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ABSTRACT

In this paper we present algorithms for measuring local attaristics of random fiber systems. The

calculation of the local directions and radii is based oedtional distance transforms and evaluation of the
inertia moments and axes of the resulting extremities oémralized, directed chords. The method provides
continuous results while minimizing the runtime by using feampled directions. Furthermore several steps
of improvement for the computation of orientation and radinformation are presented. The algorithms are
evaluated using synthetic data and applied to images ofirieabstructures obtained by computer tomography.

Keywords: directional distance transform, fiber netwoifikser separation, inertia moments and axes, local
orientation, mathematical morphology.

INTRODUCTION that thickness, the discretization will have too much
influence on the results. On these binarized images
Fiber-reinforced composites are nowadaygwith square or cubic grid), we compute the directional
frequently used for building the enclosure of aircraftsdiameters in a fixed amount of orientations (4 in 2D
boats or cars. Our application concentrates on fibeand 13 in 3D) using directional distance transforms.
reinforced plastics comprising a polymer matrixThe main inertia axes of the endpoints, given by the
reinforced with glass or carbon fibers. The aim oflocal centralized chords, provide an estimate of the
our study is to predict the physical behavior of thelocal orientation. This estimate is biased towards the
material from the knowledge of its microstructure,sampled directions. We present methods to correct
reconstructed from micro or nano tomography imagesghis deviation in 2D and to reduce it in 3D. The
One physical property of this very light material inertia moments provide additionally the possibility of
is the stiffness, which is highly influenced by theestimating the fiber radius and of smoothing the results
anisotropy of the included fibers. The material will beby making use of the ratio of inertia moments.
optimized by changing the parameters of an adapted
random geometric model and evaluating the physic%v
properties using numerical simulations.

Finally, our method is extended to gray
el images using thresholded quasi distance. A
preprocessing considerably reducing bias in estimation
Local geometric characteristics are essentiaik suggested.

information for the modeling of random fiber There exist already several methods to compute

networks. Without this information the virtual . . . ; .
: ) : . the local orientation in images, like the Gaussian
material, derived from a random fiber model, is not

realistic. It is therefore important to start with a modelorientation space by Rob al. (2007) and the chord
fitted to the real structure, to adapt the calculation OP ngth transform by Sandau and Ohser (2007). The

the physical behavior to the real physical properties O?hord length transform is not yet studied on 3D images

the material and then to start changing the modeling>, "o will compare our method to the Gaussian
. nging . Brientation space. The main idea of both approaches is
parameters to improve the physical behavior. Th

most important characteristic for the modeling iso_sar_npleacertain amount ofqlirections With c_Iiffere_nt
the orientation distribution, computed from Iocaldlrecponal operators and referring to the direction with
information ' the_ highest filter response. Thus the resul_ts are always
: limited to the chosen amount of sampled directions and
The basis of our method is a sufficiently goodfor more exact results their amount has to be increased,
binarization of a 3D image of a fiber system withresulting in a considerable rise of computation time.
solid and not too thin fibers. More precisely, the fiberMoreover, in order to increase the number of sampled
radius should exceed the length of 3 pixels. Belowdirections, it is necessary to choose a finite humber
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of directions as evenly as possible, which is a non- The inertia matrices adapted to our case are:
trivial problem on its own. Our approach avoids these

problems as it is fixed to a small amount of sampled M@ -1 ( Mzo My )
orientations (4 in 2D and 13 in 3D), whereas the results f Mi1 Moz

are obtained in the continuous Euclidean space.

8

for 2D and
3
ANALYSIS ON BINARY IMAGES M) =
Mo20+ Moo2 —Mi10 —Mzo1
INERTIA MOMENTS OF DIRECTIONAL > ~Mi10 Maoo+Mooz  —Moas :
DISTANCE TRANSFORMS —Mioy —Mo11  Maoo+Mozo

