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0  INTRODUCTION

Rolling bearings are widely used in rotating 
machinery. Unexpected bearing failures can cause 
unscheduled downtime and loss. Therefore, it is 
very important to diagnose the fault in the bearing. 
However, even useful features in the bearing fault 
signals are often filled with strong background noise, 
which prevents the detection of bearing faults, so 
an effective signal processing method is desired to 
provide more information about the fault. 

Recently, the mathematical morphological 
filter has been introduced into the fault diagnosis of 
machinery [1]. It can decompose the original signal 
into several physical parts according to certain 
geometric characteristics, thus overcoming the 
drawbacks of other signal processing methods such 
as the Fast Fourier transform (FFT) method, which 
cannot be used to the nonlinear and non stationary 
signal, the wavelet transform method, which has to 
choose the basic wavelet and needs a long time to 
compute [2], and the empirical mode decomposition 
(EMD) method, which has the problem of mode 
mixing [3].

There are some studies of morphology analysis 
in one-dimensional (1-D) signals; a flat structuring 
element (SE) with a length around 0.6 times the 
pulse repetition period was used to demodulate the 
fault signals [1]. An open-closing and close-opening 
combined morphological filter to de-noise the 
vibration signal of rotating machinery was proposed 
[4]. Zhang, et al. [5] introduced an approach based 
on the morphological filter to extract the features of 
the signal from a faulty gear according to the signal 
characteristics. Li and Xiao [6] introduced pattern 

classification based on a 1-D adaptive rank-order 
morphological filter. However, those studies required 
prior knowledge of the signals and a fixed SE in 
single-scale morphology analysis. 

For a special signal, the characteristic features 
may be presented in multiscales. In order to extract 
these features, a multiscale morphology analysis is 
required. Multiscale morphology analysis can be 
used to extract morphological features of different 
scales and it is independent of prior knowledge when 
selecting SEs. Hence, it is often more feasible to 
remove the noise using a multiscale morphological 
filter [7].

The rest of this paper is organized as follows. In 
Section 1, the theory behind the morphological filter 
is introduced, and a multiscale morphological filter is 
constructed; the SEs are optimized by PSO. Sections 
2 discuss the presented method in detail. Section 3 
applies the proposed method to the simulated signal 
and Section 4 applies the proposed method to the 
bearing fault experiment. Some conclusions are given 
in Section 5.

1  MORPHOLOGICAL FILTER ANALYSIS

1.1  The Fundamental Theory of Morphological Filter

The morphological filter requires less computational 
time than other traditional signal processing methods. 
By constantly moving the SE to match the signal, 
feature extracting and de-noising can be achieved. 
For a signal x(n) defined by Df = 0, 1, ..., N–1 
boundary, the SE g(n) is a discrete function defined by  
Dg = 0, 1, ..., M–1 boundary, where N ≥ M. The 
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transformation consists of four basic operations: 
erosion, dilation, opening and closing:

	 x g n x n m g n⊕( )( ) = −( ) + ( ) max , 	 (1)

	 x g n x n m g n⊗( )( ) = +( ) − ( ) max , 	 (2)

	 x g n x g g n( )( ) = ⊗ ⊕( )( ), 	 (3)

	 x g n x g g n•( )( ) = ⊕ ⊗( )( ). 	 (4)

In the formula ⊕ ⊗ •, , and  symbols corresponds 
to the dilation, erosion, opening and closing operation.

1.2  Design of the Multiscale Morphology Filter

Multiscale morphological filters were first presented 
by Maragos [7]. In this paper, we defined T to denote 
the morphological operator as proposed by Maragos. 
Based on multiscale analysis, we can define:

