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Abstract

Lucas cubes are special subgraphs of Fibonacci cubes. For small dimensions, their
domination numbers are obtained by direct search or integer linear programming. For
larger dimensions some bounds on these numbers are given. In this work, we present the
exact values of total domination number of small dimensional Lucas cubes and present
optimization problems obtained from the degree information of Lucas cubes, whose solu-
tions give better lower bounds on the domination numbers and total domination numbers
of Lucas cubes.
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1 Introduction
Fibonacci cubes and Lucas cubes are special subgraphs of the hypercube graph, which are
introduced as an alternative model for interconnection networks [6, 11]. The structural and
enumerative properties of these graphs are considered from various point of view in the
literature [2, 6, 7, 8, 9, 10, 11, 15].

Let Qn denote the hypercube of dimension n ≥ 1. It is the graph with vertex set
represented by all binary strings of length n and two vertices in Qn are adjacent if they
differ in one coordinate. For convenience Q0 = K1. Fibonacci strings of length n are
defined as the binary strings b1b2 . . . bn such that bi ·bi+1 = 0 for all i = 0, 1, . . . , n−1, that
is, binary strings of length n not containing two consecutive 1s. Using this representation
n dimensional Fibonacci cube Γn is defined as the subgraph of Qn induced by the vertices
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whose string representations are Fibonacci strings. Lucas strings of length n are defined
as the Fibonacci strings b1b2 . . . bn such that b1 · bn = 0. Similar to the Fibonacci cubes n
dimensional Lucas cube Λn is defined as the subgraph of Γn induced by the vertices whose
string representations are Lucas strings.

Let G = (V,E) be a graph with vertex set V and edge set E. D ⊆ V is called a
dominating set of G if every vertex in V either belongs to D or is adjacent to some vertex
in D. Then the domination number γ(G) of G is defined as the minimum cardinality of
a dominating set of the graph G. Similarly, D ⊆ V is called a total dominating set of a
graph G without isolated vertex if every vertex in V is adjacent to some vertex in D and
the total domination number γt(G) of G is defined as the minimum cardinality of a total
dominating set of G. The domination numbers of Γn and Λn are first considered in [2, 12].
Using integer linear programming, domination numbers of Γn and Λn are considered in [7]
and total domination number of Γn is considered in [1]. Furthermore, upper bounds and
lower bounds on γ(Γn), γt(Γn), γ(Λn) are obtained in [1, 2, 13] and they are improved for
Γn in [14].

In this work, we present optimization problems obtained from the degree information of
Lucas cubes, whose solutions give better lower bounds on the domination numbers and total
domination numbers of Lucas cubes. Our aim is to improve the known results on γ(Λn) and
present new results on γt(Λn). Furthermore, we introduce the up-down degree polynomials
for Λn containing the degree information of all vertices V (Λn) in more detail. Using these
polynomials we define optimization problems whose solutions give lower bound on γ(Λn)
and γt(Λn).

2 Preliminaries
For n ≥ 2 we will use the fundamental decomposition of Γn (see, [8]):

Γn = 0Γn−1 + 10Γn−2, (2.1)

where Γ0 = Q0 and Γ1 = Q1. Here note that 0Γn−1 is the subgraph of Γn induced by
the vertices that start with 0 and Γn−2 is the subgraph of Γn induced by the vertices that
start with 10. Furthermore, 0Γn−1 has a subgraph isomorphic to 00Γn−2, and there exists
a perfect matching between 00Γn−2 and 10Γn−2. Similar to this decomposition for n ≥ 3
Lucas cubes can be written as

Λn = 0Γn−1 + 10Γn−30, (2.2)

where 10Γn−30 is the subgraph of Λn induced by the vertices that start with 10 and end
with 0. Here, there exists a perfect matching between 10Γn−30 and 00Γn−30 ⊂ 0Γn−1.
By convention, Λ1 = Γ0 and Λ2 = Γ2.

