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Neural-Network Estimation of the Variable Plant for Adaptive 
Sliding-Mode Controller

Uran, S. – Šafarič, R.
Suzana Uran ‒ Riko Šafarič*

University of Maribor, Faculty of Electrical Engineering and Computer Science, Slovenia

The Lyapunov based theoretical development of a neural-network sliding-mode based estimation of highly non-linear and variable 
robot plant for a direct-drive robot controller is shown in the paper. Derived adaptive control law was tested for four types of robot neural-
network sliding-mode controllers: centralized, simplified centralized, decentralized and simplified decentralized, which were verified on a real 
laboratory direct-drive 3 D.O.F. PUMA like mechanism. Centralized and decentralized control approaches estimate only a part of the variable 
robot dynamic model (torque model due to friction, Coriolis, centripetal and centrifugal forces) and use only the part of a dynamic plant model 
(the so called estimated inertia matrix M). Both simplified methods do not need any plant model parameter for an accurate estimation of the 
direct-drive robot plant, but need some more time to learn dynamic model parameters. All four types of the neural network continuous sliding-
mode controllers were successfully tested for algorithm’s adaptation capability for sudden changes in the manipulator dynamics (load).
Keywords: sliding-mode adaptive controller, neural-network, robot 

0 INTRODUCTION

Control techniques based on soft computing methods 
(neural network, fuzzy logic, genetic algorithm, 
particle swarm algorithm, fractal theory etc. or their 
combinations) [1] and especially neural network 
control techniques have been proven to be useful to 
control highly nonlinear robot arm control plants 
for more than two decades [2] to [8]. Therefore, the 
neural network control methods have been used with 
high interest in mobile robotics [9] to [11], especially 
for the dynamic and kinematic control in recent years. 
The research of the kinematic and dynamic neural 
network control of robot arm has also been evolving 
for two decades.

A number of publications dealing with the topic 
of the robot arm trajectory tracking neural network 
controller based on the computed torque method [12] 
to [15], etc. have been published. In sources [12] and 
[14], there was an attempt to replace the estimated 
model of the real mechanism (the vector h due to 
Coriolis forces and the inertia matrix M) with two 
neural networks. The disadvantage of this method is 
that it requires generalized learning [12] in addition to 
specialized learning or a time-consuming convergence 
of neural network learning [14] if generalized 
learning is not implemented. In order to speed up the 
convergence without generalized learning, the source 
[13] retained the complete compensator based on the 
computed torque method and added a neural network 
approximating an unstructured uncertainty, which 
would not be compensated by the computed torque 
method itself (friction torque) and would introduce an 
error into the control system if used with this method. 
The disadvantage of the method described in the 

source [13] is that the parameters of the inertia matrix 
M and vector h (torques due to Coriolis, centrifugal 
and centripetal forces) have to be known. 

The sources [16] to [19] successfully deal with 
the neural network control based on an estimation of 
kinematics and dynamics of geared robot arms. The 
source [15] tried to adapt neural network controller 
based on the computed torque method also to high 
nonlinear direct drive (DD) robot arm dynamics and 
obtained good results in the tracking experiments, 
while the steady-state test and the sudden load change 
test had not been reported. The published paper 
[20] resolved the steady state problem. In order to 
diminish the drawbacks of all the above mentioned 
methods, a sliding-mode neural network controller 
was chosen as a robust control scheme [21], where 
only nominal (average) values of inertia matrix 
parameters were used, while the differences between 
actual inertia matrix parameters and nominal inertia 
matrix parameters torque terms due to Coriollis 
forces, gravitational forces and friction forces 
(structured uncertainties) were estimated by neural 
network.  This was done due to the fear that the robot 
behaviour would be unpredictable during the first few 
moments of neural network learning. This method 
was successfully upgraded and used also for visual 
positioning control of robot mechanism [22] where 
a special four-layer neural network structure made 
possible to estimate the complete robot dynamics and 
kinematics. The next two reports [23] and [24] had 
shown that neural network based control approach 
could be effectively used also for direct driven piezo 
electric actuated micro robot mechanisms.