In this section the calculation of local for 3D. The inertia moments are the eigenvalues of
characteristics like fiber orientation and radius isthese matrices and the inertia axes are the eigenvectors
treated. The algorithms are based on computing thas defined by Bakhadyrov and Jafari (1999). Because
directional distances to the background for evenpof the different structure of the inertia matrices in
object point. The sampled directiongs of the 2D and 3D, the main inertia axis in 2D is the
directed distance transform are chosen as the completéggenvector to the highest eigenvalue (which indicates
neighborhood (in 2D 8 neighbors, in 3D 26 neighbors)the elongation in the according direction), whereas
see Altendorf (2007). In order to achieve a nearhin 3D the main inertia axis is the eigenvector having
constant result in a cylindrical fiber, the arithmeticthe lowest eigenvalue (which indicates the inertia by
average of the two calculated distances for inverseotating the object around this axis).
directionsd(vs) andd(—vs) is considered, which is
equal to the half chord lengths defined in Sandau an
Ohser (2007)

d The defined main inertia axis gives a first estimate
of the fiber orientation, which is however biased
towards the sampled directions.

1
de(vs) = 5(d(vs) +d(-vs)). CORRECTING THE BIAS

Evaluation of the presented method shows a certain

The directed distance transform can be CalcuIategeviation in the orientation estimate as presented in

efficiently following an adapted version of the Fig. 1. By considering the endpoints just in a few

algorithm introduced by Rosenfeld and Pfaltz (1966)'sampled directions, those directions receive a high

;mgugzort?] eleinngq];kése.arti ea?if;lsetvtii(:ngy fg\:\?\ll:'rgg t\v’\\lli'&eweight. This causes an attraction towards the sampled

increasing the distances in the image dependin%recnons’ explaining the deviation. The orientation

on the distance, assigned to his predecessors stimgte is perfect in those prier)tations lying on or in
the backward directions (neighbors which have e middle of two sampled directions.

been already visited); the second time by walking This nature of the bias motivated a theoretical
backwards through the image, we assign to the pixadtudy of the problem. The fiber is assumed to be a
the increased distance, assigned to his predecesssgysherical cylinder with radius, infinite length and

in forward directions, if those are inside the object.orientationv, represented by the angde(in 3D 6 and
This algorithm runs in linear time with respect to ¢, derived from the spherical coordinates).

the number of image pixels and assigns to every

foreground pixel the directional thickness of the fiber. | N€ centralized distances are given by:

From the endpointB, = d.(vs) - v§, derived from do(vs) = r in 2D r 1)
the centralized distances in all sampled directions, sin(£(v,vs)) sin(Z£(6,0))’
we calculate the moments defined by Duda and Hart
(1973). In our case the moments can be reduced to: from which we can calculate the endpoints

! (2 _ (dc(vs)cosh
Mg = _Zj(Pu.,x)p(P.,y)q for 2D and R = < d(vs)siné, for 2D and
i=
dc(vs) sin6 cosg
®3) Pi(s) = | dc(vs)sinG sing for 3D.
Mpqr = Z}(PIX) p(Pl,y) (Pl.,Z) for 3D. dC(VS) COSG,
i=
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To calculate the inertia moments and main inertia Angle Calculation for a synthetic Fiber
axes in 2D, we adapt the existing formula to our case: 142 pi
Mao-+Moa = | /4M2; + (Mao— Moo)? B
1 oM S 1api
0 = 5 arctan(ﬁ) . (3) 8
20— Vo2 real angle
estimation from moments
. . c?rrected angle --------
_ Replacing the formula foMyq depending on the V4 pi 2 pi
fiber parameters and 8 and after applying multiple real angle

steps of simplification for trigonometrical functions, it

was possible to achieve the following equations, whict19- 1. Déviation of the direction calculated by inertia
depend only on the main parameteand@: moments. True angle of a fiber with length-radius ratio

of 1000 vs. calculated and corrected angle.