The number of vertices of the Γn is fn+2, where fn are the Fibonacci numbers defined
as f0 = 0, f1 = 1 and fn = fn−1 + fn−2 for n ≥ 2. Similarly, the number of vertices
of the Λn is Ln, where Ln are the Lucas numbers defined as L0 = 2, L1 = 1 and Ln =
Ln−1 + Ln−2 for n ≥ 2.

Let x, y be two binary strings of length n. Then the Hamming distance between x and
y, dH(x, y) is the number of coordinates in which they differ. The Hamming weight of x,
w(x) is the number of nonzero coordinates in x. Note that Hamming distance is the usual
graph distance in Qn.

In Figure 1 we present small dimensional Lucas cubes and a minimal total dominating
set with circled vertices for 2 ≤ n ≤ 5.
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Figure 1: Lucas cubes and their minimal total dominating sets for 2 ≤ n ≤ 5.

3 Integer linear programming for domination numbers
In this section, we describe a linear programming problem used in [7] for finding the domi-
nation number of Γn and Λn. A similar approach is used in [1] for finding the total domina-
tion number of Γn. The main difficulty for these methods are the number of variables and
the number of constraints which are equal to the number of vertices in Γn and Λn. Using
this approach we obtain the total domination number of Λn for n ≤ 12.

LetN(v) denote the set of vertices adjacent to v andN [v] = N(v)∪{v}. Suppose each
vertex v ∈ V (Λn) is associated with a binary variable xv . The problems of determining
γ(Λn) and γt(Λn) can be expressed as a problem of minimizing the objective function∑

v∈V (Λn)

xv (3.1)

subject to the following constraints for every v ∈ V (Λn):∑
a∈N [v]

xa ≥ 1 (for domination number),

∑
a∈N(v)

xa ≥ 1 (for total domination number).

The value of the objective function gives γ(Λn) and γt(Λn) respectively. Note that this
problem has Ln variables and Ln constraints. In [7] γ(Λn) is obtained up to n = 11 and
for larger values of n as the number of variables increases no results are presented.

We implemented the integer linear programming problem (3.1) using CPLEX in NEOS
Server [3, 4, 5] for n ≤ 12 and obtain the values of γt(Λn) for n ≤ 12 and obtain the
estimates 49 ≤ γ(Λ12) ≤ 54 (takes approximately 2 hours). We collect the known values
of γ(Λn) for n ≤ 11 (see, [7]) and the new values of γt(Λn) that we obtained from (3.1)
for n ≤ 12 in Table 1.

The fundamental decompositions (2.1) and (2.2) of Γn and Λn are used to obtain the
following relations between γ(Λn) and γ(Γn). The main idea in the proof is to partition
the set of vertices into disjoint subsets.
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Table 1: Values of γ(Λn) and γt(Λn) for n ≤ 12.

n 2 3 4 5 6 7 8 9 10 11 12

|V (Λn)| 3 4 7 11 18 29 47 76 123 199 322

γ(Λn) 1 1 3 4 5 7 11 16 23 35
γt(Λn) 2 2 3 4 7 9 13 19 27 41 58

Proposition 3.1 ([2, Proposition 3.1]). Let n ≥ 4, then

(i) γ(Λn) ≤ γ(Γn−1) + γ(Γn−3),

(ii) γ(Λn) ≤ γ(Γn) ≤ γ(Λn) + γ(Γn−4).

Using a similar idea we obtain the following result.

Proposition 3.2. Let n ≥ 4, then

(i) γt(Λn) ≤ γt(Γn−1) + γt(Γn−3),

(ii) γt(Λn) ≤ γt(Γn) ≤ γt(Λn) + γt(Γn−4).

Proof. The proof mimics the proof of [2, Proposition 3.1].
(i): The vertices of Λn can be partitioned into vertices that start with 0 and vertices that

start with 1. The subgraphs induced by these vertices are isomorphic to Γn−1 and Γn−3

respectively, hence we infer that γt(Λn) ≤ γt(Γn−1) + γt(Γn−3).
(ii): Let DT be a minimal total dominating set of Γn and set

D′T = {α | α is a Lucas string from DT } ∪ {0α0 | 1α1 ∈ DT }.

