu in pri linearni pretočni značilnici. Čim manjša je mera linearnosti, tem večje je ojačenje pri manjšem gibu. Iz omenjenega izhaja zamisel o značilnici, ki bi bila v svojem spodnjem gibu podobna sorazmerni pretočni značilnici, v zgornjem pa linearni. Zato je nujno potreben prelom značilnice, oziroma pretočna značilnica mora imeti dve različni strmini. Teoretično bi lahko prelom, tj. točko temena, določili iz presečišča ojačenja linearne in sorazmerne pretočne značilnice z iskanjem ničel v enačbi: and for the proportional flow characteristics: - 3 XlnR I lnR eblR Jj R Both the gain characteristics calculated on the basis of the constant control ratio R = 50 and the three different authority (a = 1, a = 0.5 and a = 0.1) are shown in Fig. 1. There you can see the gain growth with the small travel of the linear-flow characteristics. A smaller authority results in a larger gain at the beginning of the valve’s travel. The above mentioned leads to the possibility of flow characteristics which would be proportional in the lower and linear in the upper part of the travel. Therefore, it is necessary to determine the break point of the characteristics i.e. the flow characteristics should have two different gradients. Theoretically the break point - the vertex point of the flow characteristics -could be determined by calculating the intersection point of the linear- and proportional-gain characteristics by finding the zeros of the equation: 0 = \a + (1-a) 1- X+ R R\ R a +(1-a) ln R R;a^0 (6). Ničle so predstavljene za različna krmilna razmerja in mere linearnosti v preglednici 1 ter slikah 2 in 3. Zeros calculated on the basis of different control ratios and different authority are shown in table 1 as well as Fig. 2 and 3. gfin^OtJJlMISCSD 00-5 stran 265 |^BSSITIMIGC I. Bajsi} - M. Bobi~: Oja~anje krmilnega ventila - Gain of a Control Valve 4 linearna značilnica linear characteristic sorazmerna značilnica proportional characteristic Kv 2 0 0 0,2 0,4 0,6 0,8 r a=0,5 a=0,1 1,0 X Sl. 1. Ojačenje sorazmerne in linearne pretočne značilnice K v odvisnosti od relativnega giba ventila X Fig.1. Gain of proportional and linear-flow characteristics Kv with respect to the relative valve travel X Preglednica 1. Točke temena poligonske pretočne značilnice Table 1. Vertex points of the polygonal-flow characteristics R a 1 0,8 0,6 0,4 0,2 0,1 100 1 0,636 0,6 0,545 0,467 0,39 50 1 0,615 0,576 0,505 0,4355 0,358 30 1 0,597 0,557 0,503 0,414 0,335 0,65 0,60 ^^^ / ^ 0,55 x / 0,50 ,- .^ X k 0,45 0,40 / ¦ / 0,35 0,2 0,4 0,6 0,8 Sl. 2. Točke temena Xk poligonske pretočne značilnice, značilnice za različne mere linearnosti a in krmilno razmerje R=50 Fig. 2. Vertex points X of the linear-flow characteristics at different authorities a and the control ratio of R=50 Za mero linearnosti a = 1 je povsem primerna linearna pretočna značilnica, kar pomeni, da je najbolj primeren izbor temena v točki Xk = 1. The linear flow characteristic fits perfectly for authority a = 1, which means that the vertex point of Xk = 1 is the most appropriate. VBgfFMK stran 266 0 I. Bajsi} - M. Bobi~: Oja~anje krmilnega ventila - Gain of a Control Valve 0,60 0,59 0,58 X k 0,57 0,56 0,55 20 40 60 80 100 R Sl. 3. Točke temena Xk značilnice za različna krmilna razmerja R in mero linearnosti a = 0,6 Fig. 3. Vertex points Xk of the characteristics at different control ratios R and authority a=0.6 S slike 2 je razvidno, da se gib v točki temena povečuje skoraj linearno z naraščajočo mero linearnosti. Tudi slika 3 prikazuje povečevanje giba v točki temena s povečanim krmilnim razmerjem. Določitev temenske točke po tem načinu imenujmo 1. metoda. V praksi pa sta se uveljavili dve drugačni merili za določevanje točke temena poligonske pretočne značilnice [1]: - 2. metoda -* merilo nespremenljivega krmilnega razmerja, - 3. metoda -> merilo nespremenljivega ojačenja. Potek poligonske pretočne značilnice lahko zapišemo z naslednjo enačbo [1]: As shown in Fig. 2 the travel at the vertex point becomes almost linear with the growing authority. Fig. 3 also shows the increase of the travel in the vertex point when the control ratio grows. Determination of the vertex point using the above calculation is called the 1st method. Two other ways of determining the vertex point of the polygonal flow characteristics were proved in praxis, [1]: - 2nd method -* on the basis of a constant control ratio, - 3rd method -> on the basis of constant gain. Polygonal-flow characteristics can be determined using the following equation, [1]: F =max F Če zgornjo enačbo vstavimo v enačbo (1), dobimo ojačenje poligonske pretočne značilnice: Xk R 1-Xk { J (7). f The above equation in formula (1) can be used to calculate the gain of the polygonal-flow characteristics: K a + (1-a) F X R I 1-F F a\ a + (1-a) 1-X (X-1) + 1 X 1-X XX (8). Ker krivulja, ki popisuje pretočno značilnico, ni zvezna, dobimo dve enačbi, ki opisujeta ojačenje poligonske pretočne značilnice. Ojačenje za vse tri metode določanja točke temena je mogoče prikazati na slikah 4, 5 in 6. Pri tem upoštevamo krmilno razmerje R = 50 in mere linearnosti a = 1, a = 0,5 in a = 0,1. Because the curve derived from the flow characteristics is not continuous, we get two equations which describe the gain of the polygonal flow characteristics. The gain, calculated on the basis of all three methods, is shown in Fig. 4, 5 and 6. All calculations use the control ratio of R = 50 and authority a = 1, a = 0.5 and a = 0.1. stran 267 glTMDDC I. Bajsi} - M. Bobi~: Oja~anje krmilnega ventila - Gain of a Control Valve 4" 3" Kv 2 a=0,5 0 0,2 0,4 X 0,6 0,8 1,0 Sl. 4. Ojačenje poligonske pretočne značilnice Kv s točko temena izračunano iz presečišča med ojačenjem linearne in sorazmerne pretočne značilnice pri Fk =0,1 (1. metoda) Fig. 4. Gain of the polygonal-flow characteristics Kv with vertex point is calculated using the intersection point between the gain of linear and proportional flow characteristics at Fk =0,1 (1st method) a=0,1 5 r ----------=0,5 4 K v -a=1 0 0,2 0,4 X 0,6 0,8 1,0 Sl. 5. Ojačenje poligonske pretočne značilnice K s točko temena po metodi nespremenljivega krmilnega razmerja (2. metoda) Fig. 5. Gain of polygonal-flow characteristics K with vertex point using the method of constant control ratio (2nd method) -------a=0,1 a=0,5 0 0,2 0,4 0,6 0,8 1,0 X Sl. 6. Ojačenje poligonske pretočne značilnice Kv s točko temena po metodi nespremenljivega ojačenja F k =0,1 (3. metoda) Fig. 6. Gain of polygonal-flow characteristics Kv with vertex point using the method of constant gain Fk =0,1 (3 rd method) VBgfFMK stran 268 1 0 3 2 1 0 3 2 K 1 0 I. Bajsi} - M. Bobi~: Oja~anje krmilnega ventila - Gain of a Control Valve Kv 3,0 r 2,5- 2,0" 1,5" 1,0" 0,5- 0 -1. metoda 1st method ¦2. metoda 2nd method ¦3. metoda 3rd method 0 0,2 0,4 X 0,6 0,8 1,0 Sl. 7. Primerjava ojačenja poligonske pretočne značilnice K za različne točke temena pretočne značilnice, izračunane po treh različnih metodah Fig. 7. Comparison of polygonal-flow characteristics gain K for different vertex points calculated by three different methods Vse tri slike kažejo na nezveznost pretočne značilnice, ki je v točki temena. Ojačenje je za majhne gibe ventila skoraj nespremenljivo, medtem ko se po prehodu čez temensko točko pretočne značilnice močno poveča. Primerjava med vsemi tremi metodami za R=50 in a=0,5 je prikazana na sliki 7. Usmeritev pretočnih značilnic je vseh treh primerih enaka. Opazna je precejšnja nezveznost v točki temena. Za nadaljnje primerjave bo vzeta značilnica, izračunana po metodi 3, kajti ta da najmanjšo razliko med obema ojačenjema. Primerjava ojačenja poligonske, linearne in sorazmerne pretočne značilnice je prikazana na sliki 8. All three diagrams show that the curve is not continuous in the vertex point. Gain is almost constant for the small travels, while it increases strongly after the vertex point of the flow characteristics has been passed. The comparison of all three methods at R = 50 and a = 0.5 is shown in Fig. 7. All three flow characteristics have the same trend. Characteristics show discrete behaviour evident in the vertex point. The characteristics calculated by the 3rd method will be used for a further comparison because it has the smallest difference between both gains. The comparison of the gain between polygonal, linear and proportional flow characteristics is shown in Fig. 8. Kv 3,0 r 2,5" 2,0" 1,5: 1,0" 0,5" 0 poligonska značilnica polygonal characteristics sorazmerna značilnica proportional characteristics linearna značilnica linear characteristics 0 0,2 0,4 X 0,6 0,8 1,0 Sl. 8. Primerjava med ojačenji K linearne, sorazmerne in poligonske pretočne značilnice krmilnega ventila za krmilno razmerje R = 50 in mero linearnosti a = 0,5 Fig. 8. The comparison of gain K between linear, polygonal and proportional flow characteristics of a control valve at control ratio R = 50 and authority a = 0.5 gfin^OtJJlMISCSD 00-5 stran 269 |^BSSITIMIGC I. Bajsi} - M. Bobi~: Oja~anje krmilnega ventila - Gain of a Control Valve Slika 8 prikazuje, da je poligonska pretočna značilnica izravnava med linearno in sorazmerno pretočno značilnico. 2 EKSPERIMENTALNO OVREDNOTENJE Matematično modelirana ojačenja so bila eksperimentalno ovrednotena na vseh treh primerih značilnic. Namen meritve je bil eksperimentalno ovrednotenje računskih rezultatov. Zaradi tehničnih težav pri dinamičnih meritvah smo se omejili le na statične meritve ojačenj ventilov. Uporabljeno je bilo preskuševališče, prikazano na sliki 9. To omogoča hkratne meritve in shranjevanje giba ventila, pretoka kapljevine in tlačnih padcev na ventilu. Fig. 8 shows that the polygonal-flow characteristic is actually a compromise between the linear- and proportional-flow characteristic. 2 EXPERIMENTAL EVALUATION Mathematical models of all three models were experimentally evaluated. The aim of the measurement was to experimentally evaluate calculated results. Due to technical problems when performing dynamic measurements, the evaluation was limited to static measurements of valves’ gains. The test rig in Fig. 9 was used. It allows the user to simultaneously measure and store valve travel, fluid flow and pressure drop on the valve. n n n n n pnevmatska pipa pneumatic ball valve umirjevalnik tank osebni računalnik za krmiljenje in zbiranje podatkov personal computer for process and data storing preskusne linije test lines frekvenčno krmiljena črpalka frequency controlled pump zaporni pipi shut-off ball valves obvod bypass zaporna pipa shut-off ball valve merilnik pretoka flow meter pnevmatska pipa pneumatic ball valve merilnik temperature temperature sensor _ delovni pogon operating actuator merilnik tlačnega padca pressure drop sensor merjeni ventil measured valve Sl. 9. Merilno preskuševališče Fig. 9. Test rig smer pretoka flow direction grin^(afcflM]SCLD ^BsfTHRflllK | stran 270 I. Bajsi} - M. Bobi~: Oja~anje krmilnega ventila - Gain of a Control Valve Za meritev so bili uporabljeni ventili z naslednjimi pretočnimi značilnicami: - linearna pretočna značilnica, - sorazmerna pretočna značilnica, - poligonska pretočna značilnica. Izmerjene statične pretočne značilnice so prikazane na sliki 10. Valves with the following flow characteristics were measured: - linear- flow characteristic, - proportional-flow characteristic, - polygonal-flow characteristic; For static-flow characteristics see Fig. 10. 1 ~ 0,8 0,6 linearna značilnica. linear characteristics F 0,4 /* 0,2 / / 08 &ssžr~~\ ii 1 i i j i poligonska značilnica polygonal characteristics sorazmerna značilnica proportional characteristics 0 0,2 0,4 0,6 0,8 1 X Sl. 10. Statične pretočne značilnice obravnavanih ventilov Fig. 10. Static-flow characteristics of tested valves Razmere v okolici so bile standardne, uporabljena tekočina za merjenje je bila voda. Temperatura tekočine je bila enaka temperaturi okolice (segrevanje zaradi črpalk je bilo zanemarljivo). Meritev je potekala takole. Ventil je bil odprt za določen gib. V tej točki smo merili pretoke ter padce tlaka pretočnega sistema in ventila. Iz strmine med dvema sosednjima točkama je bilo izračunano ojačenje ventila. Kv 2,5 2,0 1,5 1,0 0,5 0 linearna značilnica linear characteristic The tests took place under standard environmental conditions; water was used as the flow medium. The temperature of the flow medium was the same as the ambient temperature (heating caused by the pumps was negligible). The measurement was performed as follows. The valve was opened until it reached a pre-set position. At this point, flow and pressure drops of the valves and system were measured accordingly. A gradient of two adjacent points was used to calculate the valve gain. sorazmerna značilnica proportional characteristic. poligonska značilnica polygonal characteristic ?„_.D.-- .........A. a..... .*¦¦-¦" 0 0,2 0,4 0,6 0,8 1,0 X Sl. 11. Rezultati meritev ojačenj K različnih statičnih pretočnih značilnic ventilov Fig. 11. Gain measurements Kv of different static-control-valve flow characteristics ^vmskmsmm 00-5 stran 271 |^BSSITIMIGC I. Bajsi} - M. Bobi~: Oja~anje krmilnega ventila - Gain of a Control Valve Rezultati meritve so prikazani na sliki 11. Z nje je razvidno, da obstajajo določeni odstopki med izmerjenimi in izračunanimi rezultati. Do tega pride zaradi tega, ker strmina merjene pretočne značilnice ni povsem enaka nagibu teoretične pretočne značilnice. Smer zviševanja in zniževanja vrednosti krivulj je enaka teoretičnim za vse primere. V primeru poligonske pretočne značilnice preskok ni tako izrazito nezvezen zaradi njene realnosti, ki je tudi v točki temena zvezna. 3 DINAMIČNI ODZIV Dinamični odziv smo preskusili v zaprti krmilni zanki. Prenosna funkcija ventila in pogona je dobro znana, npr. iz literature [5]. Zamišljeni sistem je prikazan na sliki 12. Ob skočnem vzbujanju (od 0 % do 100 % pretoka tekočine) ventila in pogona lahko primerjamo, katera pretočna značilnica nima nihajoče prenosne funkcije. q fl želeni pretok desired flow G(s) Measurement results are shown in Fig. 11. There is an evident difference between the measurements and the calculated results. The reason for this is because the slope of the measured-flow characteristics is not precisely the same as the slope of the theoretical flow characteristic. The growing and declining trends of the measured characteristic equals the theoretical models in all cases. The point where the polygonal-flow characteristic is discontinuous is not so steep, because we are dealing with a real curve, which is continuous through the whole range. 3 DYNAMIC RESPONSE The dynamic response was tested in a closed control loop. The transfer function of the valve and actuator is well known from the literature, [5] . The hypothetical system is described in Fig. 12. Using the step exciting (from 0 % to 100 % of medium flow) of the valve and actuator it is possible to determine which flow characteristic does not have an oscillatory response. krmiljeni pretok controlled flow O e + VENTIL+POGON VALVE+ACTUATOR MERILNIK PRETOKA Kv (e) G(s)= ; t =1 ts + 1 FLOW METER p H(s)= 1 H(s) Sl. 12. Sistem za preverjanje dinamičnega obnašanja pretočnih značilnic Fig. 12. Testing system for dynamic response of flow characteristics Primerjava med odgovori vseh treh značilnic je prikazana na sliki 13. The comparison of responses of all three characteristics, see Fig. 13. Kv 1.1 sora wm, Wiln ca 1st order system response proportional characteristics —N .^^^^^"^ 0.9 _jLŽ2ž: •0?* 0.8 /Ž/ smernim T-načilnica V~ Imrarrliarart-«-*:-" 0.7 //// „!¦ „ 0.6 ///, ' _............ p p olygonal characteristics 0.5 '' // 0.4 V ^^ pretok v točki temena ' [low at the vertex point 0.3 V- ] 0.2 0.1 0.5 1.5 2.5 t 3.5 4.5 s 5.5 Sl. 13. Simuliranje odziva na skočni vstopni signal v zaprti zanki za različne pretočne značilnice v odvisnosti od časa t Fig. 13. Simulation of the flow characteristics response on step disturbance in a closed loop dependent on time t VH^tTPsDDIK stran 272 c t r 1 2 3 4 5 I. Bajsi} - M. Bobi~: Oja~anje krmilnega ventila - Gain of a Control Valve Simuliran odgovor na skočno motnjo dobimo s simuliranjem na računalniškem paketu Mathlab Simulink ([6] in [7]). Pri tem domnevamo, da se izvršni člen obnaša kot sistem prvega reda [5]: GS = Prenosna funkcija merilnika pretoka v povratni zanki je: The simulation was performed by means of the Mathlab Simulink computer programme, [6] and [7]. The procedure works under the assumption that the executive element behaves like the 1st order system lag [5]: Kv ts +1 (9). Transfer function of the flow meter in the feed-back loop: H =1 Torej je prenosna funkcija sistema: The transfer function of the whole system: Kv GS 1+ K 1+GH 1+ K s +1 (10). (11). Z uporabo obratne Laplaceove transformacije dobimo za enotski koračni vhodni signal krmiljeni pretok tekočine: Using the inverse Laplace transformation and input as the unit step, controlled flow is as follows: K 1+ K t(1+Kv) 1- e r; r =1 (12). Če primerjamo odgovor sistema (prikazan na sliki 12) med tremi različnimi pretočnimi značilnicami na skočno motnjo, vidimo, da so odgovori zelo podobni odgovoru sistema prvega reda, vendar dajo manjše vrednosti. Iz tega izhaja, da nelinearnosti v točki temena niso kritične. Simuliranje je normirano na relativni gib in pretok, ker lahko tako pokažemo relativne medsebojne odvisnosti. 4 SKLEP Prikazane so tri značilnice in njihova ojačenja. Ta smo primerjali tako statično kakor dinamično. Poleg tega pa so omenjene tudi tri različne metode določevanja točke temena poligonske pretočne značilnice. Če pogledamo 1. metodo za določevanje točke temena značilnice, vidimo, da bi se ta morala spreminjati za vsako krmilno razmerje in mero linearnosti. To je zaradi spreminjanja točke temena s spreminjanjem mere linearnosti nepraktično. To pa zato, ker so krmilni ventili vgrajeni v različne sisteme, medtem ko spremembe točke temena zaradi krmilnega razmerja niso kritične, saj krmilno razmerje določi izdelovalec ventila. Iz primerjave med vsemi tremi metodami vidimo, da tretja metoda daje najmanjšo razliko med ojačenjema v točki temena, najmanjše ojačenje pri majhnih gibih pa dobimo po 1. metodi. 