)\1:r2(2jL Y 3_CO§(46)+1>, (4) The attraction to a close sample direction is
S'n2(49) dependent on the distance between it and the real fiber
Ao =r2£(0), (5) orientation. Therefore, pushing away the computed
orientations from the closest sampled directions is
with controlled by forces depending on the associated
distance. First of all we define the forces, whose
2++/3c02(40)+1 i2(40) £ 0 formula emerged from several tests based on the two
f(0)= Sir?(46) , sin(40) # (6) dimensional correction curve.
§ .
\ otherwise ) {O.Zsin(rr(4d /m%424)  ford < 1/4,
1oz _i i o otherwise.
o' = 2arctan<tarf3(2(6 |4)))+|4, 7 ;
for ig <0< (i +1)77:, ieN. To complete the approach we need to define the

direction in which the force operates. We have defined
_ _ S the force direction to be the projection of the sampled
The maximal pOSSIble deviation is limited to°10 direction on the 2D Subspace Orthogona| to the
in both cases 2D and 3D. From Eqg. 7 it is possible tGalculated orientatiow, pn(vs,v). The approximate
correct the deviation by inverting it. The orientation grientationV is then calculated as follows:
can be derived from the estima@éas follows:
V=v+ > t(£(vs,v))pn(vs,v) .
|

1 TT TT
0= —arctan( ¥ tan(2(6’—|—))> +i—,
2 4 4 This procedure reduces the maximal error from

for it <@ < (i+1) 7_T’ ieN. 9.97° to 478 and the mean error from40° to 1.27°.
4 The reduction of the deviation is visualized in Fig. 2

- h it sphere i lors fron? I 10 i
The deviation and the corrected angle for the 2D cas%‘dt e unit sphere in colors front @ blue to 10 in

are illustrated in Fig. 1.

There exist also theoretical solutions for the
eigenvalue problem in 3D (Jeulin and Moreaud, 2008).
With this, it is possible to deduce an equation for
the inertia moments and the inertia vectors. However {82,
we did not achieve a simplification of these complex @&
equations and reduction to the main parameters, whicl
would provide the possibility to correct the orientation.
Still there is a way to improve the orientation
estimation also in the 3D case. Based on the ideaxes
of approximation in 2D, we reduce the deviation of '
the calculated direction by pushing it away from theFig. 2. Visualization of the deviation of the calculated
closest sampled directions. fiber orientation on the unit sphere.

!'f) Deviation of main inertia (b) Deviation of improved
orientation.
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relevance of the orientation information. The moment

in the 3D case is the non-consistency of chord lengthkigher radius estimates reduces wrong estimates due

except edge effects at the fiber ends. This situation is

as shown in 3(b) for a section of a 3D fiber. We can  The evaluation showed that this method yields

necessary to find another way to create stable measures

our calculations not on the measures at the point of The resulting direction and radius maps can be

interest. an object in the direction of the inertia axes. For a ball,
; g second (in 3D the second and third are similar). In

ratio of the first two inertia moments to indicate the
;; ratio for the 2D case (wherk, > A,) is defined as:

Another aspect which needs to be considered onlgue to noise or border regions and discarding the
for different points in the same fiber. In 2D the chordto crossing regions. The final estimate is computed as
lengths stay constant for every point inside a fiberfollows:

I_ N 7

shown in Fig. 3(a). In 3D the fiber structure is more r= 82;' '

complex and therefore the assumption is not fulfilled, a

observe that the chord lengths scale down by movingetter results than the recalculation from the inertia

the point of interest closer to the fiber border. It is thusnoments, especially in regions, where fibers cross.

for every point in the fiber. Near to the fiber core the IMPROVEMENT BY SMOOTHING

directional distances stay stable, that's why we base

interest, but at the center of mass of the extremitiessmoothed by using a mean filter based on the inertia

derived from the directional distances at the point ofatio. The inertia moments indicate the elongation of
all inertia moments are the same, whereas for a fiber
the first inertia. moment differs significantly from the

7{4 a point, where two fibers cross, the first and second

inertia moments are similar. Therefore we use the

(a) Constant chord lengths in(b) Varying chord lengths in

2D. section of a 3D fiber.

Fig. 3. lllustration of the constant chord lengths in MtAz
a 2D fiber vs. the variation in a section of a 3D and for the 3D case (Whed < A < Ag), we define
fiber. In both images chord lengths are drawn for twothe moment ratio as:

foreground points and the centralized chord lengths

MRz()\l,)\z) S [05, l) R

A2

are presented additionally outside the fibers, with the

main inertia axes in color.

RADIUS MAPS

The second inertia momenp € [0.75,1] can be
used in the 2D case to recalculate the fiber radius
based on Eq. 5,

i = /A2/1(0).