Note that |D′T | ≤ |DT | and a vertex of the form 1α1 dominates two Lucas vertices of
the form 0α1 and 1α0. Since these two vertices are dominated by 0α0, we say that D′T
is a dominating set of Λn. Then we need to show that it is also a total dominating set.
We know that every vertex in v ∈ V (Λn) ⊆ V (Γn) is adjacent to some vertex β ∈ DT .
Then if β ∈ D′T we are done. Otherwise, β must be of the form 1α1 ∈ DT . In this case
v ∈ V (Λn) must be of the form 1α0 or 0α1, which means that v is also adjacent to a
vertex of the form 0α0 ∈ D′T . It follows that γt(Λn) ≤ γt(Γn). On the other hand, a
total dominating set of Λn dominates all vertices of Γn but the vertices of the form 10α01
where the subgraph induced by these vertices is isomorphic to Γn−4. Hence we have
γt(Γn) ≤ γt(Λn) + γt(Γn−4).

Considering the vertices of high degrees a lower bound on γ(Λn) is obtained in [2,
Theorem 3.5] as γ(Λn) ≥ dLn−2n

n−3 e where n ≥ 7. Combining this result with the fact that
γt(Λn) ≥ γ(Λn) we have the following lower bound on γt(Λn).

Proposition 3.3. For any n ≥ 7, we have

γt(Λn) ≥ γ(Λn) ≥
⌈
Ln − 2n

n− 3

⌉
.
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4 Up-down degree enumerator polynomial
In this section we present the up-down degree enumerator polynomial for Λn similar to the
one for Γn given in [14]. Using this polynomial we write optimization problems whose
solutions give lower bounds on γ(Λn) and γt(Λn).

By the definition of the edge set E(Λn), (v, v′) ∈ E(Λn) if and only if the number of
different coordinates of v and v′ is 1, that is, the Hamming distance dH(v, v′) = 1. Here
we have at most two kinds of neighbor v′ for a vertex in v ∈ V (Λn), whose weights can
take the values w(v) ± 1. If w(v′) = w(v) + 1 we call v′ is an up neighbor of v and
if w(v′) = w(v) − 1 we call v′ is a down neighbor of v. We denote the number of up
neighbors of v by u and the number of down neighbors of v by d which is equal to the
w(v) by the definition of Λn. Note that if the degree of v is k then we have u = k − d.
For each fixed v ∈ V (Λn) having degree k = deg(v), we write a monomial xuyd where
d = w(v) is the Hamming weight of v and u is k − d. We call the polynomial

PΛn
(x, y) =

∑
v∈V (Λn)

xdeg(v)−w(v)yw(v) =
∑

v∈V (Λn)

xuyd

as the up-down degree enumerator polynomial of Λn.
We need the following useful result given in [10] to obtain the recursive structure of

PΛn
(x, y). Let `n,k,w be the number of vertices in Λn of degree k and weight w.

Theorem 4.1 ([10, Theorem 5.2]). For all n, k, w such that n ≥ 2, 1 ≤ k ≤ n and
0 ≤ w ≤ n,

`n,k,w =

(
w − 1

2w + k − n

)(
n− 2w

k − w

)
+ 2

(
w

2w + k − n

)(
n− 2w − 1

k − w

)
.

Let `′n,u,d be the number of vertices in Λn whose number of up neighbors are u and
number of down neighbors are d. Setting k = u+ d and w = d in Theorem 4.1 we have

`′n,u,d =

(
d− 1

3d+ u− n

)(
n− 2d

u

)
+ 2

(
d

3d+ u− n

)(
n− 2d− 1

u

)
. (4.1)

Then using (4.1) we can write the up-down degree enumerator polynomial of Λn as

PΛn
(x, y) =

∑
u,d

`′n,u,d x
uyd, (4.2)

where 0 ≤ u, d ≤ n. Furthermore, using (4.1) and (4.2) we obtain the following recursive
relation which is very useful to calculate PΛn(x, y).