The theoretical development of a full and 
simplified centralized and decentralized neural-
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network controller based on the theory of continuous 
sliding-mode control for DD robot arm mechanism 
is shown in the paper. Derived equations, based on 
Lyapunov theory, of the adaptive neural network 
controller were verified on a real laboratory direct-
drive 3. D.O.F PUMA like mechanism. The newly 
developed neural network continuous sliding-mode 
centralized and decentralized controllers, as full and 
simplified sub-methods were successfully tested for 
adaptation capability of the algorithm for sudden 
load changes in the manipulator dynamics. All the 
mentioned tests were made on a real laboratory 3 
D.O.F. DD robot mechanisms.

The main idea presented in the paper is to give 
the neural network controller only a part of robot 
dynamic, which does not include the coupling 
effect between axes, so the structual and unstructual 
uncertainties increase. It is shown in the paper that a 
neural network as a part of control law is able to learn 
the missing part of the robot dynamics which should 
be included in the control law during the learning 
procedure. Four methods, which have more or less 
robot dynamic, included in the neural network control 
law are presented and compared.

1 SYNTESIS OF CONTINUOUS NEURAL-NETWORK  
SLIDING-MODE CONTROLLER 

A well known mathematical note of robot 
mechanism dynamics, Eq. (1), is transformed into an 
n-dimensional state-space system of equations with 
regard to the control value u, Eq. (2), because the 
Lyapunov theory for searching the control law can 
only be used in the following way. 

 T = M( ) + h( , ) +G ( ) + F( ) + Tf nθθ θθ θθ θθ θθ θθ⋅    ,  (1)

where T is a torque vector, M is an inertial matrix, h 
is a torque vector due to centrifugal forces, centripetal 
forces, and Coriollis forces, F is a torque vector due 
to frictional forces, Gf is a torque vector due to forces 
of gravity, Tn is a torque vector due to unknown 
disturbances, θ, θθ and θ  are vectors of real positions, 
velocity, and accelerations of the robot mechanism. 
The Eq. (2) presents a non-linear state-space system 
as a description of Eq. (1) and it is needed for the 
control law development by the Lyapunov theory.

 x = f +B u +d( , ) ( , ) ( , ),x x xt t t⋅  (2)
where:

 x u B x B x B x∈ ∈ = +R R ,n m t t t, , ( , ) ( ) ( , ), ∆  (3)

and d is an unknown disturbance, B is an actual input 
matrix, B  is an estimated input matrix, u is a control 

vector, x is a state space vector of mechanism, and 
t stands for time. Our goal is to prove the function 
stability σ(x, t) = 0 (Eq. (4)) for the robot system (Eq. 
(2)). This means that after transient time, defined with 
parameters of the matrix G, the difference between 
the actual and the desired vector of state space 
variables x and will equal zero and will be stable for 
all disturbances. Function σ(x, t) = 0 will be stable if 
the Lyapunov function V > 0 and the first Lyapunov 
time derivative of function V  < 0. The selected 
Lyapunov function V (Eq. (5)) is always greater than 
zero for whichever selected vector xr, x and matrix G. 
However, it is not always possible to get the negative 
first derivative of the Lyapunov time-dependent 
function V  (Eq. (6)) for every xr, x and G. According 
to the following equation:

 σ(x, t) = G(x(t) − xr(t) = σ = G(x − xr), (4)

where xr is a vector of the desired state space variable 
and G is the matrix defining the control of system 
dynamics, we cannot prove the robot system stability 
(Eq. (2)). Nevertheless, we can look for suitable 
conditions for control law u, where the robot system 
will be stable. This is done in the following way.

For the simplest Lyapunov function V to 
determine the control law u, the following equation 
has been selected: 

 V = σT·σ / 2 . (5)

The following is derived from the Eq. (5):

 

V = ⋅σ σT . (6)

Owing to the fact that V  is not always less than 
zero for all xr, x and G, the first desired Lyapunov 
negative time function derivative has been defined as: 

 V = ⋅ ⋅- ,σ σT D  (7)

where D is a diagonal matrix with positive diagonal 
elements.