There is no equivalent formula in 3D, thus we

MR3(A1,A2,A3) =

€ [05,1).
A1+ A2 [ )

To reduce the difference of orientation and radius
information of neighbor pixels we smooth the images
using a smoothing filter with a structuring element
made of a ball with radius given by the radius map and
filter weights given by the moment ratio. It is advisable
to apply this smoothing first on the radius map and
then on the orientation information to avoid mixing the
orientations too much, due to a too large structuring
element in crossing regions.

present a second method to estimate the radius, which
can be calculated using the centralized distances RESULTS

dc(vs), as they hold already the information of the
radius, see Eq. 1:

Fi = de(vs) sin(Z(v,vs)) -

Working on synthetic data and knowing the ground
truth, yields the possibility to evaluate the methods
with an error histogram. Perfect results would show
just one column on 0. The method, which has a higher
peak near 0 and decreases faster, provides the better

Based on these radius estimates, there are variowssults. The error histogram of the angle maps for
possibilities to compute the final radius estimate2D and 3D synthetic images (Figs. 4 and 5) shows
We have chosen a trimmed mean value: discardinthe improvement between the different steps of our
the lower radius estimates reduces wrong estimatesethod.
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Error Histogram of Angle Maps 2D Error Histogram of Angle Maps 2D
1800 2000
Moment Method — Moment Method cor-
1600 — with Correction 1800 ‘\ rected + smoothed
— with Correction } | Gaussian Method
1400 with Correctio 1600 I with 180 directions
and Smoothing | — Gaussian Method
1400 |
1200

(| \‘ with 18 directions

1200 [ | Gaussian Method
1000 |

A with 8 directions

| 1000
800

600
400 \

200

‘
800 |

‘
600 |

quantity [number of pixel]

400 || |

quantity [number of pixel]

200 ||

0 — X B =
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40

error [degree] error [degree]

Fig. 4. Error histogram of the angle maps on 2D Fig. 6. Comparison of our method4( sampled
synthetic data, created by a boolean capsule processdirections) to the Gaussian orientation space on a
synthetic 2D model, created by a boolean capsule

process.
Error Histogram of Angle Maps 3d
200000
180000 — Moment Method X
with Direction Error Histogram of Angle Maps 3d
160000 Approximation 200000
— Moment Method — Moment Method
140000 with Centralizing 180000 with Direction
— non-improved 160000 Approximation
£ 120000 Moment Method Gaussian method
o with 98 directions
— 140000
S 100000 . — Gaussian method
@ o) with 50 directions
o < 120000
g 80000 a Gaussian method
£ 60000 S 100000 with 18 directions
Z 1]
£ 40000 £ 80000
3 2
T 20000 = 60000
o S 40000
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error [degree]

0 5 10 15 20 25 ;30 - 7535 40
Fig. 5. Error histogram of the angle maps on 3D errorldegreel

synthetic data, created by a cherry-pit cylinder modell. _
Fig. 7. Comparison of our method18 sampled

directions) to the Gaussian orientation space on a
Furthermore, we compare our method to thesynthetlc 3D model, created by a cherry-pit cylinder

. . . . odell.
Gaussian orientation space, which uses severg?
elongated Gaussian filters in given directions and

assumes the local orientation to be the one, which
yields the highest filter response, see Radtbal. APPLICATION ON DATASETS

(2007). This method can be applied directly to the |5 Fig. 8 the method is applied on a SAM-

gray-leyel i'mages and it is thus 'no.t necessary to finﬂ—nage (Scanning Acoustic Microscopy) of a glass-
a binarization. The results are limited to the chosefiper reinforced polymer used for the wheel rim of cars.
directions, whereas our method computes angles ifihe sample has a volume fraction of 30% of 1 inch

continuous space. That implies that the Gaussiagng fibers. Imaged is the projection of a thin slice
method will need much more directions to achievergcussed in a depth of D mm.