2. metoda je nekje vmes. Ojačenje pri majhnih gibih je vedno majhno in skoraj nespremenljivo, kar je zelo ugodno za krmiljenje manjših prostorninskih pretokov tekočin. The comparison of system responses on step input disturbance (see Fig. 12) for all three characteristics shows that the responses are very similar to the 1st order responses but give smaller values. The conclusion can be made that the nonlinearity in the vertex point is not critical. The simulation is calculated on the basis of relative travel and flow, to be able to demonstrate relative interdependence. 4 CONCLUSION Three characteristics and their gain were compared from the static as well as the dynamic point of view. In addition, the article describes three different methods of determining the vertex point of the polygonal-flow characteristic. If we take a closer look at the 1st method used for calculation of the flow characteristics, vertex point, we can see that the latter should be changed for every control ratio and authority. The change of vertex point caused by the control ratio is not decisive, because the valve producer determines the control ratio. On the other hand, the change of authority leads to problems, because control valves are designed to be mounted in different systems. The comparison of all three methods shows that the 3rd method has the smallest gain difference at the vertex point, while the smallest gain at the low travels is an attribute of the 1st method. The 2nd method is somewhere in between. Gain at low travels is always small and almost constant, being favourable for the control of lower volume flows. gfin^OtJJlMISCSD 00-5 stran 273 |^BSSITIMIGC t I. Bajsi} - M. Bobi~: Oja~anje krmilnega ventila - Gain of a Control Valve Naš namen je bilo doseči čim manjše ojačenje pri majhnih gibih in čim krajši gib ventila, idealno pa je nespremenljivo ojačenje pretočne značilnice za vse gibe ventila. Na splošno najbolj zadosti tem potrebam poligonska pretočna značilnica, saj zagotavlja gib, ki je krajši od sorazmerne pretočne značilnice. Po drugi strani ima daljši gib od linearne pretočne značilnice, a dobimo manjše ojačenje vsaj do 30 odstotkov giba od linearne pretočne značilnice, vendar je ta hkrati večji od ojačenja sorazmerne pretočne značilnice. Pri večjih gibih pa imamo večje ojačenje (kar je ugodno za hitrejše odgovore krmilnega sistema) od linearne pretočne značilnice, a spet manjše kakor pri sorazmerni pretočni značilnici. Vendarle je poligonska pretočna značilnica nekaj vmes in torej primerna za uporabo skupaj s prenosniki toplote. Zelo velik problem je nezveznost pretočne značilnice, ki se še toliko bolj kaže v ojačenju pretočne značilnice. Pomembno je, da je prehod iz enega nagiba v drugi pri poligonski pretočni značilnici čimbolj gladek. Vprašanje, kakšnega reda mora biti krivulja, ki povezuje oba dela poligonske pretočne značilnice, da bo ta ohranila svoje lastnosti, je zanimivo za nadaljnje raziskave. Dejstvo je, da je potreben zvezni prehod med strminama, kar je tudi edino mogoče v praksi izdelati. Eksperimentalna analiza je pokazala ujemanje med izračunanimi in dejansko izmerjenimi ojačenji pretočnih značilnic. Problem je v tem, da se računske in izmerjene pretočne značilnice popolnoma ne ujemajo in zato nismo dobili popolnoma enakih rezultatov. To je še posebej očitno pri poligonski pretočni značilnici, katere nezveznost ni opazna iz meritve. Poligonska pretočna značilnica je praktično vedno zvezna v točki temena. Izmerjene in simulirane vrednosti kažejo enake strmine, iz česar lahko sklepamo o verodostojnosti matematičnih modelov. Iz simuliranega dinamičnega odgovora značilnice vidimo, da je odgovor podoben odgovoru prehoda prvega reda, kar je očitno iz reda vzbujane funkcije. Ojačenje se spreminja z gibom, kar pomeni, da je pomembno ojačenje pri majhnih gibih. Vsi trije odgovori so stabilni, prenihanja ni. Pri prehodu čez točko temena ne pride do nihanj pri poligonski pretočni značilnici kljub nezveznosti v ojačenju. Poligonska pretočna značilnica je ustrezen nadomestek za sorazmerno v sistemih, kjer potrebujemo poleg visokega krmilnega razmerja še hiter odziv (to je kratek gib). Ta značilnica je primerna za cenejše sisteme, saj ni prava sorazmerna pretočna značilnica. ^BSfirTMlliC | stran 274 Our aim was to reach the smallest possible gain at low travels while keeping the valve travel short. The ideal solution would be a constant gain over the whole range of the valve’s travel. In general, a polygonal-flow characteristic fulfils most of these requirements. It has a shorter travel than a proportional-flow characteristic and despite having longer travel than a linear-flow characteristic, it features a smaller gain for at least 30 % of the travel, it still has a larger gain than a proportional-flow characteristic. Higher gain occurs at larger travels, (which enable faster response of the control system) as with the linear-flow characteristic, but again slower than the proportional flow characteristic. Nevertheless, the polygonal-flow characteristic is a good choice and therefore suitable for use together with heat exchangers. A huge problem is the discontinuous form of the flow characteristic, which becomes even more evident at the valve gain. It is important to make the passage between different slopes as smooth as possible. The question about which order of the curve connecting both parts of the flow characteristic to maintain its properties is an interesting one for another research project. The fact is that the transition has only to be continuous, which is only feasible in real conditions. Experimental analysis proved the accordance between the calculated and measured gains of the flow characteristics. The only problem is that the calculated and measured flow characteristics do not fit completely, thus giving a slight discrepancy to the results. It is quite obvious from the polygonal-flow characteristic, whose discontinuity is not evident from measurement. Measured and simulated curves have the same slopes, which lead us to believe in the credibility of the mathematical models. Simulation of the dynamic response reveals that the response is similar to the response of the 1st order, which can be seen from the order of the exciting function. Gain changes along with travel, which means that gain is important at the lower part of the travel. All three responses are stable and without oscillations. Polygonal-flow characteristics show no oscillations even when passing through the vertex point, where the gain is supposed to be discontinuous. The polygonal-flow characteristic is a suitable replacement for the proportional characteristic in systems where a high control ratio as well as a fast response (short travel) is required. This flow characteristic is ideal for cheaper systems, being a pseudo-proportional flow characteristic. I. Bajsi} - M. Bobi~: Oja~anje krmilnega ventila - Gain of a Control Valve 5 OZNAČBE 5 DESIGNATION mera linearnosti merjeni pretok tekočine krmiljeni pretok tekočine napaka krmiljenja prenosna funkcija ventila prenosna funkcija sistema prenosna funkcija merilnika pretoka ojačenje krmilnega ventila referenčni pretok krmilno razmerje prostorninski pretok tekočine čas relativni gib relativni gib v točki temena relativna pretočnost relativna pretočnost v točki temena časovna konstanta a b c e G(s) Gs H(s) Kv r R q t X Xk F F authority measured flow of the liquid controlled flow of the liquid control error valve transfer function system transfer function flow meter transfer function control valve gain reference flow control ratio volume flow rate of the liquid time relative travel of the valve relative travel at the vertex point of the characteristic inherent flow inherent flow at the vertex point of the characteristic time constant 6 LITERATURA 6 REFERENCES [1] Bobič, M., I. Bajsič (1997) Poligonska pretočna značilnica ventila. Zbornik mednarodnega kongresa SITHOK-2, Maj 11-12-1997, Maribor, Slovenija. [2] Bajsič, I., M. Bobič (1998) Reducirana pretočnost krmilnega ventila, da ali ne ?, Strojniški vestnik, letnik 44, št. 7/8. [3] Donlagič, D., B. Tovornik (1997) Krmilni ventili. Fakulteta za elektrotehniko, računalništvo in informatiko, Univerza v Mariboru, Maribor. [4] CEI/IEC 534: Industrial-process control valves (skupaj 8 delov) [5] Smith, C. A., A. B. Corripio (1997) Principles and practice of automatic process control; Second edition, John Wiley & Sons, Inc., New York. [6] MathlabTM (1993) The MathWorks, Inc. [7] SimulinkTM dynamic system simulation software (1993) The MathWorks, Inc. Naslova avtorjev: doc. dr. Ivan Bajsič Fakulteta za strojništvo Univerze v Ljubljani Aškerčeva 6 1000 Ljubljana Miha Bobič Danfoss Trata d.d Jožeta Jame 16 1210 Ljubljana -Šentvid Authors’ Address: Doc.Dr. Ivan Bajsič Faculty of Mechanical Engineering University of Ljubljana Aškerčeva 6 1000 Ljubljana, Slovenia Miha Bobič Danfoss Trata Ltd. Jožeta Jame 16 1210 Ljubljana -Šentvid, Slovenia Prejeto: Received: 23.3.2000 Sprejeto: Accepted: 2.6.2000 t © Strojni{ki vestnik 46(2000)5,276-290 © Journal of Mechanical Engineering 46(2000)5,276-290 ISSN 0039-2480 ISSN 0039-2480 UDK 62-25:621.63:532.57 UDC 62-25:621.63:532.57 Izvirni znanstveni ~lanek (1.01) Original scientific paper (1.01) Prerotacijski tok na vstopu v radialni rotor Prerotation Flow at the Entrance to a Radial Impeller Andrej Predin - Ignacijo Bilu{ V prispevku je podana analiza prerotacijskega toka v vstopnem cevovodu radialnih turbostrojev, ki se izraziteje pojavlja pri delnem obratovanju stroja, torej zunaj preračunske točke turbostroja. Teoretično se prerotacijski tok pojavlja v vstopnem cevovodu pred vstopom v radialni rotor kot posledica delovanja dejanskega rotorja s končnim številom rotorskih lopatic, ki ustvarjajo rotirajoče rotorske kanale, v katerih nastajajo relativni vrtinčni tokovi znotraj kanala pa tudi okrog rotorskih lopatic. Posledica tega relativnega toka je tudi odlepljanje toka od površine rotorske lopatice, predvsem ob vstopnem robu. Jakost in smer prerotacijskega toka sta odvisni od obratovalnega režima, predvsem od pretoka, ki določa smer prerotacijskega toka. Izvedena je eksperimentalna raziskava v vstopnem cevovodu radialnega ventilatorja. Uporabljen je rotameter z ravnimi krilci v osni smeri vstopnega cevovoda, ki je postavljen v vstopni cevovod na razdalji poldrugega premera cevovoda od vstopnega robu rotorskih lopatic. Meritve so izvedene pri različnih vrtilnih frekvencah rotorja in različnih obratovalnih pretokih. © 2000 Strojniški vestnik. Vse pravice pridržane. (Ključne besede: turbostroji, ventilatorji radialni, tok prerotacijski, analize tokov) In the following paper an analysis is given of the prerotation flow in the entrance pipe of a radial turbomachine which occurs at partial load, this is during operation under out-of design conditions. Theoretically, the prerotation flow appears in the entrance pipe before the entrance in the radial impeller as a result of the real radial impeller acting. The finite number of blades creates the impeller channels where the relative whirl flow exists, in addition to around the individual impeller blades. The result of the relative flow is also the separation of flow from the surface of the blade, especially at the entrance edge. The prerotation flow magnitude and direction depend on the operating regime, especially on the operating capacity. The experimental research is carried out at the entrance pipe of the radial fan. An anemometer with straight blades that are parallel to the pipe axis is used and placed at a distance of one and half pipe diameters infront of the entrance edge of the impeller blades. The measurements were performed at three different impeller speeds and at different operating capacities. © 2000 Journal of Mechanical Engineering. All rights reserved. (Keywords: turbomachinery, radial fan, prerotation flows, flow analysis) 0 UVOD Obstoj prerotacijskega toka je znan že precej časa, vendar osnovni razlogi pojava še niso raziskani. Prvi je ta tok odkril Stewart [1], že davnega leta 1909, ponovno pa najdemo zapis o tem pojavu pri Stepanoffu [2], leta 1957, ki je ta pojav opisal z vstopnimi »Eulerjevimi« hitrostnimi trikotniki na vstopu v rotorske kanale na vstopnem premeru D1 ob upoštevanju teorije potencialnega toka. Prerotacijski tok omenja tudi Schweiger [3], ki ga tesno povezuje s kavitacijskimi pojavi v radialni črpalki. Podoben problem obravnava tudi Siervo [4]. Brennen [5] opisuje, da je prav pojav prerotacije toka mnogokrat najbolj zgrešeno predstavljen in napačno razumljen pojav pri turbostrojih, ker je to pojav 0 INTRODUCTION The existence of prerotation flow has been known for a long time, but the basic reasons for its existence have not yet been examined. In 1909, the discovery of prerotation how was reported by Stewart [1]. There was a note about prerotation flow by Stepanoff [2], (in 1957), who describes this phenomenon with Euler’s entrance velocity triangles at the entrance to the impeller channels with an entrance diameter D1, considering the laws of the potentional flow. Schweiger [3] claims that the prerotation flow is strongly connected with cavitation appearance in a radial pump. The same problem was also treated by Siervo [4]. Brennen [5] reports that the phenomenon of prerotation flow is very often misrepresented grin^(afcflM]SCLD ^BSfirTMlliC | stran 276 A. Predin - I. Bilu{: Prerotacijski tok - Prerotation Flow interakcije mnogih nastalih sekundarnih tokov pred and misunderstood for turbomachines, because it is rotorjem, v njem in za njim. Poznavanje prero- a phenomenon of interaction in which many second- tacijskega toka, ki je odvisen od pretočnih razmer ary flows appear before, in and after the impeller. A in geometrijske oblike, je tudi ključnega pomena knowledge of prerotation flow at the entrance of the pri določitvi kavitacijskega vrtinca vodnih črpalk impeller or in the intake pipe is also important for ali drugih črpalk, ki obratujejo s kapljevinami. cavitation-swirl determination in water pumps or any Vrtinčni tok radialnega kompresorja sta preučevala other pumps that operate with liquids. Van den tudi Van den Braembussche in Hande [6], vendar Braembussche and Hande [6] examined the swirl na izstopu v spiralnem vodilniku pri delnem flow at the radial compressor, but their studies looked obratovanju kompresorja. Vpliv relativnega vrtinca at the compressor exit in the spiral volute by the com- v rotorskih kanalih v radialnem kompresorju z pressor part operating regime. Sipos [7] examined valjastimi nazaj ukrivljenimi lopaticami je the influence of the relative swirl in the impeller chan- proučeval Sipos [7]. Z vizualizacijo toka na vstopu nels at the radial compressor with back-curved blades. v radialni kompresor sta se ukvarjala tudi Mizuki Mizuki and Oosawa [8] investigated flow visualiza- in Oosawa [8], ki sta upoštevala tudi Helmholtzove tion at the entrance of the radial compressor. They resonatorske frekvence toka, ustvarjene kot also considered the Helmholtz resonator flow fre- posledica velikih vstopnih hitrosti toka. Določitev quencies, which appeared as a result of the high en- vstopnega kota toka v rotor kompresorja v bližini trance flow velocities. Steiner, Fuchs and Starken zvočne hitrosti so proučevali Steiner, Fuchs in examined the entrance angle of the flow at the com- Starken [9]. V prispevkih Predina [10] in [11] so pressor entrance near the sonic velocity [9]. In the podani osnovni rezultati meritev na contributions of Predin [10] and [11] the results of poenostavljenem modelu reverzibilne črpalne tur- measurements on a simplified pump-turbine model bine in preprosti matematični model za oceno and a simple mathematical model based on flow kin- prerotacije toka, ki bazira na osnovi kinematike toka. ematics for the prerotation flow determination are Da tak tok v vstopnem cevovodu obstaja, so given. The existence of this prerotation flow is in- nesporno ugotovili mnogi raziskovalci, zakaj se contestable and has been proved by many research- pojavi, zakaj spremeni smer in jakost v odvisnosti ers, but the question why the prerotation flow changes od obratovalnega pretoka, pa so vprašanja, ki še direction and magnitude depending on the operating nimajo ustreznih odgovorov. capacity has not yet been answered. 