If the Eq. (7) and the derivative of Lyapunov’s 
Eq. (6) are made equal, the result is:

 σ σ σT D( ) .+ = 0  (8)

The Eq. (8) is valid if both or at least one of 
multiplicators equals zero. Since the first multiplicand, 
the term σT, does not equal zero during the transient 
response, the control law can be calculated on the 
basis of the second multiplicand (Eq. (9)):

 D ⋅ + =σ σ 0.  (9)
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If Eq. (4) is differentiated and the Eq. (2) is 
inserted into the recently calculated derivative, we get 
the following result:

 � �σ = + + + −G Bu Bu d xr( ).f ∆  (10)

After Eq. (10) has been inserted into the 
implementation condition of control law Eq. (9), the 
result is as follows:

 u GB G f Bu d x Dr= -( ) ( + + ) +-1� � �∆ −[ ]σ .  (11)

Since the term (f + ΔB·u + d) is unknown and 
not measurable, it is, therefore, approximated with the 
neural network N = [o1 ... oi]T (see Fig. 1) by changing 
the Eq. (11) into:

 u GB G N x Dr= ( ) ( ) + .-1− −[ ]� � σ  (12)

Fig. 1. Neural network

Since the term (f + ΔB·u + d) is unknown and 
not measurable, a classic supervised weight learning 
of neural network cannot be used. Therefore, a so-
called on-line neural network estimator has been 
developed (Fig. 2), estimating a learning signal (that 
is the difference between the target and the output of a 
neural network). 

The result after Eq. (4) has been differentiated is 
the following: 

   x G xr= + .-1 ⋅σ  (13)

Fig. 2. Neural network on-line estimator

After Eqs. (12) and (13) have been inserted into 
the basic equation of mechanism dynamics (Eq. (2)), 
the result is as follows: 

 σ σ+ = ( + + ) = ( ),D G f Bu d GN G Z N∆ − −  (14)

where we have substituted Z = (f + ΔB·u + d). To 
learn the weights of a neural network hidden layer the 
traditionally back-propagation rule [25] is used.

1.1 Centralized Control Law for Three Degrees of Freedom 
Mechanism 

In the previous section, the control law for a general 
robot mechanism with n-degrees of freedom has been 
derived; in this section, detailed equations of control 
law for a direct drive robot mechanism with three 
degrees of freedom, which is shown in Fig. 4, will be 
derived.

 T M Tf n= + + + ,��� � �θθ h G  (15)

where T, h , Gf, and Tn (see Eq. (1)) are column 
vectors of the 3×1 dimension, M  is the matrix of 
the 3×3 dimension, and θ = [θ1 θ1 θ1]T is the column 
vector of the 3×1 dimension of all three axes of the 
robot and where M , h  and Gf are estimated and 
simplificated values of real M, h and Gf (see Eq. (1)). 
Only nominal or average parameters of the matrix M  
have been selected. This means that all 9 parameters 
of the matrix M   are constant while the robot hand is 
moving. This is, of course, only a rough simplification 
of how things really look like; for it is a common fact 
that the parameters of matrix M  vary according to 
individual axis movements in robot’s working space. 
The previous equation can also be rewritten in the 
following form (see also Eq. (3)):

 � �x f x B x u d x= ( , ) + ( , ) + ( , ),t t t  (16)

where:
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and where u is calculated vector of T done by control 
law (Eq. (19)).

Because of that the unknown variable part ΔB 
exists and is estimated by the neural network (see 
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Eq. (14)). The dimension of vector f is 6×1 and the 
dimension of the matrix B  is 6×3. The control law 
u of the 3×1 dimension is illustrated in the following 
equation:

 u GB G N x Dr= ( ) ( ) + ,-1− −[ ]� � σ    (19) 

where:
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and

 σ = G (x − xr). (22)

Coefficients of the matrices G in D are selected in 
such a way that they enable the fastest convergence of 
neural network algorithm possible. The column vector 
N is of the 6×1 dimension and represents the outputs 
of the neural network oi  with i = 1, ..., 6.

The learning procedure for all the weights of an 
output layer is:
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 net w o bi ij j i
j

= +∑ , (24)

where  j = 1,..., 60, i = 1, ..., 6, l = 1, ..., 9, and g’(*) is 
the first derivative of the sigmoid function [25].

The neural network of centralized neural network 
sliding mode controller (CNNSMC) consists of 9 
inputs; these are: three actual positions, three actual 
velocities, and three differences between the desired 
and the actual position. All of them lie in the joint 
space of the robot mechanism. The scheme of 
CNNSMC is shown in Fig. 3.