comparable results, which increases computation time,
especially in 3D. The evaluated error histograms are The cutoutin Fig. 8d illustrates, that also for very
shown in Fig. 6 for 2D and in Fig. 7 for 3D synthetic thin fibers we can get a reasonable direction estimate.
images. Nevertheless, as mentioned earlier, in too thin fibers
(radius less than 2 pixels) the estimated directions are
On the chosen 3D model in an image of 200 reduced to the sampled directions. This effect is visible
pixels, our method finishes in about one minutejn the direction distribution shown in Fig. 8e. For the
whereas the Gaussian method needed two hours fdrsampled directions we get unreasonable high peaks,
comparable results. which are caused by discretization limits.
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(@) CRP Plate (b) Rendering of Cutout

(e) Angle Distribution

(e) Separated Layers (f) Orientation Distribution

Fig. 8. Application to a 2d SAM-image of a glass-fiber
reinforced polymer (GRP): (a) initial binary image,
(b) the direction map coded using colors, which are_.

explained in (c). (d) zoomed cutout of the image. (ef'g' 9. Application to a 3D CRP plate (carbon-fiber
distribution of the calculated directions. einforced polymer): (a) visualization of the whole
specimen, where the structure of the four layers is

visible, (b) 3D rendering of the treated cutout (cube
of 300 pixel side length), (c) structure of the original
In Fig. 9 we apply our method to the CRP plate. INnCT image, (d) colored presentation of tife angle
the direction distribution on the unit sphere, shown ifrmap (@ is in this material nearly constant): red the
Fig. 9f, the two main distributions from the different background, blue and green the two different layers.
layers are indicated by red marks. TBeangle maps (e) rendering of the separated layers, (f) direction

can be used to separate the layers. A 3D rendering élistribution on the unit sphere, where red indicates a
the separated layers is shown in Fig. 9e. high and blue a low presence of these directions.
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ANALYSIS ON GRAY LEVEL The implementation can be simplified by defining
IMAGES BY QUASI DISTANCE an image walker in the requested direction and

buffering the gray level values in a decreasing and in
In dense para”e| fiber networks it appears Often’an ianeaSing vector for one line, which needs to be
that fibers merge at their borders and that thin frontierspdated respectively.
disappear during the binarization process. Applying Furthermore the distance can be influenced by
the directional distance transform directly on the gray.. . hreshold for the significant gradie®t. Thus
level images could yield the advantage to detect the%\”ngﬁit reshod ! Ignif gradient. Thu
thin frontiers. Three different approaches were chosen. e distance is defined as
The first possibility to measure distances on gray level
images is the quasi distance transform, invented by dg, (Xo) =
Beucher (2007), with an additional contrast threshold.  jnf fh _h) > min(GMax )
The second approach uses Gaussian filters of adapting {h e (0.0)lg (0 =) = (G G}
size. The third approach is based on the comparison of

a shape model to the existing fiber structure. This threshold treats the case where regions are
separated just by a weakly contrasted line and a larger
QUASI DISTANCE DEFINITION region of background farther is higher contrasted.

In the standard case the distance will cross the low
contrasted background line and stop at the higher
contrasted background. If the threshold is lower than
Yhe contrast of the line separating the regions, the
distance measure will stop at the line and detect the

T= s_ulp(siH —&,0—841) . real fiber end.
le

The quasi distance evaluates pixelwise for sizes
N the residual operatar, derived from the difference
between erosions or dilations with a structurin
element of varying sizeandi + 1

The quasi distance is defined as the sigdor GRAY VALUE DISTANCES BY
which the dilation or erosion yields the highestresidue  ADAPTING GAUSSIAN FILTERS
when compared to the next sizg+ 1. In our case,
as we want to measure the directional distance, the This approach makes use of Gaussian filters of
structuring element is a directed segment. In this casadapting size with respect to the distance to the point
the image can be treated as several 1D signals. Foradinterest. Leh(s) = (hi(s)),i =0,...,sbe the vector
1D signal or gray level functiorf : R™ — R we can of Gaussian filter weights witw(s) = (s+1)/4 and
define the distance for a poirg in —X direction with u =0.