Theorem 4.2. Let PΛn
(x, y) be the up-down degree enumerator polynomial of Λn. Then

for n ≥ 5 we have

PΛn(x, y) = xPΛn−1(x, y) + yPΛn−2(x, y) + (y − xy)PΛn−3(x, y), (4.3)

where

PΛ2(x, y) = x2 + 2y, PΛ3(x, y) = x3 + 3y and PΛ4(x, y) = x4 + 4xy + 2y2.
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Proof. The initial conditions are clear from the definition of Λn. For fixed integers 1 ≤
u < n and 2 ≤ d < bn2 c, the coefficient of the monomial xuyd in the right hand side of
the equation (4.3) is the sum of `′n−1,u−1,d coming from xPΛn−1

(x, y), `′n−2,u,d−1 coming
from yPΛn−2

(x, y), `′n−3,u,d−1 coming from yPΛn−3
(x, y) and −`′n−3,u−1,d−1 coming

from −xyPΛn−3(x, y). Then we need to show that

`′n,u,d = `′n−1,u−1,d + `′n−2,u,d−1 + `′n−3,u,d−1 − `′n−3,u−1,d−1.

By setting X = 3d+ u− n and Y = n− 2d in (4.1) and using the binomial identities(
m

k

)
=
m

k

(
m− 1

k − 1

)
=
m+ 1− k

k

(
m

k − 1

)
=

m

m− k

(
m− 1

k

)
we have

`′n−1,u−1,d + `′n−2,u,d−1 + `′n−3,u,d−1 − `′n−3,u−1,d−1

=

(
d− 1

X

)(
Y − 1

u− 1

)
+ 2

(
d

X

)(
Y − 2

u− 1

)
+

(
d− 2

X − 1

)(
Y

u

)
+ 2

(
d− 1

X − 1

)(
Y − 1

u

)
+

(
d− 2

X

)(
Y − 1

u

)
+ 2

(
d− 1

X

)(
Y − 2

u

)
−
(
d− 2

X − 1

)(
Y − 1

u− 1

)
+ 2

(
d− 1

X − 1

)(
Y − 2

u− 1

)
=

(
d− 1

X

)(
Y

u

)[
u

Y
+

X

d− 1
+
d− 1−X
d− 1

· Y − u
Y

− X

d− 1
· u
Y

]
+ 2

(
d

X

)(
Y − 1

u

)[
u

Y − 1
+
X

d
+
d−X
d
· Y − 1− u

Y − 1
− X

d
· u

Y − 1

]
=

(
d− 1

X

)(
Y

u

)
+ 2

(
d

X

)(
Y − 1

u

)
= `′n,u,d.

In particular, the case d = 0 corresponds to the all 0 vertex in Λn and we have `′n,n,0 = 1,
which means that the coefficient of the terms xny0 in both sides of (4.3) are 1. Similarly,
the case u = 0 corresponds to the vertices in Λn whose weights are bn2 c and we have (see,
Remark 5.1)

`′n,0,bn2 c
=

{
n if n is odd,
2 if n is even.

Then one can easily see that the coefficient of the terms x0yb
n
2 c in both sides of (4.3) are

equal to each other. The only remaining particular case is d = 1. For PΛn
(x, y) this case

corresponds to the vertices in Λn whose weights are 1. We know that there are n such
vertices in Λn and their number of up neighbors are n − 3. That is, the coefficient of the
term xn−3y in PΛn

(x, y) is n. On the other hand the coefficient of the term xn−3y is n− 1
in xPΛn−1

(x, y); 0 in yPΛn−2
(x, y) and 1 in (y − xy)PΛn−3

(x, y) respectively. Hence the
coefficient of the terms xuyd in both sides of (4.3) are equal to each other for all cases.
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Remark 4.3. The recursive relation for the up-down degree enumerator polynomial of Λn

in Theorem 4.2 is the same with the recursive relation for the up-down degree enumerator
polynomial of Γn, which is proved using the fundamental decomposition Γn = 0Γn−1 +
10Γn−2. The only differences are the initial polynomials. For the proof we directly used
the degree information of Λn obtained in [10], since Λn do not have a decomposition like
0Λn−1 + 10Λn−2.