	 T x T xλ λ λ( ) = ( )/ , 	 (5)

where T Nλ λ λ> ∈{ }0, .
Similarly, multiscale erosion and dilation can be 

defined as:

	 x g x g x g⊗( ) = ( )⊗  = ⊗
λ

λ λ λ/ , 	 (6)

	 x g x g x g⊕( ) = ( )⊕  = ⊕
λ

λ λ λ/ , 	 (7)

where λ λg g g g= ⊕ ⊕ ⊕ −( )... 1  times.
In morphological operations, opening and closing 

operations have different processing performances. 
An opening operation could restrain the positive 
impulse and keep the negative impulse, while the 
closing operation will have inverse function. So, in 
practical applications, the relative morphological 
operation should be selected to correspond to the 
processing aim. However, it is sometimes it is difficult 
to get transcendental knowledge of practical positive 
and negative impulses; the general situation is that 
the positive and negative impulses are contained 
in practical data at the same time. Therefore, it is 
necessary to construct a morphological filtering 
algorithm with a combination of open and closed 
operations. In this article, the nonlinear filter was 
constructed in the form:

	 y x x g x g( ) / ,= • +[ ]1 2  	 (8)

where y(x) is the filtered signal. So the nonlinear filter 
can be expressed as:

y x y x x g x g

x g g x g

λ λ λ λ λ λ

λ λ λ

( ) / / / /

/ / /

= ( ) = ( ) • + ( )  =

= ( )⊕ ⊗ + ( )⊗
2

2



⊕⊕  =

= ⊕ ⊗ + ⊗ ⊕[ ]
g

x g g x g gλ λ λ λ λ/ ,2 	(9)

where the λ is the scale parameter. If λ = 1, the size of 
g was set to 3×3. If λ = 2, the size of 2g was set to 5×5. 
So, the size of the ig was set to (2i + 1) × (2i + 1) which 
according to the length of the noise period [8].

Because the triangle has good stability and good 
symmetry, the triangular shape SE was selected 
as an effective filtering window in this paper. The 
amplitudes of the SEs were optimized through PSO 
in this paper.

1.3  Optimization of the Morphological Filter

The PSO was chosen to optimize the SE of the 
morphological filter through the following formula 
[9]:

	

v t wv t c r p t x t

c r p t x t

ij ij j ij ij

j g ijj

+( ) = + −( ) +
+ −(

1 1 1

2 2

( ) ( ) ( )

( ) ( ))), 	 (10)

	 x t x t v tij ij ij( ) ( ) ( ),+ = + +1 1 	 (11)

where the subscript i represents the ith particle. j 
represents the j-dimensional. The subscript t represents 
the t generation. vij(t) is the velocity of the ith particle 
in the tth  iteration; xij(t) is the position of the ith 
particle; pij(t) is the pbest position of the ith particle; 
pg j  is the gbest position (pbest represents the local 

optimum of the particles, gbest represents the overall 
situation optimum of the particles); w represents the 
inertia weight. c1, c2 are learning factors. r1 ~ U(0,1),  
r2 ~ U(0,1) represent two independent random 
functions.

1.4.  Determination of the Fitness Function 

The signal-to-noise ratio (SNR) is selected as the 
fitness function:

	 R x p w
N w

p w Y wSN ( ) log ( )
( )
, ( ) ( ) ,= =10 2

	 (12)

where RSN(x) is the SNR function of the system, y(x) is 
the output of the filter, Y(w) is the power spectrum of 
the output signal; N(w) is the power spectrum of the 
noise that is removed from the original signal when 
the terminal interaction time is reached, to obtain the 
SNR value.
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The process of optimizing the SE based on the 
PSO is given below:
1.	 At the beginning of the optimization process, 

randomly initialize positions and velocities, pbest 
and gbest of the particles;

2.	 Set the parameters of SEs equal to the parameters 
of the particles’ positions;

3.	 Use the SEs to construct the morphological 
filters;

4.	 Use the morphological filters to deal with the 
signal and get the filtered signal y(x), then 
calculate the current fitness value R(xi) of each 
particle using Eq. (12);

5.	 Use the pbest to construct the morphological 
filter and calculate the fitness value R(xp), then 
compare the R(xp) with R(xi). If R(xi) is greater 
than R(xp), then set the parameters of particle xi  
to the pbest;

6.	 Use the gbest to construct the morphological filter 
and calculate the fitness value R(xg) and compare 
the R(xg) with R(xg). If R(xp) is greater than R(xg), 
then set the parameters of pbest to the gbest;