help of the underbuild function 1 _ 2
) hi(s) = ———e 207
f=sup (g<t). o(s)v2m

g:[0xp]—R,
gincreasing

The filter (with filtersize s, (y) = /%o —Y) is
~ This function is increasing and keeps the valueapplied to the reconstruction by dilatiofy, with
in Xo: fx,(X0) = f(x0). The definition of fy, equals respect to the distance xg:
the reconstruction by dilation from the poing,
like it is known in mathematical morphology (see oY) £
Vincent, 1993 or Salembier and Serra, 1995). The f (y) = Jo fxo(y—x)-hx(s(o(y))dx'

quasi_ distance i§ the distance to that point which has o fo%(y) hi(Sx, (Y)) dx
the highest gradient:

d(xo) = inf {h € (0,%0)|gx, (X0 — h) = R} The distance is considered to yield the highest
h difference infy,(y):
wit

Gl = sup {ge(y)} . dg(x0) = inf {h € (0,%0)| fxy (o~ h) = Gg*(x0) } .
ye(0x0) _ . -
Go(y) = max| o (y) — oy = DLIF5 ) — f(y-1)),  With Gg™(x0) = SUBe(0s) | oY) ~ Fro(y = 1)| . BY.
increasing the size of the filter with increasing
and f¢ the inverted image (in theory-f, on 8-bit distance, the borders are more smoothed in far

images 255- f). distances, thus close distances are preferred.
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GRAY VALUE DISTANCES BY MODEL showing perfect results as presented in Fig. 10. For the
COMPARISON approach with the Gaussian filters we can already see

_ _ that the results are not as stable in neighboring points
The third approach considers a shape model fogs for the other approaches.

the fiber, which takes not only into account the local
decrease of the gray level, but also the regularity
of the values considered to be fiber foreground. The

Preprocessed (TM4) Value Line

200

evaluation of a certain distanbdrom X is dependent — Domoealle
on the regularity of the values between—h and ~— residue for quasi distance
Xo and the decrease at the pog— h. The curve 150 et s
is expected to be constantly high on fiber foreground — Integral’s

(betweenxs(h) = (xo — h) +s/2 andxg), whereas it
should decrease fromy(h) to xe(h) = xs(h) —s. The
strength of the decrease can be chosen with respect t¢
the image, on the treated images the minimal choice 50
of s= 2 was optimal. The smoothed model decrease

100

Gray Values

is considered to be likhs(x) = 3 sin(X=-m) 4 1 ?
Evaluation is done with e I T
It (Xo,h) = max(o, lg(Xo0,h) — \/Il(xo, h)2 + Iz(xo,h)z) , @
I (XO h) fA /XO ( f()() B f_) ) de - — ‘ Distan‘ces in X l‘)irecltido-n‘t ‘
1 5 = ’ . i n?: ols :ggiesis ance
XO o Xs(h) Xs(h) fA ) 25 g - - cd‘isi o; ?hreshc:)!dted q.d.
fA Xs(h) ( f(X) _ fmin ) . X % gaussian filtered
| 7h — / _ h X dX, 0 - + + integral model
200N = S ) ey T2 .
\/ﬁ /'XO . f(X> — Tiin £is
| h)y=——"— min(1, ———)dx, £
s, Xo — Xs(h) Jxs(h) ( fa ) 8
Via /XS(h) [ f(X) — fmin ’
+ min(hg(X), dx, ;
S M
. __ 1 X (h) B 10 ;gsmon on2\?ne » 0 »
Wl.th- the mean valuef = oo o f(x)dx, the
minimal value the curve does decrease ftg, = (b)

infyexe(h) xs(h)) f(X) and the difference between these

two valuesfy = f — ... The final distance is Fig. 10. Comparison of the approaches on a TM4

preprocessed value line. (a) Distances fer=x4 in
X-direction, (b) Distances in every point.
di(xo) =
inf{h € (0,%o)[lt(X0,h) = max l¢(Xo,d)} . On the original gray value line (without
de(Xg;h) . .
preprocessing) only the approach of the integral model

shows acceptable results (Fig. 11).
EVALUATION ON GRAY VALUE LINES

The presented approaches are evaluated on an
original and preprocessed gray value line from the RESULTS AND COMPARISON
CRP data set. As preprocessing we used toggle