Fig. 3. CNNSMC control scheme

1.2 Decentralized Control Law for Three Degrees of 
Freedom Mechanism

Eq. (1) is simplified for the first single axis (θ1) of DD 
robot mechanism (Eq. (25)):

 T J h g1 1 1 1 1 1= + + +  θθ tn ,  (25)

where scalars T1, h1, g1 and tn1 are torques needed 
to move the single axis. h1 is torque due to Coriollis 
centripetal and centrifugal forces, g1 is a torque due 
to gravitational forces and tn1 is unknown torque 
disturbance. J1  is an average, constant and rough 
approximation of the single axis inertia parameter. 
Scalars J1, h1, g1 are estimated and simplificated 
values of real M, h and Gf (see Eq. (1)).

Eq. (25) has been transformed as follows for the 
first single axis:

 � �x f B u B u d1 1 1 1 1 1 1= + + +∆ ,  (26)

where ∆B B B1 1 1= −   and where:
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The dimensions of the vectors f1, B1, B1  are 2×1. 
The control law u1 is described by the following 
equation:

 u G B G N x dr1 1 1
1

1 1 1 1 1= − − +[ ]−( ) ( ) ,� � σ  (29)

where:
 G1 = [Kp1  Kv1] . (30)

The coefficients Kp1, Kv1 and constant d1 
are selected in such a manner that the most rapid 
convergence of the neural network (N1 is an output of 
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the neural network for the first single axis) learning 
algorithm is made possible.

 x xr r1 1 1 1 1 1=   =  θ θ θ θr r

T

r r

T
, , ,



 and  (31)

where scalars θr1, θθr1 and θr1 are reference joint 
position, speed and acceleration of the single axis, 
respectively.

 σ σ1 1 1 1 1 1 1 1= − = −G x x G x xr( ) ( ). and    r  (32)

The column vector N1 is of the 2×1 dimension 
and represents the outputs of the neural network oi  (i 
= a, b). The variable of control law u1 is a scalar.

The learning procedure for all weights of the 
neural network output layer is:
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 net w o bi ij j i
j

= +∑ , (34)

where j = 1, ..., 5 (a number of neurons in the hidden 
layer), i = 2 (indexes: a, b - the number of neurons in 
the output layer), l = 3 (three neural network inputs 
were used: an actual position, an actual velocity and 
a difference between desired and actual positions in 
the joint space) and g’(*) is the first derivative of 
sigmoidal function. Fig. 3 also shows the scheme of 
the single axis controller.

The remaining two D.O.F. single axis controllers 
are the same as the described one in this subsection. 
Every single axis controller has the equal number of 
inputs and outputs of the neural network, the equal 
on-line estimator, the same control law etc. The 
difference between equations developed in current 
subsection and equations needed for the second and 
third axis is that all indexes “1” in Eqs. (25) to (34) are 
changed from “1” to “2” for the second axis and from 
“1”  to “3”  for the third axis. In fact, there are three 
equal control laws: u1, u2 and u3;  the only differences 
between the above mentioned control laws for all 
three axes are different values for parameters dk, 
Kpk, Kvk and of course different inputs θk, θθk and θk, 
 where k = 1, 2, 3.

1.3 Simplified Centralized and Decentralized Control Laws

Centralized and decentralized control approaches 
estimate a part of the variable robot dynamic model 
(torque model due to friction, Coriolis, centripetal and 
centrifugal forces) and use only the part of a dynamic 

plant model – the so called estimated inertia matrix 
M (see Eqs. (1) to (3), (11) and (12)). If Eq. (3) is 
rewritten as:

 B x B x( , ) = ( , ),t tC+ ∆  (35)

where C is a matrix, which includes the simple unity 
diagonal matrix I instead of M , for CNNSMC, so Eq. 
(18) is changed to:
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where I is a unity diagonal matrix of 3×3 dimension. 
Consequently, Eq. (19) is also changed to:

 u GC) G N x D= ( ( ) +− −[ ]−1
 r σ ,  (37)

while matrices G, D and vectors N, xr  and σ are 
not changed in comparison to the control law of 
CNNSMC (see Eqs. (16) to (24)). Eq. (37) represents 
the control law for a simplified centralized neural-
network sliding-mode controller (SCNNSMC).