1 TOK NA VSTOPU V ROTOR RADIALNEGA 1 FLOW AT THE ENTRANCE TO THE RA- TURBOSTROJA DIAL TURBOMACHINE Večina kapljevin, ki prehajajo skozi Most fluids that cross the turbo machines turbostroje je viskoznih, dejanski tok skozi are viscous fluids. The real flow through the turbostroj pa je v večini primerov turbulenten. V turbomachine is, in most cases, turbulent. Therefore, vstopnem cevovodu in v rotorskih kanalih je torej the flow in the entrance pipe as well as the flow in treba obravnavati turbulentni viskozni tok. Seveda the impeller channels must be treated as a turbulent so osnova nastanka prerotacijskega toka, ki nastane viscous flow Indeed, the origins of prerotation flow, Sl. 1. Cirkulacijski tokovi v radialnem rotorju Fig. 1. Circulation flows in the radial impeller | gfin=i(gurMini5nLn 00-5_____ stran 277 I^BSSIfTMlGC A. Predin - I. Bilu{: Prerotacijski tok - Prerotation Flow zaradi odlepljanja mejne plasti, naslednji: 1. relativni cirkulacijski tokovi v posameznih rotorskih kanalih, 2. cirkulacijski tokovi okoli posameznih rotorskih lopatic in s temi nastala cirkulacijska tokova na vstopnem oz. izstopnem premeru rotorja (sl. 1). Cirkulacijski tok oz. cirkulacijo lahko v splošnem zapišemo s krivuljnim integralom poljubne vektorske veličine, npr. hitrosti toka [12]: which is the result of the boundary layer separation in the intake pipe, are: the relative flow whirls at the individual impeller channels and the circulation flows around the impeller blades, which form circulation flow at the entrance and exit diameters of the impeller (Figure 1). The circulation flow, or circulation in general, can be represented by the curve integral of the general vector quantity, for example of the flow velocity [12]: §v r dl (1), kjer je u - vektor hitrosti toka, skalarno pomnožen z diferencialno dolžino dl sklenjene krivulje L. Ker pa je vektor hitrosti v = (vx,vy,vz) in dl = (dx,dy,dz), zapišemo enačbo (1) v obliki: where ur is the flow velocity vector dot multiplied r by the differential element dl of the clorsed integrated curve rL. While the velocity vector is v = (vx,vy,vz) and dl = (dx,dy,dz), equation (1) can be written: u> (vxdx + vydy + vzdz) (2). L Z upoštevanjem zveze v ¦ dl =vcosa dl = vtdl Considering the relation v ¦ dl = v cos adl = vdl dobimo: we obtain: §vt dl (3), kjer je vt - obodna hitrost tekočine, ki obteka neko telo, omejeno s krivuljo L. V konkretnem primeru lahko enačbo (3) izkoristimo za določitev prej omenjenih cirkulacij. Tako lahko zapišemo cirkulacijo na vstopnem premeru D1 kot: where vt is the circumferential fluid velocity of the flow around the rigid body formed by the curve L. In this case equation (3) can be used for the determination of the circulations. The circulation at the entrance diameter D1 can be written as: c1u pD1 in ustrezno na izstopnem premeru D2: and by analogy at the diameter D2: c2u pD2 (4) (5), kjer c1u sta c2 in - absolutni hitrosti toka v obodni smeri na vstopu oz. izstopu iz rotorja. Cirkulacijo v posameznem rotorskem kanalu lahko v eni ravnini, npr. v ravnini srednjice po širini rotorja, določimo z integracijo obodnih hitrostih, ki se pojavljajo ob stenah posameznega rotorskega kanala na posameznih delih (sl. 2): where c1u and c2u are the absolute flow velocities in the circumferential direction at the entrance- and exit-impeller diameter, respectively. The circulation in the individual impeller channel in one plane, for example in the plane of the middle streamline of the impeller width, can be determined by circumferential velocity integrating near the walls of the impeller channel at the particular channel parts (Fig. 2): B B C A G=-[c dAB + [wtdBC + [c dCD - f wdDA K J 1u J J 2u J AC D D ali or D c1+wl +c 1u tlop 2u D wl lop G =-c t +wl +c t -wl K 1u1 tlop 2u2 slop (6) (7), (8), kjer so: t - delitev na vstopnem in t - na izstopnem premeru rotorja, llo - ločna dolžina lopatice, wt - je relativna hitrost ob tlačni in ws - ob sesalni strani rotorske lopatice. V enačbi (8) je problematična teoretična določitev relativnih hitrosti ws in wt, ki where t1 is the division at the entrance and t2 at the exit diameter, llop is the blade curved length, wt is the relative flow velocity at the pressure side of the blade and ws at the suction side. In equation (8) the theoretical determination of the relative flow velocities VH^tTPsDDIK stran 278 L L A. Predin - I. Bilu{: Prerotacijski tok - Prerotation Flow Sl. 2. Cirkulacija v rotorskem kanalu Fig. 2. Circulation in the impeller channel se spreminjata vzdolž dolžine rotorske lopatice. Po Eckertu in Schnelu [13] je razlika relativnih hitrosti ob sesalni in tlačni strani lopatice podana z: ws and wt , which change the direction of the impeller blade, is problematic. Eckert in Schnel [13] defined the difference of the relative flow velocities between the pressure and suction side of the blade as follows: in: ws -wt = 4 c2u -c3u ()() and: pD22b2c3u sin b2 8z S (9), (10), kjer je: b2 - širina rotorja na izstopnem premeru, zr -število rotorskih lopatic, /?2 - kot rotorske lopatice in S - odpornostni moment: where b2 is the impeller width on the impeller exit diameter, zr the number of impeller blades, b2 the blade angle and S the moment of resistance: 2 S = J(br) dr (11). Če gornje zveze uporabimo v enačbi (8) lahko izračunamo cirkulacijo v rotorskem kanalu kot: Using these relations in equation (8) we obtain the following equation for circulation in the impeller channel: -c t +c t -l 1u1 2u2 lop 2z S pD22b2c3u sin b (12), ki jo lahko na podlagi znane geometrijske oblike črpalke tudi izračunamo. Cirkulacijo okrog rotorske lopatice lahko izračunamo na podlagi energijske razlike, ki jo črpalka dosega. Izhajajoč iz vrtilnega momenta: which can be calculated using the known pump geometry. The circulation around the impeller blade can be calculated according to the energy difference that is achieved by the pump. The torque or the moment that is achieved is: M =z 2 r / Dpbrdr (13), kjer sta: Dp - tlačna razlika, ki jo rotor dosega, b -pa širina rotorja. Upoštevajoč, da je tlačna razlika enaka razliki kvadratov relativnih hitrosti med vstopom in izstopom iz rotorja, pomnožena z gostoto tekočine, dobimo: where Dp is the pressure difference that is achieved by the impeller and b is impeller width. Considering that the pressure difference is equal to the difference of the squared relative flow velocities of the impeller entrance and exit multiplied by the fluid density, we obtain: Dp= w12-w22 r2() gfin^OtJJIMISCSD 00-5 stran 279 |^BSSITIMIGC A. Predin - I. Bilu{: Prerotacijski tok - Prerotation Flow in ob upoštevanju vrtilne frekvence rotorja w ter masnega pretoka skozi rotor m , lahko zapišemo energijsko razliko v obliki: and by considering the impeller angular speed w and the mass capacity through the impeller m& we can write the energy difference as: Y =gH wzrr 2 m& 2 / (w12 — w22)brdr (15), ki jo izenačimo z Eulerjevo glavno enačbo [14], ki upošteva cirkulacijo okrog rotorskih lopatic, pri doseganju energijske razlike radialnega rotorja kot vsoto vseh cirkulacij okrog posamezne lopatice: which can be equalized by Euler’s main equation [14], which considers the circulation around the impeller blades as the energy difference achieved by the radial impeller as the sum of all the circulations around the individual impeller blades: Y th gH rG 2p (16), od koder lahko izrazimo cirkulacijo okrog rotorske lopatice kot: from where the circulation around an individual impeller blade can be represented as: 2p S cirkulacijami, določenimi na vstopnem premeru G en. (4), na izstopnem premeru rotorja G2 en. (5), v rotorskem kanalu G en. (12) in okoli rotorske lopatice GL en. (17) lahko zapišemo dve ravnotežni enačbi cirkulacij, kot vsoto cirkulacij v neki ravnini od vstopnega do izstopnega robu rotorja: Enačbo (18) lahko zapišemo npr. za sredino rotorskega kanala, enačbo (19) pa za potek cirkulacij v smeri sredine rotorske lopatice od vstopnega do izstopnega roba. Enačba (19) naj bi opisovala razmere toka v sledi rotorske lopatice. V idealnem primeru, kar izhaja iz obeh ravnotežnih enačb (18) in (19), bi se pojavila enakost cirkulacij okrog rotorske lopatice in cirkulacije v rotorskem kanalu: p(D2c2 Dc 2u 11u (17). According to the circulations, determined at the impeller entrance diameter G1 eq. (4), at the exit diameter G2 eq. (5), in the impeller channel GK eq. (12) and around the impeller blade GL eq. (17), two equilibrium equations, based on two different circulation directions (circulation in the impeller channel and circulation around the impeller blade), can be written as: +z G +z G (18), (19). Equation (18) can be written, for example, for the central part of the impeller channels, and equation (19) for the central part of the blade from the entrance up to the exit blade edge. Equation (19) represents the flow properties following the blade wake. In the ideal case, as it follows from both equilibrium equations (18) and (19), the equality of circulation around the blade and the circulation in the impeller channels can be written as: GL =GK (20). Iz ravnotežnih enačb (18) in (19) je razvidno, da cirkulacijski tok okrog rotorskih lopatic vpliva na cirkulacijo na izstopnem premeru G in s tem tudi energijsko razliko, ki jo rotor dosega. Enako velja za cirkulacijo v rotorskem kanalu. Iz tega lahko sklepamo, da je oblika obratovalne značilnice v veliki meri odvisna od razmerja med cirkulacijo okrog rotorske lopatice in cirkulacijo v rotorskem kanalu rotorja. Osnovna vzroka nastanka teh dveh cirkulacij sta različna, pa vendar med seboj povezana. Cirkulacijski tok v rotorskem kanalu je gnan s Coriolisovo silo [15], ki se pojavi zaradi relativnega gibanja toka skozi krožeči ukrivljeni rotorski kanal. Cirkulacijski tok okoli rotorske lopatice pa nastane zaradi različnih tlakov toka From both equilibrium equations (18) and (19) it is also evident that the circulating flow around the blades influences the circulation at the exit diameter G2 and therefore also affects the energy difference of the fan (achieved fan’s head). The same can be concluded for the circulation in the impeller channels. According to this, it is possible to conclude that the fan’s operating characteristic shape depends on the ratio of the circulation around the impeller blades and the circulation in the impeller channels. The causes of the circulating flows are different, but they are connected. The circulating flow in the impeller channel is driven by the Coriolis force [15] and appears as a result of relative flow movement through the rotated curved impeller channel. The circulating flow around the impeller blade is created as a result of the different pressures at the VBgfFMK stran 280 A. Predin - I. Bilu{: Prerotacijski tok - Prerotation Flow ob zgornji oziroma spodnji (tlačni oz. sesalni) strani rotorske lopatice (odlepljanje toka), zaradi česar se pojavijo različne relativne hitrosti ob rotorski lopatici, ki so gonilo cirkulacijskega toka okrog lopatice. Obstoj enakosti obeh cirkulacij je torej v zvezi: upper (pressure) side and the lower (suction) side of the blade surface (flow separation). The causes of this pressure difference are the different relative flow velocities near the blade surface, which are the cause of the circulation around the blade. The equallity of both circulations therefore exists in the following relation: () p D2c2u -D1c1u pD pD +llop (wt (21). Z ureditvijo enačbe (21) dobimo naslednjo zvezo za določitev absolutne hitrosti toka v obodni smeri na vstopnem premeru D: By rearanging equation (21) we obtain the following relation for absolute flow velocity in a circumferential direction at an inlet diamater D : c+ zrl lop pD (z -1) (22), od koder lahko poiščemo razmere oz. absolutno hitrost toka v obodni smeri na izstopnem premeru rotorja, pri kateri bo ekvivalentna hitrost c na vstopnem premeru nič. To hkrati pomeni, da je teoretično tudi prerotacijski tok v vstopnem cevovodu nič. V teh razmerah je izstopna absolutna hitrost toka v obodni smeri na izstopnem premeru rotorja D : from where we can find the absolute flow velocity in the circumferential direction at the outlet diameter D2 where the equivalent velocity c1u equals zero. In theory this also means that the prerotation flow in the inlet pipe does not exist. Under these conditions, absolute flow velocity in the circumferential direction at an outlet diameter D is: lop (w -w) (23). 2u pD2(zr-1y s t Z upoštevanjem enačb (9) in (10) izpeljemo Considering equations (9) and (10) the fol- zvezo: lowing formula can be derrived: llopD2b2 sin b2 2(z -1)S (24). Iz gornje enačbe je razvidno, da je absolutna hitrost toka v obodni smeri na izstopu iz rotorja odvisna od geometrijskih podatkov rotorja ( llo ,D2,b2,b2,S) in absolutne hitrosti c3u za izstopnim premerom rotorja, ki upošteva zdrs toka oz. nepopolnost rotorja. Vse naštete parametre lahko združimo v neko konstanto K in zapišemo zvezo: The formula shows that the absolute flow velocity in the circumferential direction at an outlet diameter depends on the geometry (llop ,D2,b2, b2,S) and absolute velocity c3u behind the exit diameter, which considers the flow slip and impeller imperfect-ness respectively. All the parameters mentioned above can be combined in a constant K and written as: c =Kc 2u R3u (25), iz katere je razvidno, da upošteva zdrs toka na izstopu iz rotorja. Na osnovi te zveze lahko sklepamo o smiselni pravilnosti izvedenih enačb, ker se rezultat tudi smiselno ujema z izvajanjem Ecka [18]. V preračunski točki bi naj torej rotor dosegal optimalno absolutno hitrost toka v obodni smeri. Kakor je znano, se energijska razlika, ki jo rotor dosega na področju podoptimalnih oz. podpreračunskih pretokih veča oz. pri nadpreračunskih pa se zmanjšuje. Vendar pri obratovanju zunaj preračunske točke ne moremo izhajati iz dejstva, da je c1u =0, kar najlaže prikažemo z Eulerjevim vstopnim hitrostnim trikotnikom (sl. 3). Pri manjših pretokih, pod optimalnimi, se pojavi komponenta absolutne hitrosti toka na From equation (25) it is evident that it considers the slip of the flow at the impeller exit. Based on this formula, the correct derivation of equations can be assumed because the result is logicaly connected with Eck's [18] results. In designing the operating point the optimal operating absolute flow velocities in circumference diameter should be achieved. As is known, the energy difference achieved at capacities in the area of lower, under optimal capacities, increases the energy difference of the fan. In contrast, at larger, over-optimal capacities, the energy difference of the fan decreases. However, following the fan operating out of the design operating point, that the absolute flow velocity in the circumferential direction is zero (c1u = 0) cannot be predicted simply shown by the Euler’s entrance flow velocity triangles (Figure 3). With the fan operating at under-optimal capacities the flow velocity component in the circum- stran 281 glTMDDC A. Predin - I. Bilu{: Prerotacijski tok - Prerotation Flow QQopt w1 «1<90o c1m = c1 u1 c1u u1 c1u=0 «1=90o 21 c1m c1 a1> 90o u1 c1u Sl. 3. Euler-jevi vstopni hitrostni trikotniki pri različnih obratovalnih pretokih Fig. 3. Euler s entrance velocity triangles at different operating capacity vstopnem premeru D v obodni smeri v smeri vrtenja rotorja (ista smer kot u ). Vzrok za nastanek te hitrostne komponente je verjetno v nastalem sekundarnem toku med izstopnim robom rotorja in vstopnim robom skozi vmesno rego med pokrovno steno rotorja in okrovom (sl. 4.a). Zaradi večjega tlaka toka na izstopu iz rotorja del tega vdira skozi rego nazaj proti vstopu v rotor, kjer se ob pokrovni steni rotorja vrti s hitrostjo vstopnega robu rotorja in tako kakor neki »jezik« tekočinskega toka sega v vstopno cev, prek katerega se po načelu viskoznega trenja toka ustvarja prerotacijski tok v vstopnem cevovodu tudi daleč pred vstopom v rotor, tudi do razdalje treh premerov vstopnega cevovoda (/ « 3D ). Pri tem režimu lahko štejemo, da se cirkulacija okrog rotorskih lopatic okrepi, saj se zaradi večje obremenitve rotorskih lopatic (doseganje večje energijske razlike) tlak na izstopu iz rotorja poveča. Okrepitev cirkulacijskega toka okrog rotorske lopatice lahko razložimo tudi zaradi zmanjšanja vstopnega kota toka ^ na vstopu v rotorske kanale ali pri nateku na rotorsko lopatico, pri čemer ferential direction at the entrance diameter D appears in the direction of the impeller rotation (the same direction as ux). The reason for the creation of this flow component can probably be found in the appearance of secondary flow near the entrance edge of the impeller blades and across in the gap between the tip impeller shroud and the fan casing (Figure 4.a). Because of the higher pressure at the impeller entrance this part of the flow penetrates through the gap between the impeller tip shroud and the fan casing back to the fan impeller aye where near the tip impeller shroud the flow rotates by velocity ux as some tongue of flow that over the flow viscosity creates the prerotation flow in the intake pipe even far from the impeller aye, up to three intake diam-eter lengths (/ « 3 D ). According to this operating regime it can be considered that the circulation around the blades increases because of the larger blade load (achieved larger energy difference) which causes an increase of the pressure at the impeller exit. The strengthening of the circulation around the impeller blades can be explained by the entrance flow angle decrease ^ at the entrance of the impeller channels or by the flow intake on the blade, where the flow cutting and flow fluidni jezik fluid tongue a) b) Sl. 4. Sekundarni tok v regi med pokrovno steno in ohišjem (a) in v rotorskem kanalu (b) Fig. 4. Secondary flow in the tip clearance between the tip shroud of impeller and pump casing (a) and in impeller channel (b) VBgfFMK stran 282 A. Predin - I. Bilu{: Prerotacijski tok - Prerotation Flow rL*o rL>o a) b) c) Sl. 5. Cirkulacijski tok okrog rotorske lopatice v odvisnosti od pretoka Fig. 5. Circulating flow around the impeller blade in dependency of capacity prihaja do trganja in vrtinčenja toka na vstopnem robu rotorske lopatice ob sesalni strani (sl. 5). Ker vrtinčenje in odlepljanje toka povzroči padec tlaka, vdre del toka iz področja višjih tlakov (ob izstopnem robu rotorske lopatice) v področje z nižjim tlakom in tako še dodatno okrepi cirkulacijo okrog lopatic. S povečanjem pretoka prek optimalnega pretoka pa nastaja hitrostna komponenta absolutnega toka na vstopnem premeru rotorja v obodni smeri s smerjo, nasprotno smeri vrtenja rotorja. Da bi lahko rotor »pridelal« večje pretoke, se tok že pred vstopom v rotorske kanale preusmeri v smeri najmanjšega upora, to je v smeri, ki je nasprotna smeri vrtenja rotorja, ker se s tako postavitvijo poveča vstopni kot toka in s tem zmanjša vstopna pot. Gonilo takega toka je najverjetneje povečana cirkulacija v rotorskih kanalih (sl. 4.b), ki prek cirkulacijskih tokov ob vstopnih robovih rotorskih lopatic, segajo kot sekundarni tok v vstopno ustje črpalke/ ventilatorja, ki podobno kakor v primeru »ustvarjenega jezika toka« prek tekočinskega trenja, preusmerijo tok v prerotacijski tok v vstopnem cevovodu. Da gre za postopno preusmerjanje toka je razvidno iz rezultatov meritev prerotacije toka, saj se po spremembi obratovalnega pretoka šele po