: P . The presented algorithms are tested on a 2D
;R;?ﬁ;n?otobiﬂg ?anC;etrh:rfg Tx;::' ggjnrgslg;dgi?a%gg Is?ection of a 3D dataset of the carbon fiber reinforced

and erosion, and fit the original gray level in everypOIymer’ which was introduced in Fig. 9. During the

point to the nearest of the bounds. For more details'binarization process, thin contours between fibers are
see Fabrizio and Marcotegui (200.6) Note that thisgettIrlg lost (see F'g.' 12a).Th_eref<_)re distance measures
operator can enhance salt and peppef noise can cross several fibers, which distorts the calculation

results. The thin frontiers between the fibers visible in
On the preprocessed values only the thresholdetthe gray level image are enhanced by morphological
quasi distance and the integral model approach ateggle mapping of size 4 (Fig. 12b).
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eriginal valie Line standard quasi distance are shown in Fig. 13b. By using
4 ‘ ‘ r—— ‘ ‘ the thresholdG’ = 15 for a sufficient gradient, the
- - reconstructed dilation thin border lines between the fibers can be detected
— residue for quasi distance . .
- - gaussian filtered as object ends and improve the measurements (see
150 —— difference of gaussian . . . . .
— integral s Fig. 13c). The comparison of the resulting direction

map from Gaussian filters (see Fig. 13d) to the results
by thresholded quasi distance is not trivial. The right
part seems to have smoother values whereas the left
part shows greater deviation to the real orientation.
More detailed evaluation can be done from the radius
maps presented in Fig. 14. Despite good expectations
! 5 from the results on the gray value line, the approach of
Postion on fine the model shape does not show convincing results in
(@) Fig. 13e. The problem with such dense fiber systems
is that if the detection of the foreground end fails
Distances [n X Direction ‘ ‘ in just one direction, this direction will carry a too
— Featdistances large weight, and intensively influence the estimated

. dist of quasi distance

» » dist of thresholded q.d. Orlentatlon .

% x gaussian filtered
+ integral model

Gray Values
=
153
S

w
S

N
G

N
=]

Distance

0 5 10 15 20 25 30 35
Position on line

(b)

Fig. 11.Comparison of the approaches on the original
value line. (a) Distances forgx= 4 in X-direction, (b)
Distances in every point.

Fig. 12. Preprocessed gray level image and
binarization of dense parallel fibers in CRP slice.
(a) Binary Image, (b) Preprocessed with Toggle
Mapping of size 4.

For the standard quasi distance it is still possible
that the contrast between fiber and thin division lineFig. 13.Direction analysis for gray level images with
is too low, thus a higher contrast positioned furthedifferent approaches. (a) Binary Version, (b) Standard
away is considered as object end. This circumstand@uasi Distance, (¢) Thresholded Quasi Distange=£f
causes similar problems in the measurement as it5), (d) Difference of Gaussian Filters, (e) Shape
the binary case. The resulting direction maps for thélodel, (f) Gaussian Orientation Space with sj2e3).
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Irregularities in the direction measurement can b&he presented analysis tool for binary images works
smoothed with the adaptive smoothing depending oautomatically without any parameters and returns
the moment ratio (introduced in section “Improvementmaps of local direction and radius estimation. The
by smoothing”. These final results can compete witlresults are reasonable as shown in the error histograms
the result of the Gaussian orientation space applied amn synthetic data. Also the computation time is
the gray level images with filter sizd,3) (presented acceptable, for example for an image of 3Qgxels
for comparison in Fig. 13f. our algorithm took 9 min, whereas the Gaussian

In Fig. 14 the resulting radius maps are presente rientation space in fine resolution took about two
which yield the possibility to evaluate the detection"CU'S:

of fiber ends. ngh estimates for the radius indicate The main advantage of the Gaussian orientation
errors in the detection of fiber ends. In parallel ﬁberspace was the direct app"cation on gray level images’
systems the measurement error caused by mergest cases where a sufficiently good binarization cannot
fibers has a higher influence on the radius calculatioge achieved. With the thresholded quasi distance
than on the direction calculation. Therefore evaluatiofnethod, we have found a reasonable and efficient

of the directional foreground end detection is moreyjternative. Quantitative analysis is in progress.
reasonable on the radius maps. Obviously the approach

with the thresholded quasi distance (presented in
Fig. 14b) shows the most stable results here. ACKNOWLEDGEMENTS
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