7.	 For each particle i in the swarm, calculate 
positions xi+1, velocities vi+1 using Eqs. (10) and 
(11);

8.	 While the termination conditions are not met, 
return to step 3;

9.	 End loop.

2 PROCEDURES OF MULTISCALE MORPHOLOGY ANALYSIS 
FOR FAULT DIAGNOSIS

The procedure for using a multiscale morphological 
filter for fault diagnosis is as follows:
1.	 Select a multiscale SE λg, in this paper the scales 

are selected from 3, 5 and 7 where the unit is one 
sampling point. (The size of the SE is subject to 
the length of the noise period [8])

2.	 For the scale of λi, the PSO is used to optimize the 
amplitudes of the SE; the SNR function is used as 
the fitness function.

3.	 Then, the SE with an optimized length is used 
to perform the multiscale morphological filter 
operation on the original signal and impulsive 
components are extracted so that the background 
noise can be better restrained.

4.	 Change the scale to λi+1, repeat steps (2 to 4);
5.	 Through a weight operation the final results of the 

multiscale morphology analysis can be obtained:

	 y yi i
i k

n

=
=
∑ω , 	 (13)

where [k,n] is the range of λ, ωi is the weight of 
different λi. In this paper, the ωi took the mean value, 
ωi = 1/(n-k).

3  THE VALIDATED THROUGH SIMULATION DATA

A simulated signal is built to validate the proposed 
method. It is defined as:

	 x(t) = x1(t) + x2(t) +x3(t) .	 (14)

The signal x1(t) = cos(2π 30t) + cos(2π 50t) is 
shown in Fig.1a; the impulsive signal x2(t) is a typical 
series of exponentially decaying pulses used to 
simulate the impulsive signal (the repetition period is 
0.0625 s and the impulsive function in one period is 
e–5t sin(10πt) as shown in Fig. 1b; x3(t) is the Gaussian 
white noise with a standard deviation of 0.5. The 
composite signal x(t) is shown in Fig.1c.

Fig. 1. The signal Waveform graph

The parameters of the PSO for optimizing the SE 
were set as the original position x(t) = 0 and velocity 
v(t) = 0, pbest = 0, gbest = 0, the population scale  
m = 20, the terminal interaction time tmax = 200, the 
inertia weight w = 0.5, c1 = c2 = 1.2, the search space 
dimension d = 3. The optimal SEs were obtained 
as {0, 0.0006, 0}, {0, 0.1115, 0.2229, 0.1115, 0}, 
{0, 0.1484, 0.2968, 0.4452, 0.2968, 0.1484}.

Fig. 2 is the FFT spectrum of the simulated 
signal, the impulsive frequency was laid in the strong 
harmonic frequencies (30 and 50 Hz). The impulsive 
frequency may be covered by the noise if it is strong 
or the impulsive signal is weak. The purpose of the 
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simulated experiment is to extract the impulsive 
features at 16, 32 and 48 Hz, to suppress the harmonic 
features at 30 and 50 Hz, and remove the white noise 
feature.

Fig. 2.  The FFT spectrum of the simulated signal

The results achieved using the original single-
scale morphological filter employed by Nikolaou [1]
(the structure element g = {0, 0, 0}), and the method 
proposed in this paper are shown and compared in 
Fig. 3. Since the SEs were constructed according to 
the characters of the signal, the entire impulsive signal 
can be extracted from the background noise, which 
cannot be carried out by single-scale morphology 
analysis.

Fig. 3.  The FFT spectrums of the simulated signal

Fig. 4.  The FFT spectrums of the simulated signal

The FFT spectrums of the simulated signal are 
shown in Figs. 3 and 4. In Fig. 3b, obvious impulsive 
features, i.e. 16, 32 and 48 Hz, are presented. 
Compared to Fig. 4b, there are some background 
signals, such as at 16 and 32 Hz, in Fig. 3b. This shows 
that the optimal multiscale morphology analysis has 
better performance in impulsive features extraction 
and noise reduction than the traditional morphology 
filter.