določenem času vzpostavi novo stanje (kotna hitrost anemometra) prerotacije toka v vstopnem cevovodu. Pri tem obratovalnem režimu se vstopni kot toka « poveča (je večji od 90o) tako, da se zaradi prevelikega kota pojavi odlepljanje toka ob zgornji (tlačni) strani rotorske lopatice ob vstopnem robu (sl. 5). Zaradi tega se, podobno kakor pri obratovanju s pretoki pod optimalnimi, ustvarja cirkulacijski tok okrog lopatice v nasprotni smeri od sedanje cirkulacije okrog separation from the blade suction surface near the blade entrance edge (Figure 5) appears. While the flow vortices and flow separation cause the pressure decrease, the part of the flow from the area of higher pressure (near the exit edge of the impeller blade) penetrates to the lower flow pressure area and in this way strengthens the circulation around the blades. With a capacity increase over optimal capacity, the absolute flow velocity in the circumferential direction at the entrance diameter and with this velocity component the prerotation flow with a direction opposite to the direction of the impeller rotation is created. For the achieved increased operating capacities the prerotation flow must be diverted before the impeller aye in the direction of the smallest resistance that is in direction opposition to the direction of the impeller rotation. With this flow redirection the increase in the flow entrance angle and thus the shorter entrance path are achieved. The main reason for this increased circulation in the impeller channels (Figure 4.b) is probably the increased circulating flow in the channel. This increased circulating flow causes the secondary flows near the entrance blade edge in the intake pipe, and similarly as in the case of “created flow tongue” drive the prerotation flow far before the impeller aye in the intake pipe over the flow viscosity in the opposite direction of the impeller rotation. The direction change applies gradually, which is evident from the measurement results, while after an operating capacity change, the prerotation flow appears after a short time period, when new operating conditions (angular speed of the anemometer impeller) are stabilized. In this operating regime (over-optimal capacities) the entrance flow angle a1 increases (it is bigger than 90o) and as a result of too big an entrance angle the flow separation near the pressure blade surface at the entrance blade edge (Figure 5) appears. Because of this flow separation, similar to operating with under-optimal capacities, the circulation flow around the impeller blade in a gfin^OtJJlMISCSD 00-5 stran 283 |^BSSITIMIGC A. Predin - I. Bilu{: Prerotacijski tok - Prerotation Flow Y,h Yopt področje/area: a) b) 1 G1 = konst./ const. G L > G L,opt G L G G z dodatnim tokom with adding flow 0,00 0,05 0,10 0,15 x Q 0,20 Sl. 9. Merilni rezultati prerotacije toka v vstopnem cevovodu, z dodanim tokom na vstopu v rotor, na vstopnem premeru rotorja Fig. 9. Measurement results of the prerotation flow in the entrance pipe by adding the additional flow at the impeller entrance diameter premeru ([16] in [17]) je prav tako opazna sprememba smeri prerotacijskega toka v področju manjših, pod optimalnih pretokov. Mesto spremembe smeri prerotacije toka se z večanjem vrtilne frekvence rotorja pomika v področje večjih obratovalnih pretokov. Glede obratovanja ventilatorja brez dodanega dodatnega toka na vstopu v rotor pa je opazno pojemanje prerotacijskega toka v področju večjih obratovalnih pretokov (sl. 9). Vzrok temu je najverjetneje razbitje ustvarjenega sekundarnega toka ob vstopnem robu rotorskih lopatic z dodanim tokom pri večjih obratovalnih pretokih (nad optimalnih). S tem se vpliv prerotacijskega toka v vstopnem cevovodu zmanjša in ne sega tako intenzivno do mesta merjenja, kjer je postavljen anemometer. To pomeni, da dodani tok na vstop radialnega rotorja prestavlja prerotacijski tok bliže rotorju, vendar pa še obstaja. V primerjavi rezultatov pri obratovanju v obeh režimih (z dodanim tokom in brez njega na flow direction change at the area of the smaller under-optimal capacities areas is also shown. The place of prerotation flow direction change is changed by the impeller speed increase in the direction of larger operating capacities. The difference between the fan operating without additional flow, added at the impeller entrance, compared to operating with added flow is that the magnitude of the prerotation flow decreases in the area of larger operating capacity (Figure 9). The reason for this is probably broken secondary flow that is created near the entrance blade edge at larger operating capacity (over-optimum capacities). In this way the prerotation flow influence in the intake pipe decreases and does not reach the place where the anemometer is placed in the intake pipe. According to this the added flow at the impeller entrance aye still exists but closer to the impeller entrance. By comparing the results for both operating regimes (with and without additional flow at the impeller entrance) it is evident that the prerotation gfin^OtJJlMISCSD 00-5 stran 287 |^BSSITIMIGC A. Predin - I. Bilu{: Prerotacijski tok - Prerotation Flow vstopu v rotor) je razvidno, da je prerotacija toka močnejša pri obratovalnem režimu brez dodatnega toka na vstopu v rotor. Sprememba smeri se izvede kasneje, pri večjih obratovalnih pretokih kakor pri obratovanju brez dodanega toka na vstopu v rotor. Glede na potek rezultatov meritev je opazen dokaj enotni potek oziroma majhen raztros merilnih rezultatov. Tudi glede na vrtilno frekvenco rotorja se merilni rezultati med seboj dobro ujemajo, tako da lahko sklepamo, da je sprememba prerotacije toka odvisna predvsem od pretoka in geometrijske oblike rotorja in manj od vrtilne frekvence rotorja. Meritve so izvedene s petimi ponovitvami. Razvidna je visoka stopnja ponovljivosti meritev, zato lahko menimo, da je meritev ustrezna in napaka meritve reda nenatančnosti opreme, povezane v merilno verigo. 3 SKLEPI Na podlagi izvedene analize pojava prerotacijskega toka v vstopnem cevovodu lahko povzamemo, da se prerotacijski tok pojavlja zaradi delovanja cirkulacijskih tokov v rotorskih kanalih in/ ali okrog rotorskih lopatic ki prek kapljevinskega trenja vplivajo na vrtinčnost toka v vstopnem cevovodu. Prerotacijski tok spremeni smer rotacije zaradi spremembe smeri cirkulacijskega toka okrog rotorskih lopatic zaradi različnih kotov natekanja rotorskih lopatic na vstopnem premeru rotorja. Pri manjših, podoptimalnih pretokih ima cirkulacijski tok okrog lopatice enako smer kakor cirkulacijski tok na izstopnem premeru rotorja, s čimer vpliva na povečanje energijske razlike, hkrati pa povzroča prerotacijo toka v smeri vrtenja rotorja. Vzrok nastanka takega cirkulacijskega toka je majhen natočni kot, ki povzroča odlepljanje toka na sesalni strani rotorske lopatice ob vstopnem robu. Pri večjih, nadoptimalnih pretokih se slika spremeni zaradi večjih natekajočih kotov na rotorsko lopatico, ki povzročijo odlepljanje toka na tlačni strani ob vstopnem robu rotorske lopatice in s tem cirkulacijski tok okrog rotorske lopatice v smeri, ki je nasprotna smeri cirkulacijskega toka. Tako se dosežena energijska razlika rotorja zmanjšuje, v vstopnem cevovodu pa se pojavi prerotacijski tok s smerjo, nasprotno smeri vrtenja rotorja. Jakost prerotacijskega toka je neposredno odvisna od jakosti cirkulacijskih tokov okrog rotorskih lopatic oziroma v rotorskih kanalih. Z večanjem pretoka se jakost prerotacijskega toka tudi veča. Z ustreznim matematično-numeričnim postopkom se da ta pojav tudi ustrezno napovedati, kar pa so smernice za nadaljnje delo. ^BSfirTMlliC | stran 288 during the operation of the fan without additional flow at the impeller entrance is stronger than by operating with additional flow. The change of the prerotation flow direction appears later (in area of larger operating capacities) than by operating without added additional flow. According to the results, the relative unified course and small measurement results scatter are evident. Even results of the impeller speed show a relatively unified course and disagreement between them is small. Because of this it can be concluded that the change of the prerotation flow depends on the capacity and impeller geometry and less on the impeller speed. The measurements were repeated five times. Many repetitions show that the measurement is relevant and that the measurment uncertainty is the same as the uncertainly in the measuring chain. 3 CONCLUSIONS According to the analyses of the prerotation flow in the entrance pipe it can be concluded that the prerotation flow appears as the result of the circulating flow activity in the impeller channels and/ or around the impeller blades, which have (through the fluid friction) an influence on the whirl flow in the entrance pipe. Prerotation flow changes its direction because of the prerotation direction change around the impeller blades, caused by different inlet angles of flow at the entrance rotor radii. Circulation around the impeller blades has, at small (under optimal) capacities, the same direction as circulation at the outlet radii. As a result, it increases the energy difference and because of the small inlet angles causes separation of flow at the suction side of the blade inlet edge. There are bigger inlet flow angles and separation at the pressure side of the blade edges at larger, over-optimum capacities and prerotation around the impeller blades therefore changes its direction into the opposite direction of circulation flow. This change of direction causes a smaller achieved energy difference and prerotation swirl in the opposite direction to the rotation direction. The strength of the prerotation flow directly depends on the circulation flow intensity around the impeller blades or in the impeller channels. The prerotation flow increases with capacity increase. The phenomenon can be predicted with suitable mathematical – numerical access which is the guideline for further investigations. A. Predin - I. Bilu{: Prerotacijski tok - Prerotation Flow ZAHVALA Avtorja se zahvaljujeta podjetju KLIMA Celje d.o.o in Ministrstvu za znanost in tehnologijo Republike Slovenije, ki so materialno in finančno podprli raziskave. Še prav posebej direktorju Norbertu Vrhovcu, Borisu Leskovšku in vsem preostalim, ki so kakorkoli sodelovali pri projektu. ACKNOWLEDGMENT The present field study was made possible by the understanding and support of KLIMA Celje Ltd. and the Ministry for Science and Technology of the Republic of Slovenia. The authors would like to express sincere thanks to them, and especially to Mr. Norbert Vrhovec, Mr. Boris Leskovšek and other collaborators. cirkulacija polje hitrosti usmerjen element krivulje komponenta hitrosti v smeri osi x komponenta hitrosti v smeri osi y komponenta hitrosti v smeri osi z obodna komponenta hitrosti kot, med tangento in osjo x vstopni kot toka obodna komponenta absolutne hitrosti na vstopnem premeru obodna komponenta absolutne hitrosti na izstopnem premeru obodna komponenta absolutne hitrosti na merilnem premeru vstopni premer rotorja izstopni premer rotorja merilni premer na izstopu iz rotorja število rotorskih lopatic lopatična delitev na vstopnem premeru lopatična delitev na izstopnem premeru relativna hitrost toka relativna hitrost na sesalni strani lopatice relativna hitrost na tlačni strani lopatice ločna dolžina lopatice izstopni kot rotorske lopatice širina rotorja tlačna razlika polmer rotorja vrtilni moment gostota energijska razlika gravitacijski pospešek črpalna višina masni pretok cirkulacija na vstopnem premeru cirkulacija na izstopnem premeru cirkulacija v rotorskem kanalu cirkulacija okoli rotorske lopatice vstopni premer cevovoda srednji premer anemometra kotna hitrost rotorja kotna hitrost anemometra odpornostni moment ploskve brezdimenzijski prerotacijski koeficient brezdimenzijski koeficient pretoka vrtilna frekvenca 4 SIMBOLI 4 SYMBOLS dl v x v y v z v t a a D 1 D 2 D t 2 w w s w t l lop b2 b Dp r M r Y th g H th m& G1 G2 GK GL D v,cev D s,anem w w anem S x pre xQ n circulation velocity field oriented curve element velocity component in x direction velocity component in y direction velocity component in z direction circumferential velocity component angle between tangent and x axes entrance flow angle absolute entrance flow velocity in circumferential direction absolute discharge flow velocity in circumferential direction absolute discharge flow velocity in circumferential direction on mesuring diameter impeller inlet diameter impeller exit diameter measuring impeller exit diameter number of the impeller blades blade division at the entrance diameter blade division at the exit diameter relative flow velocity relative flow velocity on the suction side relative flow velocity on the pressure side blade curved length exit blade angle impeller width pressure difference impeller radii torque density energy difference gravitation acceleration pump head mass flow rate circulation at the inlet diameter circulation at the exit diameter circulation in the impeller channel circulation around the impeller blade entrance pipe diameter anemometer mean diameter impeller angular speed anemometer angular speed moment of surface resistance dimensionless prerotational coefficient dimensionless capacity coefficient impeller speed stran 289 c 1u c 2u c 3u z A. Predin - I. Bilu{: Prerotacijski tok - Prerotation Flow 5 LITERATURA 5 REFERENCES [1] Stewart, C. B. (1909) Investigation of centrifugal pumps. University of Wisconsin, Bull. 318, p. 119. [2] Stepanoff, A. J. (1993) Centrifugal and axial flow pumps, theory, design and application, 2nd Edition, Krieger Publishing Company Malabar, Florida. [3] Schweiger, F (1979) Tokovne in kavitacijske razmere pri delnih obremenitvah v centrifugalni črpalki. Strojniški Vestnik, Ljubljana. [4] Siervo, F.(1980) Modern trends in selecting and designing reversibile Francis pump - turbines. Water Power and Dam Construction. [5] Brennen, C. E. (1994) Hydrodynamics of pumps. Oxford Science Publications, Oxford University Press, Concepts ETI, Inc. [6] Van den Braembusshe, R. A., B.M. Hande (1990) Experimental and theoretical study of the swirling flow in centrifugal compressor volutes. Transactions of ASME, Journal of Turbomachinery, Vol. 112. [7] Sipos, G. (1991) Secondary flow and loss distribution in a radial compressor with untwisted backswept vanes. Transactions of ASME, Journal of Turbomachinery, Vol. 113. [8] Mizuki, S., Y. Oosawa Y. (1992) Unsteady flow within centrifugal compressor channels under rotating stall and surge. Transactions of ASME, Journal of Turbomachinery, Vol. 114. [9] Steiner, W., Fuchs, R., H. Starken (1992) Inlet flow angle determination of transonic compressor cascades. Transactions of ASME, Journal of Turbomachinery, Vol. 114. [10] Predin, A. (1997) Prerotacijski tok v vstopnem cevovodu radialnih turbostrojev Kuhljevi dnevi’97, Mokrice. [11] [12] [13] [14] [15] [16] [17] [18] Predin, A.(1998) Prerotacijski tok v vstopnem cevovodu radialnih turbostrojev - drugi del. Kuhljevi dnevi’99, Logarska dolina. Škerget, L.(1994) Mehanika tekočin. Tehniška fakulteta - Univerza v Mariboru in Univerza v Ljubljani, Fakulteta za strojništvo. Ecker, B., E. Schnell E.(1961) Axial- und Radial- Kompressoren. Springer Verlag, Berlin Gottingen, Heidelberg. Sigloch, H. (1993) Stromungsmaschinen, Grundlagen und Anwendungen. Car Hanser Verlag Munchen Wien. Horvat, D. (1965) Vodene turbine. Sveučilište u Zagrebu. Predin, A.