The equation development for the case of 
simplified decentralized neural-network sliding-mode 
controller (SDNNSMC) is similar as for the case of 
the SCNNSMC. Here, Eq. (28) is changed to:

 C1

0
1

=







 .  (38)

Therefore, the control law for the SDNNSMC is 
rewritten from Eq. (29) as:

 u G C G N x dr1 1 1
1

1 1 1 1 1= − − +[ ]−( ) ( ) , σ  (39)

where vectors G1, xr1 , N1 and scalar variables d1 and 
σ1 are not changed in comparison to the control 
law of DNNSMC (see Eqs. (25) to (34)).

As it is seen from Eqs. (35) to (39), both 
simplified control laws do not need any plant model 
parameters for accurate estimation of the direct-drive 
robot mechanism dynamics.

2 APLICATION ON A REAL MECHANISM

The scheme of a direct-drive three degrees of freedom 
mechanism is illustrated in Fig. 4, while in Fig. 
5 the photo of the robot mechanism is shown.  The 
Dynaserv’s AC-motors with maximum torque of 220, 
160 and 60 Nm, and the nominal angular velocity 1 to 
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2 rotations per second were used. The mechanism is 
made of aluminium, which is fixed on the AC-motors. 
A robot wrist can be added to the top of the third axe 
of the robot. 

Since the robot is expected to perform 
manipulation tasks, the complete system has been 
tested with all four developed controllers described in 
previous section to perform the following tasks: 
• performance of the PTP movement with the static 

error less than 0.1 mm, and
• robustness when the top of the robot is disturbed 

with sudden load changes.
To satisfy the above mentioned demands, a robot 

controller with the sufficient computed power had to 
be developed. For a parallel execution of algorithms 
a transputer network of 8 transputers, one PowerPC, 
and one ordinary personal computer have been used; 
all have the possibility of working in  parallel.

A robot computer controller is described in 
a source [21]. The sampling time Ts = 2 ms is the 
execution time of all algorithms needed for the robot 
computer control.

The position error of the robot tip (Eq. (40)) or 
a trajectory tracking error in the task space has been 
used to measure the quality of all four robot controller 
performances:

 e X X Y Y Z Zdi i di i di i= − + − + − ( ) ( ) ( ) ,
/2 2 2 1 2

 (40)

where Xdi, Ydi, Zdi are reference trajectories in the ith 
sampling time in the task space and  Xi, Yi, Zi are the 
actual trajectories in the ith sampling time in the task 
space.

2.1 The Test of Sudden Load Changes

The position error of a robot tip in a stationary 
position for the centralized neural-network sliding-
mode controller (CNNSMC) is shown in Fig. 6, when 
sudden load changes occurred (approximately 80% 
of the maximal torque on the robot tip). The initial 
weights of neural network were randomly chosen 
between −1 and +1 learning rate η = 1e-8, d1 = 20,  
d2 = d3 = 30, Kp1 = Kp2 = Kp3 = 100 and  
Kv1 = Kv2 = Kv3 = 60.

The position error of the robot tip in stationary 
position for decentralized neural-network sliding-
mode controller (DNNSMC) is shown in Fig. 7 when 
the same sudden load changes occurred as in previous 
test. The initial weights of DNNSMC were randomly 
chosen between -1 and +1, learning rate η1a,b = 4e-7,  
η2a,b = 6e-6, η3a,b = 6e-6, d1 = 15, d2 = 23, d3 = 20, 

Fig. 4. The robot system

Fig. 5. The real lab robot mechanism
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Fig. 9. Position error of the robot tip for SDNNSMC during load 
changes in the stationary position test

The results are almost the same for the test of 
sudden load changes in the case of CNNSMC and 
DNNSMC. The difference is found in the first few 
seconds of Figs. 6 and 7 (PTP movement). The point 
to point robot tip movement is executed during this 
time (all three axis start in the same positions and 
finish in position 1 rd). It could be observed that the 
dynamic error is higher and the set-up time is longer 
in a case of DNNSMC. The sudden load changes of 
robot tip position for SCNNSMC and SDNNSMC are 
presented in Figs. 8 and 9.