4  EXPERIMENTAL VALIDATION

The effectiveness of the proposed optimal multiscale 
morphology analysis method was evaluated using the 
vibration data measured in our lab. In the experimental 
setup detailed in Fig. 5, the power is provided by 
an electrical motor. To measure the vibrations three 
accelerometers were mounted on the square housing 
of the analyzed bearing.

The outer and inner races have a fault created by 
electro-discharge machining as shown in Figs. 6 and 
7. The fault size is 0.007 inches in diameter and 0.011 
inches in depth for ball, inner and outer races. The 
motor speed is 1721 RPM (28.7 Hz), the inner defect 
frequency was calculated to be 156 Hz and the outer 
defect frequency 103 Hz.

Fig. 5.  Experimental setup

Fig. 6.  Roller bearings with outer race fault
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Fig. 7.  Roller bearings with inner race fault 

Data were collected at 12,000 samples/second, 
the number of sampling points is 12k. Roller bearings 
with inner and outerrace faults are used for the 
analysis.

Their time domain waveform and FFT spectrum 
are shown in Figs. 8 and 10. However, due to the 
noise disturbance, it was difficult to obtain useful 
information from the analysis.

Fig. 8.  Outer race fault signal waveform and FFT spectrum

For the outer race fault signal, the parameters of 
the PSO for optimizing the SE were set such that the 
original position was x(t) = 0 and the velocity was  
v(t) = 0, pbest = 0, gbest = 0, the population scale 
was m = 20, the terminal interaction time was  
tmax = 300, the inertia weight was w = 0.5, c1 = c2 = 
1.2, and the search space dimension was d = 3. The 
optimal SEs obtained were {0, 0.001, 0}, {0, 0.1003, 
0.3211, 0.1003,0}, {0, 0.1156, 0.2701, 0.5423, 0.2701, 
0.1156, 0}.

The vibration signal was analyzed using an 
optimal multiscale morphology filter. Fig. 9b shows 
that the outer defect frequency of 103 Hz together 
with its second and third harmonics, i.e. 206 and 309 
Hz, side frequency and modulation frequency (28.7 
Hz) were all clearly detected. There is a good match 
between the expected features of the FFT spectrum 
and the actual fault features associated with the roller 
bearing with the outer race fault.

Fig. 9.  Outer race fault vibration signal analyzed using an optimal 
multiscale morphology filter

Fig. 10.  Inner race fault signal waveform and FFT spectrum

For the inner race fault signal, the parameters 
of the PSO for optimizing the SE were set such that 
the original position was x(t) = 0 and velocity was  
v(t) = 0, pbest = 0, gbest = 0, the population scale was 
m = 20, the terminal interaction time was tmax = 300, 
the inertia weight w = 0.5, c1 = c2 = 1.2, and the search 
space dimension was d = 3. The optimal SEs obtained 
were {0, 0.0006, 0},{0, 0.0703, 0.1211, 0.0703, 0},{0, 
0.0156, 0.1301, 0.2351, 0.1301, 0.0156, 0}.

Fig. 11.  Inner race fault vibration signal analyzed by optimal 
multiscale morphology filter
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Fig. 11b shows that the inner defect frequency 
156 Hz together with its second and third harmonics, 
i.e., 313 and 467.9 Hz, and side frequencies (156 ± 
28.7 Hz) are prominent. The modulation frequencies 
28.7 Hz (the frequency of rotor rotating) are also 
very clear. This reveals that the modified approach is 
effective in detecting faults in the bearing.

5  CONCLUSIONS

In this paper, an optimal multiscale morphology 
analysis based fault diagnosis approach was proposed. 
Compared with the traditional morphological filter, 
two improvements were made in the proposed 
method. Firstly, the morphological operation was 
decided with an average combination of multiscale 
open-closing and close-opening operation, so that 
not only impulses could be extracted but also the 
noise could be removed . Then, the structure elements 
were selected and optimized using aparticle swarm 
optimization algorithm, which has features similar to 
the object signal. A step-by-step procedure was also 
defined to illustrate how the proposed approach can be 
applied. The validation results show that the proposed 
approach is more effective and robust in extracting 
impulsive features than the traditional single-scale 
morphology analysis.