5 Lower bounds on domination numbers using optimization problems
In this section, we present optimization problems giving lower bounds on γ(Λn) and
γt(Λn), whose number of variables and number of constraints are fewer than the general
optimization problem described in Section 3.

We use the up-down degree enumerator polynomial PΛn
(x, y) to construct an optimiza-

tion problem, which is similar to the optimization problem given in [14]. Let D and DT

be a dominating set and a total dominating set of Λn respectively. Let vD ∈ D
(
vD ∈ DT

respectively
)

and xuyd be its corresponding monomial in PΛn
(x, y). Then vD dominates

u distinct vertices v ∈ V (Λn) having weight w(v) = w(vD) + 1 and d distinct vertices
v ∈ V (Λn) having weight w(v) = w(vD) − 1. Note that for all vD ∈ D

(
vD ∈ DT

respectively
)

some of the vertices of Λn may be dominated more than one times. Note
that for every vertex v ∈ V (Λn) there must exist at least one vertex vD ∈ N [v] ∩ DT

with w(vD) = w(v) ∓ 1 or vD = v for the dominating set D and vD ∈ N(v) ∩DT with
w(vD) = w(v)∓ 1 for the total dominating set DT .

Now we write the up-down degree enumerator polynomial of Λn (see, 4.2) as

PΛn
(x, y) =

∑
u,d

cudx
uyd, (5.1)

where cud = `′n,u,d. For each pair (u, d) in the monomials of the up-down degree enumera-
tor polynomial PΛn

(x, y) we associate an integer variable zud which counts the number of
vertices in D or DT having d down neighbors and u up neighbors. For any fixed value of
d, the number of vertices having weight d gives the bounds 0 ≤ zud ≤ cud . Our aim is to
minimize |D| for domination number and to minimize |DT | for total domination number.
Hence our objective function is to minimize∑

u,d

zud .

To dominate all the vertices having a fixed weight d such that 1 ≤ d ≤ bn2 c − 1 we must
have the following constraints rd for domination number and r′d for the total domination
number.

rd :
∑
u

(
u · zud−1 + zud + (d+ 1) · zud+1

)
≥
∑
u

cud

r′d :
∑
u

(
u · zud−1 + (d+ 1) · zud+1

)
≥
∑
u

cud

since any vertex corresponding to the monomial xuyd−1 can dominate u distinct vertices
(u up neighbors) having weight d and any vertex corresponding to the monomial xu

′
yd+1
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can dominate d+ 1 distinct vertices (d+ 1 down neighbors) having weight d. By the same
argument, for d = 0 we must have

r0 :
∑
u

zu0 + zu1 ≥
∑
u

cu0 = 1 and r′0 :
∑
u

zu1 ≥
∑
u

cu0

and for d = bn2 c we must have

rbn2 c :
∑
u

u · zubn2 c−1 + zubn2 c
≥
∑
u

cubn2 c
=

{
n if n is odd,
2 if n is even.

r′bn2 c
:

∑
u

u · zubn2 c−1 ≥
∑
u

cubn2 c
=

{
n if n is odd,
2 if n is even.

Now subject to the above constraints r0, . . . , rbn2 c (constraints r′0, . . . , r
′
bn2 c

) the value of
the objective function will be a lower bound on γ(Λn) (γt(Λn), respectively).

Remark 5.1. The number of vertices of Λn having weight d is equal to the right hand side
of the above constraints rd and r′d. By setting k = u+ d and w = d in [10, Corollary 5.3]
we have ∑

u

cud =

n−d∑
u=0

`′n,u,d =

(
n− d
d

)
+

(
n− d− 1

n− 2d

)
.