2.2 Summary of Results

The quality of the presented DNNSMC is practically 
the same as for CNNSMC. The disadvantage of 
DNNSMC against CNNSMC is that the CNNSMC 
has a shorter set-up time and a smaller dynamic error 
during the PTP movement (see Figs. 6 and 7). The 
advantage of DNNSMC against CNNSMC is that 
DNNSMC has three completely separated control 
law equations with three remarkably smaller neural 
networks (each neural network has 5 neurons in the 
hidden layer, two outputs and three inputs). Therefore, 
a learning procedure of the neural network can be 
made for each axis separately which is remarkably 
easier than in a case of one neural network of 
CNNSMC with nine inputs, eighty neurons in the 
hidden layer and six outputs. Due to this reason the 
robot control computer hardware could run more axes 
at the same sampling time in the case of DNNSMC 
than in the case of CNNSMC. The average execution 
time for CNNSMC was 1.75 ms, while the average 
execution time for all three DNNSMCs was 1.05 ms. 
This sampling time also includes the complete direct 

Kp1 = 115, Kp2 = 150, Kp3 = 180 and Kv1 = 25,  
Kv2 = 40, Kv3 = 20.

Fig. 6. Robot tip’s position error for CNNSMC during load changes 
in the stationary position test

Fig. 7. Robot tip’s position error for DNNSMC during load changes 
in the stationary position test

Fig. 8. Robot tip’s position error for SCNNSMC during load changes 
in the stationary position test
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and inverse kinematics, interpolators, etc., for the 
robot controller.

If a comparison between both simplified 
(SCNNSMC and SDNNSMC) methods against “full” 
methods (CNNSMC and DNNSMC) is made, the next 
observation can be seen: both simplified methods 
need a remarkably greater set-up time than the other 
two. In case of the initial PTP movement the set-
up time is approximately 5 s in case of SCNNSMC 
against 2 s for the CNNSMC. Also, the set-up time for 
the transient responses to load changes is smaller in 
the case of “full” methods against simplified methods. 
The set-up time for the transient responses to load 
changes is 1 s for CNNSMC, 2 s for DNNSMC and 
SCNNSMC and 5 s for SDNNSMC. 

The observation of peak values of a position error 
of PTP movement and during the load changes is also 
important for the quality comparison between the 
mentioned four methods (see Figs. 6 to 9). It can be 
seen that the best results, the smallest peak values of 
the position error of the robot tip for PTP movement 
is observed for CNNSMC (4 mm) and DNNSMC (16 
mm) while the  peak values of position error during 
load changes (disturbances) have almost the same 
values (4 to 5 mm) for CNNSMC and DNNSMC. The 
peak values of position error for PTP movement is 
higher for both simplified methods: SCNNSMC (32 
mm) and SDNNSMC (18 mm), while an interesting 
effect can be observed when the position error of 
the robot tip during the load changes is measured. 
In the case of SCNNSMC the peak position error 
continuously decreases from the first load change (66 
mm) to next load changes and it is only 5 mm in the 
end of experiment, which is practically the same result 
as for CNNSMC and DNNSMC. 

This means that in the case of SCNNSM there is 
a longer learning period because the neural network 
sliding-mode estimator has to learn complete robot 
dynamic and not only a part as in the case of “full” 
methods. The worst results, which means the highest 
peak position error of the orbot tip was measured in 
the case of SDNNSMC (10 to 17 mm).

The steady-state position error of the robot tip 
was the smallest in the case of CNNSMC after the 
PTP movement and after load changes (practically 
zero) and almost zero in the case of DNNSMC, while 
in the case of SCNNSMC decreasing value of steady 
state position error is measured from the beginning of 
the experiment to the end of experiment. The worst 
result, the highest value of the steady-state position 
error is measured in the case of SDNNSMC where the 
steady state error is constantly between 0.5 to 1 mm.

3 CONCLUSIONS

This paper has presented the experimental 
development and laboratory implementation of four: 
centralized, decentralized, simplified centralized and 
simplified decentralized neural network continuous 
sliding-mode controllers for manipulation tasks 
for the real direct-drive 3 D.O.F. PUMA like robot 
manipulator. The neural network sliding-mode 
structure of the controller has been used to estimate 
and compensate structured (the inertia matrix) 
and unstructured (torques due to Coriollis forces, 
gravitational forces, friction forces, etc.) uncertainties 
of the robot manipulator. The adaptive and self-
improving capability of the neural network controllers 
to the unstructured effects (sudden load changes) has 
been shown for all four neural network controllers. 
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