(1999) Vpliv sekundarnega toka na obratovalne karakteristike radialnega rotorja normalne širine. Strojniški vestnik, št. 1. Predin, A. (1997) Torsional vibrations at guide-vane shaft of pump-turbine model, Shock and Vibration. Vol. 4, Issue 3. Eck (1962) Ventilatoren, Vierte Auflage, Springer Verlag. Naslov avtorjev: Doc.dr. Andrej Predin Ignacijo Biluš Fakulteta za strojništvo Univerze v Mariboru Smetanova 17 2000 Maribor Author’s Address: Doc.Dr. Andrej Predin Ignacijo Biluš Faculty of Mechanical Engineering University of Maribor Smetanova 17 2000 Maribor, Slovenia Prejeto: Received: 14.2.2000 Sprejeto: Accepted: 2.6.2000 VH^tTPsDDIK stran 290 © Strojni{ki vestnik 46(2000)5,291-301 © Journal of Mechanical Engineering 46(2000)5,291-301 ISSN 0039-2480 ISSN 0039-2480 UDK 665.334.9:621.892:621.833.01 UDC 665.334.9:621.892:621.833.01 Izvirni znanstveni ~lanek (1.01) Original scientific paper (1.01) Novo biorazgradljivo splo{no traktorsko transmisijsko olje na osnovi oljne repice A New Biodegradable Universal Tractor Transmission Oil Based on Rapeseed Oil Tone Ploj - Boris Kr`an - Janez Bedenk - Marta Feldin V Sloveniji je trenutno okrog 160 000 traktorjev. Za delovanje prenosnega sistema posameznega traktorja je potrebno od 30 do 100 litrov mazalnega olja, zamenjava olja pa se ponavadi opravi enkrat na leto. Glede na dejstvo, da nam v Sloveniji uspe zbrati le manjšo količino odpadnih olj, lahko rečemo, da večina tega olja nekontrolirano izgine v okolje. V sklopu raziskovalnega projekta smo izdelali novo, biološko razgradljivo in netoksično univerzalno traktorsko transmisijsko olje (UTTO) na osnovi oljne repice s stopnjo biološke razgradljivosti 99,6% (CEC-L-A-93). Lastnosti novega olja smo preskušali na standardnih napravah, rezultate pa primerjali z rezultati testiranja na tržišču dosegljivih UTTO olj. © 2000 Strojniški vestnik. Vse pravice pridržane. (Ključne besede: olja biorazgradljiva, olja repična, lastnosti olj, razvoj olj) At present, there are about 160 000 farm tractors in Slovenia. In the transmission system there is from 30 to 100 litres of lubrication oil which is normally changed once a year. Due to the fact, that in Slovenia we manage to collect just a small amount of used oils, we can conclude that the majority of these oils are being spilled to the environment. During this project a new biodegradable, non-toxic rapeseed based universal tractor transmission oil (UTTO) has been fabricated with biodegradability of 99,6% (CEC-L-A-93). The properties of this new oil were investigated in standard test procedures in comparison with the commercially available UTTO oils. © 2000 Journal of Mechanical Engineering. All rights reserved. (Keywords: biodegradable oils, rapseed oil, oil properties, oil development) 0 UVOD Z uporabo okolju prijetnih maziv lahko v precejšnji meri preprečimo onesnaževanje vode in tal. Značilni zastopniki teh maziv so rastlinska olja. Zaradi sprejemljive cene in zadovoljivih mazalnih lastnosti ima široko uporabo olje na osnovi oljne repice. Tovrstno olje zagotovlja pomembne prednosti glede obnovljivosti naravnih virov, biorazgradljivosti in nestrupenosti, ima pa tudi zadovoljive lastnosti na drugih področjih. Uporablja se predvsem v odprtih mazalnih sistemih vse bolj pa tudi v hidravliki in gonilih ([1] do [4]). Cilj raziskave je razviti novo biorazgradljivo hidravlično-transmisijsko traktorsko olje (UTTO) na osnovi oljne repice. Poglavitna naloga olja UTTO v traktorju je preprečiti zajedanje in jamičenje zobniških bokov ter drsno obrabo pri majhnih hitrostih in velikih obremenitvah. Olje mora hkrati imeti tudi zadovoljivo oksidacijsko stabilnost in zagotavljati pravilno delovanje sklopke in zavor, tako da je mogoče traktor zaustaviti v določenem času in na določeni razdalji. Dodani protiobrabni aditivi in dodatki za visoke obremenitve (aditivi EP/AW) ne smejo biti toliko dejavni, da bi povzročili korozijo 0 INTRODUCTION To avoid extensive soil and water pollution, environmentally friendly lubricants such as vegetable oils should be used. Quality and reasonable price are the main reasons why rapeseed oil is the most commonly used vegetable oil for lubricants. This oil can offer significant environmental advantages with respect to resource renewability, biodegradability, nontoxicity as well as offering satisfactory performance in a variety of applications. Rapeseed oil is widely used in total-loss systems and is increasingly finding uses in hydraulic and power transmissions ([1] to [4]). The aim of this research is to develop a new biodegradable universal tractor transmission oil (UTTO) based on rapeseed oil. The main objective of the transmission oil in a tractor is to prevent scuffing and pitting failure as well as the normal rubbing wear which occurs during low-speed and high-load conditions associated with their oxidation stability. Oils must also provide the correct fric-tional balance to allow squawk-free wet-brake performance and smooth transmission-clutch engagement. At the same time, they must provide enough clutch capacity for efficient power transfer and enough brake capacity to stop the tractor in a reasonable time and distance. The EP/AW system used must not be so active as to cause corrosion in the stran 291 glTMDDC T. Ploj - B.Kr`an - J. Bedenk - M. Feldin: Novo biorazgradljivo - A New Biodegradable VBgfFMK na elementih hidravličnega sistema traktorja, predvsem zlitin bakra pri črpalkah ([5] in [6]). V tej raziskavi smo koeficient trenja izmerili na preskuševališču SRV. Protiobrabne in nosilne lastnosti oljnega filma (lastnosti EP/AW) smo določili na SRV, s štirimi kroglami in preskuševališču FZG, odpornost na jamičenje pa za izbrana olja določili na preskuševališču FZG. Za elementno analizo maziv smo uporabili rentgensko fluorescenčno spektrometrijo ED-XRF. V prispevku ni poudarjena samo raziskava fizikalno-kemijskih lastnosti biološko razgradljivih UTTO olj, temveč je v ospredju ocena mazalnih sposobnosti olj na podlagi laboratorijskih preskusov s praktičnega inženirskega izhodišča. 1 PRIPRAVA VZORCEV Izbrali smo dva različna vzorca olja UTTO na rastlinski osnovi. Lastnosti teh olj smo primerjali z lastnostmi petih komercialno dosegljivih mineralnih olj UTTO, dveh drugih olj na rastlinski osnovi ter dvema biorazgradljivima sintetičnima oljema, kakor je predstavljeno v preglednici 1. Preglednica 1. Pregled preskusanih olj Table 1. Survey of tested oils tractor’’s hydraulic system where pumps containing alloys of copper can be present ([5] and [6]). In the present study the average coefficient of friction has been measured on a SRV test rig. EP/ AW performance has been established on the SRV, the Four-Ball test rig and FZG gear test equipment. Pitting resistance for selected oils was determined on the FZG test device. The elemental analysis of additives was performed by using ED-XRF spec-trometry. The main objective of this paper is not the study of the physical and chemical properties of the new biodegradable UTTO oil, but to assess the lubrication properties on the laboratory field tests machine from an engineering point of view. 1 OIL SAMPLES We have formulated two different vegetable-based UTTO oils for the investigations. The properties of these two oils were compared to five commercially available mineral-based UTTO oils, two vegetable-based hydraulic oils and two fast biodegradable synthetic oils, as shown in Table 1. Bazno olje Basestock Vrsta olja Oil type repično olje rapeseed oil repično olje rapeseed oil oleinsko sončnično olje high oleic sunflower oil oleinsko sončnično olje high oleic sunflower oil sintetični ester synthetic ester sintetični ester synthetic ester mineralno olje mineral oil mineralno olje mineral oil mineralno olje mineral oil mineralno olje mineral oil mineralno olje mineral oil repično olje rapeseed oil oleinsko sončnično olje high oleic sunflower oil dodatki additive dodatki additive biorazgradljivo UTTO biodegradable UTTO bioraz. hidravlično olje biodeg. hydraulic oil biorazgradljivo UTTO biodegradable UTTO bioraz. hidravlično olje biodeg. hydraulic oil bioraz. reduktorsko olje biodegradable gear oil biorazgradljivo UTTO biodegradable UTTO UTTO UTTO UTTO UTTO UTTO bazno olje base oil bazno olje base oil paket aditivov 1 additive package 1 paket aditivov 2 additive package 2 Viskoznost / Viscosity mm2/s n40.C n100.C 48,8 10,4 39,4 8,9 51,4 10,6 43,3 9,3 101 51,3 10,9 H 81,6 87,9 63,4 55,1 56,0 Oznaka Oil code 17,8 10,9 11,0 9,2 9,2 9,3 35,0 8,0 baz-R 38,5 8,4 baz-S 100,3 17,6 adit-1 880,0 80,0 adit-2 R1 R2 S1 S2 G M3 M4 M5 M6 M7 stran 292 T. Ploj - B.Kr`an - J. Bedenk - M. Feldin: Novo biorazgradljivo - A New Biodegradable Za raziskovanje vpliva onesnaženja biorazgradljivega olja z vodo in mineralnim oljem UTTO na proces obrabe smo pripravili dodatnih osem vzorcev. Znano je, da pri zamenjavi olja v traktorju najmanj 2 odstotka starega olja ostane v sistemu, delež vode v olju pa je tudi večja kakor pri industrijskih hidravličnih sistemih. Kontaminacija olja z vodo in starim mineralnim oljem je torej pri obratovanju traktorja pričakovan pojav. Sestava kontaminiranih vzorcev olj je predstavljena v preglednici 2. We have prepared eight biodegradable oil samples to investigate the influence of water and mineral UTTO oil as a contaminant in the wear process. It is well known that during an oil change at least 2% of the old oil remains in the lubrication system and that the tractor’s hydraulic oil may operate at higher levels of water contamination than the industrial hydraulic oils. The contamination with water and mineral oil is therefore expected to occur during normal field service. The omposition of the contaminated biodegradable oil s mples is presented in Table 2. Preglednica 2. Olja na rastlinski osnovi onesnažena z vodo in minralnim oljem Table 2. Vegetable-based oil samples contaminated with water an mineral UTTO oil Sestava Composition Oznaka Oil code R1 + 1% vode / R1 + 1% of water R1+v R2 + 1% vode / R2 + 1% of water R2+v S1 + 1% vode / S1 + 1% of water S1+v S2 + 1% vode / S2 + 1% of water S2+v R1 + 10% mineralnega UTTO olja, M5 / R1 + 10% of mineral TTO oil, M5 R1+M5 R1 + 10% mineralnega UTTO olja, M5 / R2 + 10% of mineral TTO oil, M5 R2+M5 S1 + 10% mineralnega UTTO olja, M5 / S1 + 10% of mineral UTTO oil, M5 S1+M5 S2 + 10% mineralnega UTTO olja, M5 / S2 + 10% of mineral UTTO oil, M5 S2+M5 2 REZULTATI PRESKUSOV 2.1 Elementna analiza dodatkov Elementna analiza dodatkov je prikazana na sliki 1. Elementna sestava dodatkov je podobna za biorazgradljiva olja, označena z R1, S1 in H (sl.1). Nadaljnja podobnost je opazna pri sestavi mineralnih olj UTTO, označenih z M5, M6 in M7, ki imajo večji delež kalcija kakor ostala analizirana olja. Vzorci olja 2 RESU TS OF INVESTIGATIONS 2.1 Elem ntal nalysis of additives he el menta analysis of additives for selected oi is sh wn in ig.1. he el menta composition of additives is quite sim lar fo the bi degra able o s labelled R1, S1, and . The inera UTTO oils la elled M5, M6 and M7 re als simil and ontain a significantly higher le el of c lcium han a y othe tested oil. The %m/m 0,4 0,35 0,3 0,25 0,2 0,15 0,1 0,05 0 R1 P Ca Zn S 1,57 f 0,99 10,81 | 0,63 t 0,681 R2 S1 S2 G H M3 M4 M5 M6 M7 Olje / Oil Sl. 1. Elementna sestava preskusanih olj Fig. 1. Elemental composition of tested oils ^vmskmsmm 00-5 stran 293 |^BSSITIMIGC T. Ploj - B.Kr`an - J. Bedenk - M. Feldin: Novo biorazgradljivo - A New Biodegradable R2, S2 in G med dodatki ne vsebujejo kalcija in cinka. Pomemben je podatek, da mineralna olja UTTO vsebujejo veliko koncentracijo žvepla kot dodanega elementa EP. 2.2 Rezultati na napravi SRV Koeficiente trenja, obrabo in nosilnost oljne plasti smo določili na visokofrekvenčni napravi SRV, ki povzroča linearno izmenično gibanje kroglice po ploščici v pogojih mejnega mazanja. Tanko plast testiranega maziva nanesemo na ploščico pred vsakim preskusom. Naprava in postopek preskušanja sta podrobno opisana v standardu DIN 51 834 T2 [7]. 2.2.1 Meritev koeficienta trenja Spremembe strižnih sil, pretvorjene v koeficient trenja, merimo neposredno v odvisnosti od časa. Rezultate zbiramo prek računalniškega sistema. Pri preskusu smo merili koeficient trenja pri čistem drsenju [7]. 0,16 0,14 0,12 0,1 m 0,08 0,06 0,04 0,02 0 oils labelled R2, S2, G and M3 do not contain calcium and zinc as an additive component. It is clear from Fig. 1 that the mineral UTTO oils contain a large concentration of sulphur as an EP additive component. 2.2 Results obtained on SRV test device The coefficient of friction measurements, wear and load bearing, were performed on a SRV high-frequency test device which produces a linear oscillating motion of a ball on a flat, under boundary lubricating conditions. A thin layer of lubricant is spread over the flat specimen before each test. The test rig configuration and the test specimens are described more precisely in DIN standard 51 834 T2 [7]. 2.2.1 Friction coefficient measurement The variations in tangential force, transformed to the coefficient of friction, are recorded simultaneously as a function of time using a computer-based data acquisition system. On this test rig, just the friction coefficient during sliding motion was measured [7]. Olje / Oil Sl. 2. Srednja vrednost koeficienta trenja Fig. 2. Friction coefficient mean values obremenitev/load, 300N; hertzov tlak/Hertz pressure, 3,17 GPa; frekvenca/frequency, 50 Hz; ampiltuda/amplitude, 1000 mm; hitrost/speed, 0,05m/s; temperatura/temperature, 50 °C; čas preskusa/duration, 120 mi. Slika 2 prikazuje rezultate meritev koeficienta trenja. Srednja vrednost koeficienta trenja zavzema pri pogojih mejnega mazanja podobno vrednost za biorazgradljiva olja, označena z R1, S1 in H. Elementna sestava dodatkov za omenjena olja je podobna. Najvišjo vrednost koeficienta trenja kažejo mineralna olja M5, M6 in M7. 2.2.2 Nosilnost, izmerjena na napravi SRV Preverjanje nosilnih lastnosti oljne plasti na napravi SRV ni predpisano z nobenim standardom. Postopek preskusa je opisan v literaturi [8]. Obremenitev se povečuje stopenjsko v enominutnih korakih, do Figure 2 shows the results of the friction coefficient measurement. The mineral-based UTTO oils M5, M6, and M7 show the highest value of friction coefficient. Oil samples, contaminated with water and mineral oil labelled M5, do not show a significant difference in the friction coefficient with respect to the uncontaminated samples. 2.2.2 Load-bearing test results Checking the load-bearing capacity of oils on the SRV test rig is not a standard test. The procedure is described in reference [8]. The load was applied progressively in one minute intervals until the VH^tTPsDDIK stran 294 T. Ploj - B.Kr`an - J. Bedenk - M. Feldin: Novo biorazgradljivo - A New Biodegradable 1200 N 1000 800 600 400 200 0 R1 R2 S1 S2 G H M3M4M5M6M7 Olje / Oil Sl. 3. Rezultati nosilnosti izmerjeni na napravi SRV Fig. 3. Load-bearing test results measured on the SRV test device stopnjevanje obremenitve/load, increased in stages per 100 N; trajanje ene stopnje/duration per stage, 1 min; hitrost/speed, 0,05m/s; frekvenca/frequency, 50 Hz; amplituda/amplitude, 1000 mm pretrga oljne plasti. Obremenitev, pri kateri pride do pretrga oljne plasti in se pojavi neposreden stik obeh kovinskih površin, se poda kot rezultat. Največjo nosilnost oljnega filma smo dosegli pri preskušanju mineralnih olj UTTO, označenih z M5, M6 in M7, ki imajo največjo koncentracijo kalcija in veliko koncentracijo žvepla. Znova opazimo, da dosežejo biorazgradljiva olja R1, S2 in H enakovreden rezultat (sl. 3). 2.3 Rezultati preskušanja na napravi s štirimi kroglicami Tri jeklene kroglice, premera 12,7 mm, so vpete s prižemo in prekrite s testnim mazivom. Četrta, zgornja kroglica iste velikosti in kakovosti, je obremenjena in se vrti. Preskuševališče je podrobno opisano s standardom DN 51350 [9]. 2.3.1 Protiobrabne lastnosti Test uporabljamo za določanje protiobrabnih lastnosti maziv, ki obratujejo v razmerah mejnega mazanja. Kakovost olj se med sabo primerja z merjenjem povprečnega premera obrabne kotanje spodnjih treh krogel. Znova je izražena podobnost med rezultati za olja M5, M6 in M7. Nekaj večja obraba je nastala pri preskušanju olj R1, S1 in H (sl. 4). 2.3.2 Indeks nosilnosti Preskus je sestavljen iz serije 10 sekundnih testov, pri katerih obremenitev povečujemo stopenjsko do zavaritve testnih kroglic. Po vsakem intervalu izmerimo velikost poškodbe na spodnjih treh kroglicah. Indeks nosilnosti se izračuna v skladu s standardom ASTM D-2783 [10]. oil film breaks. The load at which the lubrication film breaks and the metal-to-metal contact occurs is reported as a result. The load-bearing test results on the SRV test rig are presented in Fig. 3. The best results were obtained with the mineral UTTO oils labelled M5, M6 and M7, which contain the highest concentration ratio of calcium and zinc. The other tested oils exhibit significantly lower load-bearing properties. 2.3 Results obtained on the four-ball test device The three 12.7 mm diameter steel balls are clamped together and covered with the lubricant to be evaluated, a fourth ball of the same size and quality, referred to as a top ball, is pressed with a force into the cavity formed by the clamped balls. The test rig is precisely described in the DIN 51 350 standard [9]. 2.3.1 Wear test results The test is used to determine the relative wear-preventing properties of lubricants operating under boundary lubrication conditions. The oils are compared by using the average size of the scar diameters worn on the three lower clamped balls. Similar results were obtained for oils M5, M6 and M7 in this experiment. The results for oils R1, S1 and were observed to be a little higher. 2.3.2 Load wear index The weld load test is a series of 10 second runs where the loading is increased at specified intervals until the rotating ball seizes and welds to the other balls. At the end of each interval the average scar diameter is measured. The Load Wear Index is calculated according to the standard ASTM D-2783 [10]. gfin^OtJJlMISCSD 00-5 stran 295 |^BSSITIMIGC T. Ploj - B.Kr`an - J. Bedenk - M. Feldin: Novo biorazgradljivo - A New Biodegradable mm 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0,1 Olje / Oil kgWl Sl. 4. Premeri obrabnih kotanj Fig. 4. Wear scar diameters obremenitev/load, 392 N (40 kg); vrtilna frekvenca/rotating speed, 1500 min 1/1500 rpm; hitrost/speed, 0,8 m/s; temperatura/temperature, 65 °C; čas preskusa/duration, 60 min 45 40 35 30 25 20 15 10 5 0 K K K K K K K K K K R1 R2 S1 S2 G H M3 M4 M5 M6 M7 Olje / Oil Sl. 5. Indeks obrabe Fig. 5. Load Wear Index vrtilna frekvenca/rotating speed, 1760 ± 40 min-1/1760 ± 40 rpm; hitrost/speed, 0,9 m/s; trajanje ene stopnje/duration, 10 s; temperatura/temperature, 18,33 to 35 °C Podobni med rezultati za posamezna olja, ki smo jih spremljali pri poprejšnjih preskusih, pri tem preskusu ni več opaziti (sl 5). Najboljši rezultati so doseženi s testiranjem olj M7 in R1, medtem ko najnižji indeks nosilnosti kaže olje z oznako H. 2.4 Rezultati z naprave FZG Odpornost olj proti zajedanju, jamičenju in normalni drsni obrabi je bila določena na zobniškem preskuševališču FZG. Zaradi zmanjšanja stroškov so bila za nadaljnjo preskušanje izbrana olja R1, S1, G, H in M6. Podroben opis naprave FZG in postopka preskušanja je predpisan s standardom DIN 51 354 in ISO CD 1435-1 ([11] in [12]). The similarities between the results for some oils, which have been observed during previous tests, are here no longer seen. The best results were obtained with the oils labelled M7 and R1, whereas the oil labelled H acheived the poorest result. 