Remark 5.2. The number of variables zud in our optimization problem is equal to the
number of monomials in PΛn

(x, y). Assume that n is even. By the string representation of
the vertices in Λn we have n−3d ≤ u ≤ n−2d−1. The bounds come from the maximum
number of the sub-strings 010 and 10 in the representation of the vertices. That is, u can
take n− 2d− 1− (n− 3d) + 1 = d distinct values when d ranges from 1 up to bn3 c and u
can take n− 2d distinct values when n

3 + 1 ≤ d < bn2 c. Furthermore, u can take only one
values for d = 0 and d = bn2 c. Therefore, the number of variables zud becomes

2 +

bn3 c∑
d=1

d+

bn2 c−1∑
d=bn3 c+1

(n− 2d)

which is equal to

2 +
3

2

⌊n
3

⌋(⌊n
3

⌋
+ 1− 2n

3

)
+
⌊n

2

⌋(
n−

⌊n
2

⌋
+ 1
)
− n. (5.2)

For n ≥ 2 this sequence starts as 2, 2, 3, 3, 5, 5, 7, 8, 10, 11, 14, 15, 18, 20, 23, 25, 29, . . .
Note that in (3.1) the number of variables is Ln, which exhibit exponential growth. In our
case, if we omit the floor functions in (5.2) then the number of variables zud is approximately
equals to 2 + n2

12 .

For n = 12 we illustrate our optimization problem as follows. First we obtainPΛ12
(x, y)
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by using the recursion in Theorem 4.2 as

PΛ12
(x, y) = 2y6+

12y5x+ 24y5+

12y4x3 + 54y4x2 + 36y4x+ 3y4+

12y3x5 + 60y3x4 + 40y3x3+

12y2x7 + 42y2x6+

12yx9+

x12

Then using PΛ12
(x, y) we have the corresponding optimization problem:

Objective function:

minimize : z12
0 + z9

1 + z7
2 + z6

2 + z5
3 + z4

3 + z3
3 + z3

4 + z2
4 + z1

4 + z0
4 + z1

5 + z0
5 + z0

6 ;

Constraints for γ(Λ12):

r6 : z1
5 + z0

6 ≥ 2;

r5 : 3z3
4 + 2z2

4 + z1
4 + z1

5 + z0
5 + 6z0

6 ≥ 36;

r4 : 5z5
3 + 4z4

3 + 3z3
3 + z3

4 + z2
4 + z1

4 + z0
4 + 5z1

5 + 5z0
5 ≥ 105;

r3 : 7z7
2 + 6z6

2 + z5
3 + z4

3 + z2
3 + 4z3

4 + 4z2
4 + 4z1

4 + 4z0
4 ≥ 112;

r2 : 9z9
1 + z7

2 + z6
2 + 3z5

3 + 3z4
3 + 3z3

3 ≥ 54;

r1 : 12z12
0 + z9

1 + 2z7
2 + 2z6

2 ≥ 12;

r0 : z12
0 + z9

1 ≥ 1;

Constraints for γt(Λ12):

r′6 : z1
5 ≥ 2;

r′5 : 3z3
4 + 2z2

4 + z1
4 + 6z0

6 ≥ 36;

r′4 : 5z5
3 + 4z4

3 + 3z3
3 + 5z1

5 + 5z0
5 ≥ 105;

r′3 : 7z7
2 + 6z6

2 + 4z3
4 + 4z2

4 + 4z1
4 + 4z0

4 ≥ 112;

r′2 : 9z9
1 + 3z5

3 + 3z4
3 + 3z3

3 ≥ 54;

r′1 : 12z12
0 + 2z7

2 + 2z6
2 ≥ 12;

r′0 : z9
1 ≥ 1;

Bounds:

z12
0 ≤ 1; z9

1 ≤ 12; z7
2 ≤ 12; z6

2 ≤ 42; z5
3 ≤ 12; z4

3 ≤ 60; z3
3 ≤ 40;

z3
4 ≤ 12; z2

4 ≤ 54; z1
4 ≤ 36; z0

4 ≤ 3; z1
5 ≤ 12; z0

5 ≤ 24; z0
6 ≤ 2.