Moreover, since the SE is optimized by the PSO 
according to the signal, the optimized multiscale 
morphological filter is beneficial in improving the 
accuracy of mechanical fault diagnosis. However, 
as the redundancy increases, the complexity of the 
computation increases as well. This is one of the main 
shortcomings of the proposed transform, which should 
be explored in the future.

6  ACKNOWLEDGMENT

We would like to thank the anonymous reviewers and 
editors for their valuable comments and suggestions.
We also thank the Science and Technology 
Commission of Chongqing (Grant No. cstc2012jcsf-
jfzhX0027), China.

7  REFERENCES

[1]	 Nikolaou, N.G., Antoniadis, I.A. (2003). Application 
of morphological operators as envelope extractors for 
impulsive-type periodic signals. Mechanical Systems 
and Signal Processing, vol. 17, no. 6, p. 1147-1162, 
DOI:10.1006/mssp.2002.1576.

[2]	 Su, W.S., Wang, F.T., Zhu, H. (2010). Rolling element 
bearing faults diagnosis based on optimal Morlet 
wavelet filter and autocorrelation enhancement.
Mechanical Systems and Signal Processing, vol. 24, no. 
5, p. 1458-1472, DOI:10.1016/j.ymssp.2009.11.011.

[3]	 Cheng, J.S., Yu, D.J., Yang, Y.(2006). A fault diagnosis 
approach for roller bearings based on EMD method 
and AR model. Mechanical Systems and Signal 
Processing, vol. 20, no. 2, p. 350-362, DOI:10.1016/j.
ymssp.2004.11.002.

[4]	 Hu, A., Tang, G., An, L. (2006). De-noising technique 
for vibration signals of rotating machinery based on 
mathematical morphology filter. Chinese Journal of 
Mechanical Engineering, vol. 42, no. 4, p. 127-130, 
DOI:10.3901/JME.2006.04.127.

[5]	 Zhang, L., Yang, D., Xu, J., Chen, Z. (2007). Approach 
to extracting gear fault feature based on mathematical 
morphological filtering. Chinese Journal of Mechanical 
Engineering, vol. 43, no. 2, p. 71-75, DOI:10.3901/
JME.2007.02.071.

[6]	 Li, H., Xiao, D. (2012).Fault diagnosis using pattern 
classification based on one-dimensional adaptive 
rank-order morphological filter. Journal of Process 
Control, vol. 22, no. 2, p. 436-449, DOI:10.1016/j.
jprocont.2011.12.005.

[7]	 Maragos, P. (1989). Pattern spectrum and multiscale 
shape representation. IEEE Transactions on Pattern 
Analysis and Machine Intelligence, vol. 11, no. 7, p. 
701-716, DOI:10.1109/34.192465.

[8]	 Ji, T.Y., Lu, Z., Wu, Q.H. (2007). Optimal soft 
morphological filter for periodic noise removal using 
a particle swarm optimiser with passive congregation.
Signal Processing, vol. 87, no. 11, p. 2799-2809.
DOI:10.1016/j.sigpro.2007.05.024.

[9]	 Zhang, Z.Y., Zhang, H.Y.  (2004). Principal 
manifolds and nonlinear dimensionality reduction 
via tangent space alignment. Journal of Shanghai 
University (English Edition), vol. 8, no. 4, p. 406-424, 
DOI:10.1007/s11741-004-0051-1

http://dx.doi.org/10.1006/mssp.2002.1576
http://dx.doi.org/10.1016/j.ymssp.2009.11.011
http://dx.doi.org/10.1016/j.ymssp.2004.11.002
http://dx.doi.org/10.1016/j.ymssp.2004.11.002
http://dx.doi.org/10.3901/JME.2006.04.127
http://dx.doi.org/10.3901/JME.2007.02.071
http://dx.doi.org/10.3901/JME.2007.02.071
http://dx.doi.org/10.1016/j.jprocont.2011.12.005
http://dx.doi.org/10.1016/j.jprocont.2011.12.005
http://dx.doi.org/10.1109/34.192465
http://dx.doi.org/10.1016/j.sigpro.2007.05.024
http://dx.doi.org/10.1007/s11741-004-0051-1