2.4 Results obtained on the FZG test device The investigations of scuffing-load capacity, pitting resistance and slow-speed high-load-wear resistance were performed with the FZG gear test rig, see Fig 6. The experiments are based on a failure of a standard test gear set, lubricated with the test oil under specific test conditions. A detailed description of the FZG test rig and the procedure can be found in the standards DIN 51 354 and ISO CD 14635-1 ([11] and [12]). VH^tTPsDDIK stran 296 T. Ploj - B.Kr`an - J. Bedenk - M. Feldin: Novo biorazgradljivo - A New Biodegradable 1 preskusni pastorek test pinion 2 preskusni zobnik test gear 3 prenosno gonilo slave gearbox 4 blokada sklopke brace coupling 5 zatič za blokado sklopke locking pin 6 ročica za obremenjevanje load lever and weights 7 sklopka za merjenje vrt. momenta torque measuring coupling 8 temperaturno zaznavalo temperature sensor Sl. 6. Shematični prikaz preskusevalisča FZG Fig. 6. Schematic section of the FZG gear test rig 9 preskusno gonilo test gearbox 10 torzijska gred 1 shaft 1 11 torzijska gred 2 shaft 2 12 elektromotor electric motor 2.4.1 Odpornost proti zajedanju Odpornost proti zajedanju smo določili s standardnim testom FZG A/8,3/90. Oznaka obremenitvene stopnje, ko vsota poškodb vseh zobnih bokov pastorka preseže širino zobnega boka, se poda kot rezultat. Če se poškodba ne pojavi tudi v dvanajsti obremenitveni stopnji, se ta vrednost upošteva kot končni rezultat [11]. Rezultati odpornosti proti zajedanju so predstavljeni na sliki 7. Najboljši rezultat smo dobili pri testiranju olja G, kar je za reduktorska olja pričakovan rezultat, preostala olja UTTO pa so dosegla enakovreden rezultat. 2.4.1 Scuffing-load capacity test The scuffing-load capacity of the tested oils was investigated by using the standard FZG A/8.3/ 90 test. The failure load stage is the one at which the summed total width of the damaged areas on all the pinion tooth faces equals or exceeds one gear-tooth width. If the test is completed without failure, then the test finishes at the 12th stage [11]. The data from the scuffing-resistance tests on the selected oils are presented in Fig. 7. The oil formulation G acheived the best results, which is normal for the gear oil, while the UTTO oils acheived the 10th stage pass. 600 Nm 500 400-^^- 300 200 100 10 0^------- /—y\ 11 f^=r\ 12 A stopnja obremenitve FZG scuffing load stage ^L. 10 ^L. 10 R1 S1 M6 Olje / Oil Sl. 7. Rezultati preskusov zajedanja Fig. 7. Scuffing-load capacity stopnjevanje obremenitve od 1 do 12/load, increased in stages 1 to 12; hertzov tlak/ Hertzian stress, 146 do/ to 1841 N/mm; hitrost na kotalnem krogu/pitch line velocity, 8.3 m/s; vrtilna frekvenca pastorka/pinion rotating speed, 2175 mni 1/2175 rpm; temperatura olja/oil temperature, 90 °C. stran 297 glTMDDC T. Ploj - B.Kr`an - J. Bedenk - M. Feldin: Novo biorazgradljivo - A New Biodegradable 2.4.2 Odpornost proti jamičenju Odpornost proti jamičenju smo določili na napravi FZG z uporabo testnih zobnikov tipa C. Število vprijemov manjšega zobnika pred pojavom poškodbe se upošteva kot rezultat. Če poškodovana površina zobnega boka presega dovoljeno vrednost, se preskus ustavi. Kritično število obremenitvenih ciklov pred nastankom poškodbe je 4 odstotke površine zobnega boka (približno 5mm2) [13]. 250 200 150 100 50 0 R1 S1 2.4.2 Pitting resistance test Investigations of the pitting resistance were performed on the FZG gear test rig by using C-type test gears. The number of load cycles which cause damage to the tooth flanks is recorded. If the damaged area of the pinion flanks exceeds the permissible area, then the test run is stopped. The critical number of load cycles occurs when the damaged area of the mostly damaged tooth flanks exceeds 4 % (about 5 mm2) [13]. 3,00E+07 2,50E+07 2,00E+07 1,50E+07 1,00E+07 5,00E+06 0,00E+00 H M6 G Olje / Oil Sl. 8. Rezultati preskusov jamičenja Fig. 8. Pitting test results obremenitvena stopnja/load, torque stage 9; hertzov tlak/Hertzian stress, 1651 MPa; hitrost na kotalnem krogu/pitch line velocity, 8,3 m/s; vrtilna frekvenca pastorka/ pinion rotating speed, 2175 mni 1/2175 rpm; temperatura olja/oil temperature, 90 °C. Rezultati odpornosti proti jamičenju, prikazani na sliki 8, kažejo veliko boljšo odpornost biorazgradljivih olj v primerjavi z mineralnim oljem UTTO. 2.4.3 Normalna drsna obraba Za zmanjšanje drsnih hitrosti na vrhu zoba in s tem preprečitev možnost zajedanja smo v tem testu uporabili testne zobnike tipa C. Preskus je razdeljen na dve stopnji. Po vsaki stopnji se testni zobniki pregledajo vizualno in stehtajo na miligram natančno. Podatki o preskusu so zbrani v preglednici 3 [14]. Slika 9 prikazuje stopnje obrabe za izbrana olja. Rezultati ne kažejo bistvenih razlik v obrabi za testirana olja. Repično olje UTTO, označeno z R1, kaže najmanjšo stopnjo obrabe, toda razlika glede na preostala olja je zelo majhna. 3 OBRAVNAVA Razvito olje UTTO mora zadostiti visokim zahtevam glede preprečevanja obrabe in pogojem pri visokih obremenitvah, hkrati pa mora imeti nizko viskoznost zaradi boljših lastnosti pri nizkih temperaturah. Te zahteve smo pri formulaciji olj UTTO na rastlinski osnovi R1 in S1 dosegli z uporabo Zn, P, Ca, B in S kot dodatnih elementov. The pitting test results presented in Fig. 8 show the superior pitting resistance of the vegetable oils and the synthetic esters compared to that of the mineral UTTO oil. 2.4.3 Normal rubbing wear test In this test, C-type gears were chosen to reduce the sliding velocity and therefore the probability of scuffing. The test procedure is divided into two stages. After each stage the test gears are inspected visually and weighed to the nearest mg. The test conditions are summarised in Table 3 [14]. Figure 9 shows the wear-rate data for the selected oils. The results indicate no significant difference in the wear investigations between the tested oils. The rapeseed UTTO, labelled R1, shows the lowest wear rate at the first stage, but there is just a slight difference between the tested oils. 3 DISCUSSION The new UTTO oils need to satisfy high-wear and EP performance, while at the same time using low-viscosity-based oils for improved low-temperature performance. These demands were achieved by the formulation of the vegetable-based UTTO oils labelled R1 and S1, using new additive components which contain Zn, P, Ca, B, N and S. Despite the positive effects of borated grin^(afcflM]SCLD ^BSfirTMlliC | stran 298 h T. Ploj - B.Kr`an - J. Bedenk - M. Feldin: Novo biorazgradljivo - A New Biodegradable Preglednica 3. Preskusni pogoji normalne obrabe pri majhnih hitrostih Table 3. Parameters of the slow-speed wear test stopnja preskusa / stage of the test stopnja obremenitve /load stage (DIN 51 354 ) obremenitev / gear torque [Nm] obodna hitrost / circumferential speed [m/s] vrtilna frekvenca / rotational speed pastorek / pinion [min-1] zobnik / gear [min-1] temperatura olja / oil temperature [°C] čas / duration [h] 1 10 372,6 372,6 0,35 0,20 93 2 10 53 62 35 120 120 20,0 30,0 25 mg 20 15 10 5 0 0 10 20 30 Čas Running time Sl. 9. Izmerjena stopnja obrabe Fig. 9. Measured wear rate 40 50 h Kljub pozitivnemu delovanju boratov na lastnosti EP/AW, lahko ti dodatki povzročijo v olju hidrolitično nestabilnost. Za preprečitev tega problema smo za zaščito boratovih spojin uporabili kalcijev sulfonat, ki poveča stabilnost olja pri kontaminaciji z vodo [6]. Elementna sestava aditivov kaže, da mineralna olja UTTO vsebujejo 0,05 do 0,12 %m/m fosforja, 0 do 0,36 %m/m kalcija, 0 do 0,15 % cinka in 0,63 do 1,57 % m/m žvepla. Preostala olja imajo občutno manjši delež žvepla. Sintetično olje UTTO z oznako H vsebuje enako količino cinka kakor mineralno olje, medtem ko je delež fosforja in kalcija 0,07 %m/m ter žvepla 0,17 %m/m. Elementna sestava olj UTTO na rastlinski osnovi R1 in S1 je zelo podobna sestavi sintetičnega olja UTTO z oznako H. Srednja vrednost koeficienta trenja v razmerah mejnega mazanja je zelo podobna za olja R1, S1 in H. Elementna sestava dodatkov je podobna za vsa našteta olja. Malce višji je koeficient trenja za mineralna olja UTTO M5, M6 in M7, ki imajo največji delež kalcija in veliko koncentaracijo žvepla. Najnižjo vrednost smo izmerili pri oljih R2, S2 in G. Slika 10 prikazuje potek koeficienta trenja v odvisnosti od časa za olji UTTO R1 in M6. V poteku krivulje za repično olje R1 je opaziti precej konic. Te konice kažejo na preboj mazalnega filma additives on the EP/AW properties, some of these additives can suffer the drawback of hydrolytic instability. To circumvent this problem the present application utilises borated overbased calcium sulfonate, which was stable in the presence of water contamination [6]. The elemental composition of the additives has shown that the mineral UTTO oils contain 0.05 to 0.12 %m/m of phosphorous, 0 to 0.36 %m/m of calcium, 0 to 0.15 %m/m of zinc and 0.63 to 1.57 %m/m of sulphur. The other oils exhibited a much lower content of sulphur. The synthetic ester-based UTTO oil labelled H contained the same level of zinc as the mineral oils, while the amounts of phosphorous and calcium were 0.07 %m/ m, and the content of sulphur was 0.17 %m/m. The elemental compositions of the vegetable-based UTTO oils labelled R1 and S1 were quite similar to that of the synthetic ester- based UTTO formulation, labelled H. The average friction coefficient during the boundary-lubrication conditions was quite similar for oils labelled R1, S1, H and for the reference mineral UTTO oil labelled M4. The elemental composition of the additive systems is similar for all these oils. The coefficient of friction was slightly increased for the mineral oils which contained the highest amount of calcium and sulphur. The lowest friction coefficient was obtained for the oils labelled R2, S2 and G. Fig. 10 shows the evolution of the coefficient of friction versus time for the UTTO oils R1 and M6. There are a lot of peaks in the coefficient of friction profile for the rapeseed oil R1. These peaks gfin^OtJJlMISCSD 00-5 stran 299 |^BSSITIMIGC T. Ploj - B.Kr`an - J. Bedenk - M. Feldin: Novo biorazgradljivo - A New Biodegradable in neposreden stik kovinskih površin. Posledica tega je adhezivna obraba in s tem večji premer obrabne kotanje. Pri preskušanju mineralnih olj smo torej ugotovili boljše protiobrabne lastnosti ([15] in [16]). 0,3 0,25 point to a lubrication-film breakdown, and a metal-to-metal contact which results in adhesive wear and thus a much greater wear scar diameter. The best antiwear characteristics were therefore obtained for the mineral oils ([15] and [16]). 0,2 m 0,15 0,1 0,05 0 M6 R1 0,0 0,5 1,0 1,5 Čas preskusa / Duration Sl. 10. Potek koeficienta trenja s časom Fig. 10. Coefficient of friction as a function of time 2,0 Nosilnost oljnega filma smo določili na napravah SRV in s štirimi kroglami. Rezultati na napravi SRV kažejo, da se nosilnost oljnega filma povečuje z večanjem deleža kalcija kot aditivnega elementa. Na preskuševališču s štirimi kroglami te odvisnosti nismo opazili. Po optimiranju stroškov smo za nadaljnja testiranja na napravi FZG izbrali olja z oznakami R1, S1 G, H in M6. Rezultati preskusov kažejo, da je odpornost na obrabo biorazgradljivih olj R1, S1 in H enakovredna rezultatu za mineralno olje UTTO M6. Testirana UTTO olja so prestala 10 ali 11 obremenitveno stopnjo, kar je za tovrsten namen uporabe dober rezultat. Znano je, da imajo viskoznost, temperatura in vrsta maziva odločilen vpliv na odpornost proti jamičenju, vrsta in koncentracija dodatkov pa le postranski pomen. Glede na dejstvo, da je obremenitev stika konstantna, imajo torne lastnosti baznega olja poglaviten vpliv na poškodbe jamičenja. Preskusi odpornosti proti jamičenju so pokazali boljšo odpornost rastlinskih olj UTTO R1 in S1 v primerjavi z mineralnim oljem UTTO M6. 4 SKLEPI Iz predstavljenih rezultatov izhaja, da je mogoče izdelati olje UTTO na osnovi oljne repice z enakovrednimi mehanskimi lastnostmi, kakršna imajo mineralna olja UTTO. Rezultati kažejo, da vzorci olj na rastlinski osnovi, onesnaženi z 1% vode in 10% mineralnega olja, ne kažejo večjih odstopanj od rezultatov nekontaminiranih vzorcev. The load-bearing capacity of the oils was determined on the SRV and the Four-Ball test rig. The results obtained on the SRV test device indicate that the load-bearing capacity of the oils increased when a higher content of calcium and zinc were employed as additives. On the Four-Ball test rig we did not observe the same phenomena. In the case of optimisation, the oils labelled R1, S1, G, H and M6 were selected for further investigations on the FZG gear test rig. The test results have shown that the scuffing-load capacity of the biodegradable UTTO oils labelled R1, S1 and H is equivalent to that of the mineral UTTO oil M6. The UTTO oils in the test exhibit a scuffing-load stage between 10 and 11, which is normal for this application. It is well known that lubricant viscosity, lubricant type and the lubricant temperature have a strong influence on the pitting resistance, while the additive type and its concentration have only a minor influence on the endurance level. Since the contact pressures were the same in all cases, the friction characteristics of the base oil have a major influence on pitting fatigue. The test showed better pitting resistance for the vegetable UTTO oils R1 and S1 than for the mineral UTTO oil M6. 4 CONCLUSIONS The results of this study demonstrate that it is possible to formulate a rapeseed-based UTTO oil that has mechanical properties comparable to the mineral UTTO oils. The results show that the contaminated vegetable oil samples with 1% of water and with 10 % of mineral oil do not show a significant difference in the lubricating properties with respect to the uncon-taminated oil samples. grin^(afcflM]SCLD ^BSfirTMlliC | stran 300 h T. Ploj - B.Kr`an - J. Bedenk - M. Feldin: Novo biorazgradljivo - A New Biodegradable Pred končnim testiranjem na traktorju je treba za izbrano olje UTTO optimirati torne lastnosti, določiti združljivosti s tesnili, oksidacijsko stabilnost in izmeriti biorazgradljivost. Before practical experiments on a farm tractor, further investigations for the selected new rapeseed-based UTTO oil should determine the friction properties, seal compatibility, oxidative stability and biodegradability. 5 LITERATURA 5 REFERENCES [I] Moller, U.J. (1994) Biologisch schnell abbaubare Schmierstoffe-Einfuhrung in die Problematik, in Proc. Okologische undokonomische Aspekte der Tribologie, Bartz, W.J., ed., 1, pp 1.4-1-1.4-13. [2] Wilkinson, J. (1993) Biodegradable lubricants - A review, in Proc. Lubricants 93, Legisa, I. HDGM, Porec 93/234, pp 3-15. [3] Hubmann, A. (1994) Chemie pflanzlicher Ole, in Proc. Okologische und okonomische Aspekte der Tribologie, Bartz, W.J., ed, 1, pp 2.1-1-2.1-15. [4] Arnsek, A., J. Vizintin (1999) Scuffing load capacity of rapeseed-based oils, Lubrication Engineering, August 1999, pp 11-18. [5] Gapinski, R.E., Joseph, I.E., B.D. Layzell (1994) A vegetable oil based tractor lubricant, in International Off-Highway & Powerplant Congress & Exposition Milwaukee, Wisconsin September 12-14. [6] Gapinski R.E., Kernizan, C.F., I. E Joseph (2000) Improved gear performance through new tractor hydraulic fluid technology, Tribology 2000-Plus, 12th International Colloquium January 11-13, Bartz, W.J., ed, 3, pp 2269-2276. [7] DIN 51 836, Mechanisch-dynamische Priifung im Oszilation-Friktions-Priifgerat, (1992). [8] Optimol SRV manual, Optimol Instruments GmbH. [9] DIN 51 350 (1977) Priifung im Shell-Vierkugel-Apparat. [10] ASTM Method D4783-88 (1987) Measurement of extreme-pressure properties of lubrication fluids (Four Ball Method). [II] DIN 51 354 (1990) FZG Zahnrad-Verspannungs-Priifmaschine. [12] ISO CD 14635-1 (1996) FZG Test procedure for relative scuffing load capacity of oils. [13] Lehrstuhl fur Maschinenelemente Forschungsstelle fiir Zahnrader und Getriebebau (FZG) - TU Miinchen (1992) Description of the FZG-pittingtest. [14] O’Connor, B.M., Winter, H. (1992) Use of low speed FZG test methods to evaluate tractor hydraulic fluids, Engine Oils and Automotive Lubrication, Expert Verlag. [15] Arnsek, A., Vizintin, J. (2000) Pitting resistance of rapeseed-based oils, Tribology 2000-Plus, 12th International Colloquium January 11-13, Bartz, W.J., ed, 1, pp 143-148. [16] Arnsek, A., Vizintin, J. (2000) Lubrication properties of rapeseed-based oils, Lubrication Science, Vol. 16, No. 4, pp 281-296. Naslovi avtorjev: Dr. Tone Ploj Fakulteta za kmetijstvo Univerze v Mariboru Vrbanska 30 2000 Maribor Autors’ Address: Dr. Tone Ploj Faculty of Agriculture University of Maribor Vrbanska 30 2000 Maribor, Slovenia Boris Kržan Fakulteta za strojništvo Univerze v Ljubljani Aškerčeva 6 1000 Ljubljana Boris Kržan Faculty of Mechanical Engineering University of Ljubljana Aškerčeva 6 1000 Ljubljana, Slovenia Janez Bedenk Petrol d.d., Ljubljana Dunajska cesta 50 1527 Ljubljana Janez Bedenk Petrol d.d., Ljubljana Dunajska cesta 50 1527 Ljubljana, Slovenia Marta Feldin Petrol d.d, Ljubljana Laboratorij Petrol Zaloška cesta 259 1260 Ljubljana-Polje Marta Feldin Petrol d.d, Ljubljana Laboratory Petrol Zaloška cesta 259 1260 Ljubljana-Polje, Slovenia Prejeto: 29.5.2000 Received: Sprejeto: 2.6.2000 Accepted: isfinKiObJJiMiSicšn 00 stran 301 MlglWlDDC © Strojni{ki vestnik 46(2000)5,302-308 © Journal of Mechanical Engineering 46(2000)5,302-308 ISSN 0039-2480 ISSN 0039-2480 UDK 629.3.013:656.13 UDC 629.3.013:656.13 Pregledni znanstveni ~lanek (1.02) Review scientific paper (1.02) Numeri~na analiza kazalnikov izkoristka nosilnosti cestnih vozil Numerical Analysis of the Capacity-Exploitation Parameters of Road Vehicles Jurij Kolenc - Ivan Smerdu - Stojan Petelin Za določanje učinkovitosti transportnega dela cestnih vozil obstajajo številni tehnično-tehnoloski in uporabnostni kazalniki, med katerimi imajo poseben pomen kazalniki izkoristka nosilnosti. V prispevku je analiziran način ugotavljanja koeficientov statične in dinamične izkoristka nosilnosti cestnih vozil ter njihove medsebojne primerjave. Numerična analiza je opravljena za primer izkoristka enega vozila v eni vožnji s tovorom, za eno vozilo v določenem časovnem obdobju, za homogeni vozni park ali skupino vozil iste nosilnosti in nehomogeni vozni park ali n skupinami vozil iste koristne nosilnosti. © 2000 Strojniški vestnik. Vse pravice pridržane. (Ključne besede: vozila cestna, nosilnost vozil, učinkovitost transporta, modeliranje numerično) There are numerous technical, technological and exploitation parameters for determining the transportation work efficiency of road vehicles, among the most important are the capacity-exploitation parameters. In this paper, the determination of static and dynamic coefficients of the capacity-exploitation parameters of road vehicles and their mutual comparison is analysed. A numerical analysis is realised for the case of one vehicle in one ride with cargo, for one vehicle in a defined time period, for a homogeneous motor pool or a group of vehicles with same capacity and an inhomogeneous motor pool or n groups of vehicles of the same benefit capacity. © 2000 Journal of Mechanical Engineering. All rights reserved. (Keywords: road vehicles, vehicle capacity, transportation effects, numerical modelling) 0 UVOD Načrtovanje, raziskovanje in ocenjevanje učinkovitosti dela cestnih vozil v potniškem in tovornem prometu niso mogoči brez analize določenih kazalnikov za vrednotenje ustvarjenih rezultatov dela [1]. Obstajajo številni tehnološko-uporabnostni kazalniki dela cestnih vozil, npr. kazalniki časovne bilance dela vozil, kazalniki izkoristka prevožene poti, kazalniki pogojev pri opravljanju transportnega dela, kazalniki izkoristka zmogljivosti cestnih vozil ter prevozne zmožnosti cestnega voznega parka idr. Med vsemi temi kazalniki, posebej pa v skupini kazalnikov izkoristka zmogljivosti cestnih vozil, so najpomembnejši tisti, ki se nanašajo na nosilnost. Slab izkoristek cestnih vozil zmanjšuje njihov transportni učinek, izražen v tonskih kilometrih (tkm), prostorninskih kilometrih (m3km) ali potniških kilometrih (pkm), kar je posebej pomembno na večjih razdaljah [3]. 