Depending on the constraints rd and r′d (d = 0, 1, . . . , 6) the value of the objective
function gives a lower bound on γ(Λ12) and γt(Λ12) respectively. The above problem has
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only 14 variables and 7 constraints (instead of having L12 = 322 variables and 322 con-
straints as in (3.1)). To find lower bounds on γ(Λn) and γt(Λn) one can use the up-down
degree enumerator polynomial PΛn

(x, y) of Λn in Theorem 4.2 and one can write an op-
timization problem having fewer number of variables zud (see Remark 5.2) and bn2 c + 1
constraints rd or r′d. The solutions of the optimization problems give lower bounds on
γ(Λn) and γt(Λn). It is easy to see that the number of variables and the number of con-
straints in our optimization problems are very smaller than the ones in the optimization
problem (3.1).

For illustration we implemented the above integer linear programming problem using
CPLEX in NEOS Server [3, 4, 5] for 12 ≤ n ≤ 26 and immediately (less than 0.02
seconds) obtain the lower bounds on γ(Λn) and γt(Λn) presented in Table 2 and Table 3
(better than the ones in Proposition 3.3). Note that for n = 26, the number of variables
in our optimization problem is 58 by Remark 5.2 and the number of constraints is 14, on
the other hand, these numbers are equal to L26 = 271443 for the general optimization
problem (3.1). In addition, the upper bounds in these tables are obtained by Proposition 3.1
and Proposition 3.2 by using the upper bounds on the values of γ(Γn) and γt(Γn) given in
[14] for n ≥ 14.

Table 2: Current best bounds on γ(Λn), 12 ≤ n ≤ 26.

n γ(Λn) n γ(Λn) n γ(Λn)

12 49∗ – 54 17 310 – 555 22 2686 – 6140
13 61∗ – 86 18 471 – 895 23 4184 – 9935
14 89 – 132 19 725 – 1450 24 6519 – 16075
15 134 – 215 20 1114 – 2345 25 10163 – 26010
16 203 – 340 21 1724 – 3795 26 15835 – 42085

Table 3: Current best bounds on γt(Λn), 12 ≤ n ≤ 26.

n γt(Λn) n γt(Λn) n γt(Λn)

12 58∗ 17 340 – 567 22 2893 – 6140
13 77∗ – 95 18 514 – 909 23 4490 – 9935
14 101 – 145 19 787 – 1450 24 6974 – 16075
15 151 – 231 20 1205 – 2345 25 10839 – 26010
16 225 – 362 21 1862 – 3795 26 16838 – 42085

Remark 5.3. It is shown in [1, 7] that γ(Γ9) = 17, γ(Γ10) = 25, 54 ≤ γ(Γ12) ≤ 61 and
78 ≤ γ(Γ13) ≤ 93 (shown in [14]). Substituting these results in Proposition 3.1 we obtain
the bounds for n = 13 in Table 2.

Similarly, it is shown in [1, 7] that γt(Γ9) = 20, γt(Γ10) = 30, γt(Γ12) = 65 and
97 ≤ γt(Γ13) ≤ 101. Substituting these results in Proposition 3.2 we obtain the bounds
for n = 13 in Table 3.

Note that our optimization problems obtained from up-down degree enumerator poly-
nomial give γ(Λ12) ≥ 39, γt(Λ12) ≥ 45 and γ(Λ13) ≥ 59, γt(Λ13) ≥ 68. Furthermore,
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using (3.1) we obtain that 49 ≤ γ(Λ12) ≤ 54 and γt(Λ12) = 58. For these reasons we put
a ∗ to the lower bounds for the cases n = 12 and n = 13 in Table 2 and Table 3.
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