0 INTRODUCTION Planning, researching and grading the work efficiency of road vehicles in public and cargo traffic is not possible without an analysis of the determined parameters for grading the acquired results of work [1]. There are numerous technological and exploitation parameters for road-vehicle work, for example: time parameters of vehicle-work balance, exploitation parameters of the transportation route, condition parameters in realising transportation work, capacity exploitation parameters of road vehicles and the transportation capability of a road motor pool etc. Among all these parameters, especially in the group of capacity-exploitation parameters of the road vehicle, the most important are the parameters that refer to capacity. Under exploitation of road vehicles decreases their transportation effect in ton kilometres (tkm), volume kilometres (m3km) or passenger kilometres (pkm), which is especially important over longer distances [3]. grin^(afcflM]SCLD ^BSfirTMlliC | stran 302 J. Kolenc - I. Smerdu - S. Petelin: Numeri~na analiza - Numerical Analysis Izkoristek nosilnosti cestnih vozil se ugotavlja z numerično analizo modelov statične in dinamične izkoriščenosti koristne nosilnosti in njihovih medsebojnih odnosov. 1 RAČUNSKI MODEL STATIČNEGA IZKORISTKA NOSILNOSTI CESTNIH VOZIL Model statičnega izkoristka nosilnosti cestnih vozil predstavlja način ugotavljanja koeficienta statičnega izkoristka kot razmerja količine prepeljanega tovora in količine tovora, ki bi lahko bila prepeljana pri popolnoma izkoriščeni nosilnosti. Koeficient statičnega izkoristka cestnih vozil (g) dobimo z naslednjimi enačbami. The capacity exploitation of road vehicles is determined with the help of numerical analysis models of static- and dynamic-benefit capacity exploitation and their mutual comparison. 1 NUMERICAL MODEL OF STATIC CAPACITY EXPLOITATION FOR ROAD VEHICLES The model of static-capacity exploitation for road vehicles represents the way of establishing the coefficient of static exploitation compared to the quantity of transportation goods and the quantity of goods that could be transported by complete capacity exploitation. The coefficient of static exploitation for road vehicles (g) is determined with the following equations. - Za eno vozilo v eni vožnji s tovorom: - For one vehicle in one drive with cargo: qx g= q (1), kjer sta: q - dejanska količina tovora, ki je prepeljana v eni vožnji s tovorom, qx - koristna nosilnost vozila. - Za eno vozilo v določenem časovnem obdobju: where: q - is the real quantity of cargo that is transported in one drive with cargo, qx -is the benefit capacity of road vehicles. - For one vehicle in a determined time period: kjer sta: Q1-količina tovora, ki je prepeljana z enim vozilom v določenem časovnem obdobju, Z - število voženj s tovorom v določenem časovnem x obdobju. - Za homogeni vozni park ali skupino vozil iste koristne nosilnosti v določenem časovnem obdobju: Q / j qxi / j qxi qZx x q (2), where: Q1-is the cargo quantity that is transported with one vehicle in a determined time period, Zx- is the number of drives with cargo in a determined time period. - For a homogenous motor pool or a group of vehicles with the same benefit capacity in a determined time period: x qx 2qxi qAZx qAZx x q (3), kjer so: Q -količina dejansko prepeljanega tovora, q -koristna nosilnost enega vozila, AZ - število voženj voznega parka s tovorom v določenem časovnem obdobju. where: Q - is the cargo quantity which is actually transported, q - is the benefit capacity of one vehicle, AZx- is the number of drives in a motor pool with cargo in a determined time period. - Za nehomogeni vozni park ali več skupinami vozil iste koristne nosilnosti: g' - For an inhomogeneous motor pool or more groups of vehicles of the same benefit capacity: n Y.Qi YsAZxi qigi n AZxi qigi n i=1-----= n--------= i=1 n------ (4), L,AZxiqi LAZxi qi qQLAZxi stran 303 glTMDDC g J. Kolenc - I. Smerdu - S. Petelin: Numeri~na analiza - Numerical Analysis kjer je: T.Qi = AZx1q1g1+Zx2q2g2 where: + AZxi qigi AZxnqngn oziroma skupna količina tovora, ki jo prevažajo vse in other words, the total cargo quantity which is trans- skupine vozil, ter razmerje količin, ki bi se lahko ported by all groups of vehicles and compared to the prepeljale, če bi nosilnost vseh vozil v vseh skupinah quantities that could be transported if the capacity of in pri vsaki vožnji s tovorom bila popolnoma all vehicles in all groups and in all drives with cargo porabljena. would be totally exploited. n E AZxi qi = AZx1q1 + AZx 2q2 +... + AZxi qi +...+ AZxnqn i _1 q’ - povprečna nosilnost heterogenega voznega parka za obseg prevoza. Iz enačbe za koeficient statičnega izkoristka nosilnosti cestnega vozila izhaja: q’Q - is the average capacity of a heterogeneous motor pool for transportation volume. This equation originates from the equation for the coefficient of static-capacity exploitation of road vehicles: n TQi=gTAZxi qi=gq'TAZxi (5), Ker so nosilnosti cestnih vozil po posameznih skupinah različne (q1 *q2*qi*q), se pojavlja problem določanja povprečne nosilnosti vozil v nehomogenem voznem parku. V praksi se najpogosteje uporablja razmerje celotne nosilnosti vseh vozil v voznem parku in števila vozil v voznem parku, ki se dobi po enačbi [5]: Because the capacities of road vehicles in individual groups are different (q1 *q2*qi*q), there is the problem of determining the average capacity of vehicles in an inhomogeneous motor pool. In practice, the most frequently used relation is the total capacity of all vehicles in the motor pool and the number of vehicles in the motor pool. It is defined by equation [5]: n Ak1q1+Ak2q2+... + Aknqn i=1' Aq + A +... + n (6). Ko v enačbo za obseg prevoza vstavimo When we insert the average capacity of all povprečno nosilnost vseh vozil (q’ ), dobimo za vehicles in the equationn for the volume of transpor- n Qi: s tation (q’s), we obtain gQi : n n g 2-1 Akiqi 2-1 AZxi g T AZiqi = i=1= i =1 i=1 i =1 g'Y.AZxi oziroma or n Y.AZxi Dinamična povprečna nosilnost cestnih vozil za obseg prevoza heterogenega voznega parka (q’Q), ki se edina lahko uporablja pri preračunu, je v bistvu povprečna koristna nosilnost vozil pri vsaki vožnji s tovorom celotnega heterogenega voznega parka, izračunamo pa jo z enačbo: (7). The dynamic average capacity of road vehicles for the transportation volume of a heterogeneous motor pool (q’Q), which can only be used for calculating, is really the average benefit capacity of vehicles in every drive with cargo of the total heterogeneous motor pool. This equation defines it as: Y,AZxi qi TAZxi i=1 AZx1q1 + AZx2q2 + ...+ AZxiqi +...+ AZxnqn AZ + AZ +...+ AZ +...+ AZ qQ VH^tTPsDDIK stran 304 J. Kolenc - I. Smerdu - S. Petelin: Numeri~na analiza - Numerical Analysis qQ' = zAZxi qi Š1 Q ~n (8). qQ*qS V posebnih primerih je povprečna nosilnost za obseg prevoza celotnega heterogenega voznega parka (q’) enaka statični srednji vrednosti (q’). To se dogaja Q ko sta izpolnjena naslednja dva pogoja [6]: - da je knjigovodsko število vozil v vseh n skupinah vozil enako, - da je vsaka skupina vozil heterogenega voznega parka opravila enako število voženj s tovorom. Ta pogoja lahko prikažemo na naslednji način: In special cases, the average capacity for the transportation volume of the total heterogeneous motor pool (q’Q) is identical to the static medium value (q’s). This happens when these two conditions are realised [6]: - that the bookkeeping number of all vehicles in all n groups is the same, - that all groups of vehicles of the heterogeneous motor pool realise the same number of drives with cargo. These conditions can be shown in this way: Ak1 = Ak 2 = Ak 3 = ... = Akn = ... = Ak i AZx1 AZ =AZ AZ AZ Če spoštujemo navedene pogoje, dobimo (q’s) po enačbi: n]A ki q i qs' nA If we consider the listed conditions, we obtain (q’s): A qi 7 qi i1 (9), s k (q1 + q2 + ...+ qn) nA nA kjer je: n - število skupin vozil heterogenega voznega parka qQ AZxq1 + AZxq2 +...+ AZxqn AZx(q1 + q2 +...+ qn) where: n - is the number of group vehicles in the heterogeneous motor pool nAZn nAZ nAZ Tako je dokazana enakost (q’ = q’ ) v primeru, ko sta izpolnjena navedena pogoja, kar pa se v praksi zelo redko pojavlja. 2 RAČUNSKI MODEL DINAMIČNEGA IZKORISTKA CESTNIH VOZIL Model dinamičnega izkoristka nosilnosti cestnih vozil oziroma koristne nosilnosti, pomeni način ugotavljanja koeficienta dinamičnega izkoristka kot razmerja med skupno opravljenim transportnim delom in mogočim transportnim delom. V nasprotju s koeficientom statične izkoriščenosti koristne nosilnosti cestnih vozil, ki upošteva količino dejansko prepeljanega blaga, vključuje koeficient dinamične izkoriščenosti koristne nosilnosti tudi razdalje, na katerih se tovor prevaža [5]. Koeficient dinamičnega izkoristka nosilnosti se določa po naslednjih enačbah. The equality is proven in this case (q’Q = q’s), when the listed conditions are met, however, this is rare in practice. 2 NUMERICAL MODEL OF THE DYNAMIC EXPLOITATION OF ROAD VEHICLES The model for the dynamic-capacity exploitation of road vehicles, or benefit capacity, presents a way of establishing the coefficient of the dynamic exploitation in relation to the totally realised transportation work and the possible transportation work. As distinguished from the coefficient of static exploitation of benefit capacity of road vehicles that considers the quantity of actually transported goods, the coefficient of dynamic exploitation of benefit capacity also includes the distance over which the cargo is transported [5]. The coefficient of dynamic capacity exploitation is determined with the following equations: - Za eno vozilo in eno vožnjo s tovorom: - For one vehicle and one drive with cargo: qL qL q x stx xtx x qLs stx qLt q tx (10), gfin^OtJJIMISCSD 00-5 stran 305 |^BSSITIMIGC d J. Kolenc - I. Smerdu - S. Petelin: Numeri~na analiza - Numerical Analysis - za eno vozilo v določenem časovnem obdobju: - for one vehicle in a determined time period: S / , (qxLtx )i 2-i (qx Ltx )i x (qLtx)i q x,Ltx (11). kjer so: S - opravljene transportne storitve, S ak - največje število možnih storitev, n - število voženj s tovorom v določenem časovnem obdobju, q - količina tovora, ki se prepelje v posameznih x vožnjah, L -razdalja s tovorom v posameznih vožnjah, Lstx - srednja razdalja ene vožnje s tovorom. - Za homogeni vozni park ali skupino cestnih vozil iste nosilnosti: where: S - are the realised transportation services, Smaks - is the maximum number of possible transportation services, n - is the number of drives with cargo in a determined time period, qx- is the cargo quantity during individual drives, Ltx- is the distance with cargo for individual drives, Lstx - is the medium distance of one drive with cargo. - For a homogenous motor pool or a group of road vehicles with the same capacity: d S ALtq / , (qxLtx )i 2-i( qx tx )i 2-i (qx Ltx )i x (qLtx )i q x Ltx qALt (12), kjer sta: AZx - število voženj s tovorom vsega voznega parka, AL - razdalja s tovorom vsega voznega parka. where: AZx - is the number of drives with cargo for a motor pool, ALt - is the total distance for the whole motor pool with cargo. - Za heterogeni vozni park: n Si n Si - For a heterogeneous motor pool: n z2ALti qidi n.ALtiqidi ESmaxi z2ALti qi Y,ALtiqi q'z2ALti (13), kjer je vsota opravljenega transportnega dela vseh skupin vozil v voznem parku: where the amount of realised transportation work for all groups of vehicles in the motor pool: !Si = ALt1q1d1+ALt2q2d2+... + ALtiqidi+... + ALtnqndn in razmerje možnega transportnega dela vsega heterogenega voznega parka: n Y.ALti qi=ALt1q1+ALt2q2 3 PRIMERJAVA STATIČNEGA IN DINAMIČNEGA IZKORISTKA CESTNIH VOZIL Za eno cestno vozilo v nekem časovnem obdobju ali za homogeni vozni park oziroma skupino vozil iste nosilnosti je ugotovljeno, da je koeficient dinamičnega izkoristka nosilnosti večji ali manjši od koeficienta statičnega izkoristka za tolikokrat, kolikokrat je srednja razdalja transporta ene tone tovora večja ali manjša od srednje razdalje vožnje s tovorom, to je: and the relation of the possible transportation work heterogeneous motor pool: ... + ALti qi .+... + ALtn qn 3 COMPARISON OF STATIC AND DYNAMIC EXPLOITATION OF ROAD VEHICLES For one road vehicle in a determined time period or for a homogenous motor pool or a group of vehicles of the same capacity it is determined that the coefficient of dynamic-capacity exploitation is bigger or smaller than the coefficient of static exploitation. This coefficient is bigger or smaller by the number of times the medium distance of the transportation of one ton of cargo is bigger or smaller than the medium distance of the drive with cargo: VBgfFMK stran 306 d J. Kolenc - I. Smerdu - S. Petelin: Numeri~na analiza - Numerical Analysis d= d g S g = Q ALtq qAZx S ALtq SAZx Q Q-ALt qazx S Q AZx 1 = = Lst in/and ALt Lstx ter/then dL st1 = gL stx (14), kjer je: Lst1 - srednja razdalja prevoza ene tone tovora. To razmerje ne velja za ves heterogeni vozni park. Pri koeficientu dinamičnega izkoristka koristne nosilnosti (d) je težni faktor povprečne nosilnosti število kilometrov s tovorom, pri koeficientu statičnega izkoristka (g) pa je število voženj s tovorom [3]. ali/or d-Lstx=g-Lst1 where: L - is the medium distance travelled with one ton st of cargo. This relation does not consider all of the heterogeneous motor pool. The coefficient of dynamic exploitation of benefit capacity (d) is an estimated factor of the average capacity of the number of kilometres with cargo. The coefficient of static exploitation (g) is the number of drives with cargo [3]. Ker je: n d'=i =1------------; g=i=1 Since: n Halti qi i=1 ;L' = i =1 n stx n n TALti qid ;L'.=i=1----------- ^azxi qi ZAZxi TAZxiqig i je/is d'L'stx = g'Lst1 nlALtiqidi llALti Y.ALti qidi i=1 i=1 EALti qi Y.AZxi ^AZxiqi i=1 i=1 Ž ALtiqidi Ž ALti Ž AZxiq = L ALtiqidi Ž ALtiqi Z AZx i=1 i=1 n Y.AZxiqi n.ALti qi JAZxi YALti (15). Ta enakost ni točna in tudi razmerje (d-Ltx=g-Lstx) This equality is not correct and the relation ne velja, ker je: (d-Lstx = g-Lstx) is not valid, because: n YAZxi qi YALti qi in/and n ALti ter/and qQ * qS TAZxi i=1 i=1 razen v primeru, ko so izpolnjeni pogoji, velja enakost: except in the case when the conditions are met: qS' =qU' =qQ' grin^diJjpsflDsijai 00-5 stran 307 |^TlliSSinMlGC J. Kolenc - I. Smerdu - S. Petelin: Numeri~na analiza - Numerical Analysis 4 SKLEP Numerična analiza kaže način ugotavljanja statične in dinamične izkoriščenosti nosilnosti cestnih vozil ter njihov vpliv na transportni učinek. Statični in dinamični izkoristek cestnih vozil je pri tem analiziran z vidika števila voženj z cestnimi vozili, časovnega obdobja in sestave voznega parka. S primerjavo numerične analize statične in dinamične nosilnosti cestnih vozil je ugotovljeno, da je za eno vozilo ali skupino vozil iste nosilnosti za določeno časovno obdobje koeficient dinamičnega izkoristka večji ali manjši od koeficienta statične izkoriščenosti za tolikokrat, kolikokrat je srednja razdalja transporta ene tone ali m3 tovora večja ali manjša od srednje razdalje transporta s tovorom. Za heterogeni vozni park to ne velja, temveč je pri koeficientu dinamične izkoriščenosti koristne nosilnosti utežni faktor povprečne nosilnosti število kilometrov s tovorom, pri koeficientu statičnega izkoristka pa je to število voženj s tovorom. 4 CONCLUSION The numerical modelling shows a way of establishing the static- and dynamic-capacity exploitation of road vehicles as well as their influence on the transportation effect. The said exploitation of road vehicles is analysed with respect to the number of drives by road vehicles, time period and the structure of the motor pool. By comparing the static and dynamic capacity of road vehicles it has been established that for one vehicle or a group of vehicles of the same capacity for the determined time period the coefficient of dynamic exploitation is bigger or smaller than the coefficient of static exploitation. The difference is found to be proportional to the difference between the medium distance of the transportation of one ton or m3 of cargo and the medium distance of the transportation with cargo. For a heterogeneous motor pool this does not work, therefore the coefficient of the dynamic exploitation of benefit capacity has the estimated factor of the average capacity number of kilometres with cargo, whereas the coefficient of static exploitation presents the number of drives with cargo. 5 LITERATURA 5 REFERENCES [1] Shave, V., VA. Michel (1998) The impact of driver and flow variability capacity estimates of permissive movements. Transportation Research, Part A: Policy and Practice, Vol. 32.A, No. 7, 509-527. [2] Grubbstrom, R. W. (1998) Transportation inventory optimisation - A note. Proceedings of the 2 rd International Conference on Traffic Science ICTS’98, Trieste-Patras, 125-129. [3] Kolenc, J. (1999) Modeling of the transportation route in the processes of transporting goods. Proceedings of the 3 rd International Conference on Traffic Science ICTS’99, Portorož, 17-28. [4] May, A.D. (1990) Traffic flow fundamentals. Prentice-Hall, New Jersey. [5] Vuchic, V. (1981) Urban public transportation. Prentice-Hall, New York. [6] Kolenc, J. (1998) Organization and technology in the road traffic, Faculty of Maritime Studies and Transportation, Portorož. Naslov avtorjev: prof.dr. Jurij Kolenc dr. Ivan Smerdu profdr. Stojan Petelin Fakulteta za pomorstvo in promet Univerze v Ljubljani Pot pomorščakov 4 6320 Portorož Authors’ Address: Prof.Dr. Jurij Kolenc Dr. Ivan Smerdu Prof.Dr. Stojan Petelin Faculty of Maritime Studies and Transportation University of Ljubljana Pot pomorščakov 4 6320 Portorož, Slovenia Prejeto: Received: 23.3.2000 Sprejeto: Accepted: 2.6.2000 grin^(afcflM]SCLD ^BSfiTTMlliC | stran 308 © Strojni{ki vestnik 46(2000)5,309-317 © Journal of Mechanical Engineering 46(2000)5,309-317 ISSN 0039-2480 ISSN 0039-2480 UDK 007.52.001.41 UDC 007.52.001.41 Strokovni ~lanek (1.04) Speciality paper (1.04) [olski robot SLR 1500 - razvoj in simulirni program The SLR 1500 Training Robot - Development and Simulation Program Juraj Urí~ek - Viera Poppeová - Róbert Zahoranský Šolski robot SLR 1500 je bil razvit na Univerzi v Žilini in na IQM Zvolen (Slovaška) za pouk robotike na visokih olah in univerzah. Njegov razvoj povezuje programiranje, tehnično kibernetiko, reševanje problemov vodenja, razvoj krmilnih sistemov za industrijske robote in delovanje numerično krmiljenih strojev. Šolski robot SLR 1500 ima rotacijske členke. Ima pet prostostnih stopenj, tri od njih so namenjene za zagotavljanje lege orodja v prostoru, preostali dve določata njegovo usmeritev glede na predmet, ki ga premika. © 2000 Strojniški vestnik. Vse pravice pridržane. (Ključne besede: roboti učeči, razvoj robotov, programi simulacijski, kinematika robotov) The SLR 1500 training robot was developed at the University ofŽilina and at IQM Zvolen (Slovakia) for the teaching of robotics at high schools and universities. Its design incorporates assistance with the programming, the technical cybernetics, solving the drive control problems, the design of the control system for industrial robots and operation of NC machines. The SLR 1500 training robot has an angular design. It has five degrees of freedom and three of them serve to position the end effector in space and the remaining two determine its orientation with respect to the object being manipulated. © 2000 Journal of Mechanical Engineering. All rights reserved. (Keywords: training robots, development of robots, simulation programs, robot kinemtics) 0 UVOD Kinematična struktura šolskega robota SLR 1500 je sestavljena iz rotacijskega telesa, dveh ročic in zapestnega mehanizma. Vsi deli so povezani z rotacijskimi členki, tako da ročici nista v isti ravnini, ampak se premikata ena glede na drugo. Takšna konstrukcija dovoljuje izjemno veliko območje vrtenja posamezne ročice (sl. 1). Parametri robota: število prostostnih stopenj: 5 ponovljiva natančnost lege : 0,25 mm za ponovni gib ročice v eni smeri največji vodoravni doseg od rotacijske osi enote: 640 mm največji rotacijski kot vrtilne enote: 330° največji rotacijski kot spodnje ročice: 165° največji rotacijski kot zgornje ročice: 270° največji rotacijski kot zapestja: 300° največji prečni rotacijski kot zapestja: 270° največja delovna hitrost vrtilne enote, spodnje ročice: 130°/s zgornje ročice: 130°/s prečna rotacija zapestja: 130°/s rotacije zapestja: 300°/s pozicioniranje: koračni števci 0 INTRODUCTION The kinematic structure of the SLR 1500 robot consists of a rotational waist, two arms and a wrist mechanism. All parts are connected with rotational joints in such a way that the arms are not in the same plane but are moved with respect to each other. Such a design allows an extremely large rotational range of the individual arms (Fig. 1). The robot parameters: number of degrees of freedom: 5 repeatable positional accuracy: 0.25 mm for repeated arm movement in one direction maximum horizontal range from the axis of the rotational unit: 640 mm maximum rotation angle of the rotational unit: 330° maximum rotation angle of the lower arm: 165° maximum rotation angle of the upper arm: 270° maximum rotation angle of the wrist: 300° maximum lateral rotation angle of the wrist: 270° maximum operational speed of the rotational unit, lower arm: 130°/s upper arm: 130°/s wrist pitch: 130°/s wrist rotation: 300°/s positioning: incremental counters stran 309 - - - - J. Urí~ek - V. Poppeová - R. Zahoranský: [olski robot - The Training Robot Sl. 1. Dimenzije in območja vrtenja elementov kinematike šolskega robota SLR 1500 Fig.1. Dimensions and ranges of the SLR 1500 training robot kinematic elements rotation Sl.2. Šolski robot SPL 1500 Fig. 2. The SPL 1500 training robot Krmilni sistem robota obsega računalnik z vmesnikom RS 232C. Za računalnik je bila potrebna posebna programska oprema za upravljanje krmilnega sistema. Zahtevam krmilnega sistema je ustrezal programski jezik RAMAS [2]. Ta programski jezik je bil razvit v VUKOV Prešov družbi (Slovaška) za programiranje APR-20 The control system of the robot consists of a computer with an RS 232C interface. For this computer, special software was required for the functions of the control system. The needs of the control system were satisfied with the RAMAS programming language [2]. This programming language was developed in the VUKOV Prešov company (Slovakia) grin^(afcflM]SCLD ^BSfiTTMlliC | stran 310 J. Urí~ek - V. Poppeová - R. Zahoranský: [olski robot - The Training Robot industrijskega robota s krmilnim sistemom RS-4A. Njegovi ukazi se lahko delijo v več skupin: urejevalnik ukazov, navodila in ukazi za gibanja, tehnološki, krmilni, aritmetični, logični, čakalni ukazi, nato ukazi, ki so namenjeni za ustavljanje, pomožni ukazi in drugi. 1 SIMULIRANJE Izraz simuliranje običajno pomeni opazovanje in študij obnašanja sistema in temelji na modelu sistema. Sistem sestoji iz urejenega para množic, pri katerem ena od množic pomeni predmete (točke, komponente itn.), druga pa opisuje razmerja med njimi. Grafični model, ki bi predstavljal obnašanje resničnega robota zelo natančno, bi bil zelo zahteven in neučinkovit. Za simuliranje ne potrebujemo informacij o barvi, hrapavosti ali materialu. Vse bolj pa zahtevamo podatke o izmerah, obliki in značilnosti kinematičnih elementov in seveda o kinematičnih značilnostih razmerja med njimi. Kar je pomembno za simuliranje robota, je torej opis lege elementov glede na dejavnosti robota, za katere je namenjen. Najsi bo to pobiranje predmeta, premikanje zadnjega elementa z ene točke k drugi (z nedoločeno potjo ali z linearno interpolacijo) ali simuliranje njegovega ročnega krmilja. Za simuliranje robota je bila potrebna informacija o izmerah in značilnostih njegovih kinematičnih elementov. Po poenostavitvi zapletenega simulirnega problema smo opravili naslednje poddejavnosti: določitev kinematične sestave končnih točk v prostoru, tridimenzionalno predstavitev posameznih komponent robota na računalniškem zaslonu, rešitev interpolacije za prostorske premike robota in problem urejanja programa v posebnem jeziku. Za predstavitev komponent robota so bila uporabljena mnogokotna telesa. Gibanje se izvede po vstopu v programski ukaz s parametri koordinat premika končne točke. Iz teh koordinat so najprej izračunane koordinate robota (rotacije posameznih členkov) in nato se vsi elementi začnejo premikati v ustrezno smer z največjo hitrostjo. Če je tirnica določena, potem jo tvori interpolator. Interpolacija nadomesti dano tirnico s sistemom koračnih premikov v smeri koordinatnih osi tako, da se izračunana tirnica najbolje ujema z izvirno zahtevano tirnico. Ta tirnica mora zadostiti zahtevam po natančnosti. Še več, od interpolacijske metode pričakujemo zanesljivost, natančnost, preprostost in hitrost interpolacije. Poznamo dva standardna interpolacijska postopka: digitalno diferencialno interpolacijo (DDI - DDA), ki temelji na diferencialnih enačbah krivulje, for programming the APR-20 industrial robot with the RS-4A control system. Its commands can be divided into several groups: editing commands, move instructions and commands, technological, control, arithmetical, logical, waiting, interruption serving, help commands and others. 1 SIMULATION By simulation, we generally understand the observation and study of a system’s behaviour based on its model. The system consist of an ordered pair of sets, where one of the sets represents the objects (items, components and so on) and the other describes the relations between them. A graphical model, which would represent the behaviour of a real robot in great detail would be very difficult and also ineffective. For a simulation we do not need information about the colour, roughness, or material. Rather we require information about the dimension and shape and the character of the kinematic elements and of course about the kinematic character of the relationship between them. What is important for a robot simulation is therefore the depiction its element position with respect to activities the robot is performing. Either the picking up of an object, moving the end element from one point to another (with no trajectory specification or with linear interpolation) or the simulation of its manual control. For the simulation of the robot information about the dimensions and the characteristics of its kimenatic elements was required. After the simplification of the complex simulation problem, the following main subtasks were encountered: determination of the kinematic structure end points in space, 3D representation of the individual robot components on the computer screen, the interpolation solution for the robot’s 3D movement, and the problem of program editing in a special language. Polygonal bodies were used for the representation of the robot components. The movement is executed after entering a program instruction with the coordinate parameters of the movement end point. From these coordinates the robot coordinates are first calculated (rotations of individual joints) and then all the elements start to move with the maximum speed in the appropriate direction. If the trajectory is specified, then it is generated by interpolator. The interpolation replaces a given trajectory with a system of incremental movements in the direction of the coordinate axes in such a way that the resulting trajectory is in maximum accordance with the originally requested trajectory. This trajectory must satisfy the requirements for precision. Moreover, from the interpolation method we expect the reliability, accuracy, simplicity and speed of interpolation. We recognise two standard interpolation procedures: digital differential interpolation (DDA) which is based on the differential equation of the | gfin=i(gurMini5nLn 00-5_____ stran 311 I^BSSIfTMlGC J. Urí~ek - V. Poppeová - R. Zahoranský: [olski robot - The Training Robot ki pomeni tirnico, in neposredno računanje funkcije (NRF - DFC), ki temelji na analitičnih izrazih krivulje. Za simuliranje rokovanja s predmetom mora biti omogočeno odpiranje in zapiranje prijemala. Za predstavitev te operacije uporabljamo vrednost notranjega parametra, ki je namenjen za odpiranje / zapiranje prijemala in hkratno sprostitev / prijemanje predmeta. Stavčni prepis v jezik RAMAS bo torej: FLAG + F0, da se prijemalo zapre in FLAG - F0, da se odpre. Simuliranje ročnega krmiljenja daje občutek o robotovem gibanju v delovnem okolju. To je vrtenje robota okrog vodoravne osi, vrtenje posameznih ročic okoli lastnih osi, vrtenje prijemalnega mehanizma okoli stranske in vzdolžne osi in tudi odpiranje in zapiranje prijemala. Dalje, ročno krmiljenje robota dovoljuje, da si predstavljamo delovni doseg robota in njegove mejne lege. Gibanje v posamezno smer se sproži s pritiskom na tipke računalniške tipkovnice. Po poenostavitvi zapletenega simulirnega problema naletimo na naslednje glavne podnaloge: - določitev kinematične zgradbe končnih točk v prostoru; - prostorska predstavitev posameznih komponent robota na računalniškem zaslonu (transformacija prostora v ravnino z ohranitvijo vidnosti); - rešitev z interpolacijo za robotove prostorske gibe; - problem urejanja programa v jeziku RAMAS, njegov zapis, shranjevanje, nalaganje in izvajanje simuliranja. Ustvarjanje algoritma sledi razčlembi problema v manjše in preprostejše podprobleme, za katere je laže najti rešitev. Podproblemi so opisani v diagramu poteka. Domnevati je bilo mogoče, da je glavni simulirni program zmožen izpeljati nalogo. Kasneje so bila ta dela do potankosti izvedena v programskem jeziku PASCAL. Težava se pojavi pri razumevanju programa, ker krmilni jezik RAMAS in programski ukazi za simulirni program niso združljivi. Program RAMAS je ASCII tekstovna datoteka urejena v poljubnem urejevalniku besedila. Morali smo razviti komponento, ki bo rabila za prilagoditev (prevod) programa RAMAS seznamu ukazov, ki jih bo simulirni program razumel. Algoritem za ta prevajalnik temelji na diagramu poteka. Na temeljih tega diagrama poteka smo izdelali podprogram v jeziku PASCAL, ki prebere program RAMAS, vrstico za vrstico, odkriva ukaz in sledeč njegovim značilnostim in parametrom, pokliče primeren postopek, ki izvede dejavnost natanko po navodilih. Kot interpolacijski postopek, ki najbolj ustreza našim potrebam, je bila izbrana metoda DDI. Glede na neposredno računanje iz funkcije je njena ^BSfirTMlliC | stran 312 curve which represents the trajectory and DFC (Direct functional calculation), which is based on the analytical expression of the curve. For the simulation of object manipulation it must be possible to ensure opening and closing of the end effector. For the representation of this operation we use a value of internal flag, which will stand for opening / closing of the gripper and at the same time, release / pick-up of the object. The syntactical transcription in the RAMAS language will be then: FLAG +F0 to close the gripper and FLAG -F0 to open the gripper. The simulation of manual control gives an idea about the robot’s movement in the working area. This is the robot’s rotation around the horizontal axis, the individual arms rotation around their axes, the gripper mechanism rotation around the lateral and transverse axes and also the opening and closing of the gripper. Further, the manual control of the robot allows us to imagine the robot’s working range and its boundary positions. The movement in an individual direction is realised by pressing keys on the computer keyboard. After the simplification of the complex simulation problem we encounter the following main sub-tasks: - determination of the kinematic structure end points in space; - 3D representation of individual robot components on the computer screen (space transformation to a plane with visibility preservation); - interpolation solution for robot 3D movement; - problem of program editing in RAMAS language, its writing, saving, loading and execution of the simulation. The algorithm creation follows the practice of problem decomposition into smaller and simpler sub-problems, for which the solution is easier to find. The sub-problems are described in the flow diagram. The main simulation program was supposed to be able to execute these tasks. Later, these tasks were in detail worked out in the PASCAL programming language. Since the controlling language is RAMAS and the language instruction for the simulation program are not compatible, we have a problem of program interpretation. The RAMAS program is an ASCII text file edited in an arbitrary text editor. We have had to develop a component, which would serve for adaptation (translation) of the RAMAS program to a list of instructions understandable by the simulation program. The algorithm for this translator is based on a flow chart. On the basis of this flow chart we have created a subprogram in the PASCAL language, which reads the RAMAS program, line by line, detects the instruction and following its character and parameters, it calls an appropriate procedure, which executes an action particularly for this instruction. As an interpolation procedure, which best suits our needs, the DDA method was chosen. Its advantage with respect to direct functional calculation is that the DDA J. Urí~ek - V. Poppeová - R. Zahoranský: [olski robot - The Training Robot prednost v tem, da interpolator DDI neposredno izračuna funkcijo s stalnimi koraki tirnice. S tem načinom nastaja gibanje iz sunkov in njihovo pogostnost, ki so poslani posamezni osi. Če imamo dve točki, A(xA, yA , zA) in B(xB, yB , z), mora interpolator tvoriti tirnico med njima z delitvijo tirnice na n odsekov. Na enak način tudi deli na n odsekov tirnico v posamezni osi. Izmere posameznih korakov po osi i, i, i so določene. x y z Interpolator doseže končno točko giba v vsako smer po izvedbi ustreznega števila korakov. Večje ko je število sunkov na časovno enoto, manjši je korak (inkrement) in natančnost premika je potem večja. Krmilni sistem mora tudi rešiti obratno transformacijo z interpolacijo kartezičnih koordinat v robotske koordinate z visoko frekvenco. Manj zahteven primer je, če naj bi končni element dosegel končno točko brez opisa tirnice. Za začetne in končne točke se izračunajo lokalne koordinate robota A(cp1A,