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Abstract

Recently Nikoli¢, Trinajsti¢ and Randié¢ put forward a novel modification "W(G) of the Wiener number W(G),
called modified Wiener index , which definition was generalized later by Gutman and the present authors. Here
we study another class of modified indices defined as W, ,(G)=>(V(G)'mg(u,v)'-mg(u,v)*) and show that
some of the important properties of W(G), "W(G) and *W(G) are also properties of W, ,(G), valid for most
values of the parameter A. In particular, if 7, is any n-vertex tree, different from the n-vertex path P, and the
n-vertexstar S, , then forany A>1 or A <0, W, \(P,)>W ;. ,(T,)>W_;,,(S,). Thus for these values of the parameter
A, Wiina(G) provides a novel class of structure-descriptors, suitable for modeling branching-dependent properties
of organic compounds, applicable in QSPR and QSAR studies. We also demonstrate that if trees are ordered

with regard to W_;,,(G) then, in the general case, this ordering is different for different A.
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Introduction

The molecular-graph-based quantity, introduced'
by Wiener in 1947, nowadays known under the name
Wiener number or Wiener index, is one of the most
thoroughly studied topological indices.>” Its chemi-
cal applications*® and mathematical properties™'’ are
well documented. Of the several review articles on the
Wiener number we mention just a few."'

A large number of modifications and extensions
of the Wiener number was considered in the chemical
literature; an extensive bibliography on this matter can
be found in the reviews'*" and the recent paper.'® One
of the newest such modifications was put forward by
Nikoli¢, Trinajsti¢ and Randi¢."” This idea was general-
ized by Gutman and the present authors'®where a class
of modified Wiener indices was defined, with the origi-
nal Wiener number and the Nikoli¢-Trinajsti¢-Randié¢
index as special cases.

An important property of a topological index 77
are the inequalities

TI(P.) > TI(T») > TI(S»)
or TI(Px) < TI(Tw) < TI(S:) (1)

where P,, S, , and T, denote respectively the n-vertex
path, the n-vertex star, and any n-vertex tree different
from P, and §,, and 7 is any integer greater than 4.
Such topological index may be viewed as a “branching

index”, namely a topological index capable of measuring
the extent of branching of the carbon-atom skeleton of
molecules and capable of ordering isomers according
to the extent of branching. (For more details on the
problem of measuring branching see the paper" and
the references quoted therein.)

Among a remarkably large number of modifica-
tions and extensions of the Wiener number put forward
recently, there are many which on trees (i.e. acyclic
systems) concide'**=' or are linearly related with it.**~’
Therefore an interesting property of a class of newly
defined indices is that they provide distinct indices in
the sense that they order the trees differently.

More precisely, the Wiener number of a chemical
graph is defined to be the sum of all distances in the

graph.
W(G)= 2, dg(uv)

u,velV(G)

In the papers®® by Gutman et al., the following
modification is proposed:

W,(G)= Y dg(uv)', A#0

u,veV(G)

It was already known to Wiener that on a tree, the
Wiener number can also be computed by summing up
the edge contributions, where the contribution of each
edge uv is the number of vertices closer to the vertex
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u times the number of vertices closer to the vertex v.

Formally,
w(G)= Z ng (u,v)ng (vou),
weE(G)

where ng(u,v) is the number of vertices closer to the
vertex u than vertex v and n.(vu) is the number of ver-
tices closer to the vertex v than vertex u. The modified
Wiener indices'® are defined as

W(G)= > ng (u,v)/1 ng (v,u)ﬂ.

uve E(G)

Denoting n(G)=|V(G)|, the equality (2) can be also
reformulated as

n(G)min{nG (u,v),ng (v,u)}—
w(G)= , )
WweE(G) —mm{nG(u,v),nG (v,u)}
Let us prove this claim. Recalling that,

n(G)=ng (u,v)+ng (v,u), we get

z (l’lG (M,V)'HG (V,M))

ueE(G)

min{nG (u,v),ng (V,“)}'
max {n, (11,v).n, (v.u)}

min{nG (u,v),ng ("s”)}'
.(n(G)—min{nG (u,v),ng (Va“)})
n(G)-min{ng, (u,v).n (v.ue)}

—min{nG (u,v),n, ("a”‘)}2

w(G)

ueE(G)

ueE(G)

uveE(G)

Therefore it is natural to study the following possible
class of indices
Wmin,l (G) =

> (n(G) mg (wv)’ =g (o)) @

weE(G)

which we initiate in this paper. Of course, these indices
generalize the Wiener index for the trees and not for
general graphs. These indices allow small modifications
of the Wiener index, hence since Wiener index is of great
use in the large number of QSPR and QSAR studies,
these indices may improve the results obtained in such
studies. For brevity, we denote:

mg (u,v)= min{nG (u,v),n; (V,u)}
We first prove that the indices W, ,(G) for A <0
and for A > 1 obey the inequalities (1) and can therefore
be viewed as "branching indices".

Theorem 1. For real number A (A > 1 or A <0), the
modified Wiener index W, ;. \(G) satisfies the inequality
W (Pn) >Wmin,/1 (]—;’l) >Wmin,ﬂ (Sn)

min, 4

where P, S, , and T, denote respectively the n-vertex path,
the n-vertex star, and any n-vertex tree different from P,

and S, , and n is any integer greater than 4.

Instead of proving Theorem 1 we prove a stronger
statement (Theorem 3), which may be of independent
interest because it shades some light on the partial
ordering induced by W, ,(G). We also prove that the
statement of Theorem 3 does not hold for, 1€[0,1) and
therefore the corresponding indices fail to properly
measure branching.

Furthermore, we prove that the indices studied
here provide classes of distinct indices in the sense
that they order the trees differently. More precisely,
no matter what the values of A, and A, are, there always
exist trees that are oppositely ordered with regard to
W oinn (@) and W, (G). More formally, let the set
of all trees be denoted by T'. Denote the set of some
topological indices (e. g. the set of the modified Wiener
indices W, ,(G) for all values of 1) by I . We can define
an equivalence relation = on the set 3 as

(i,=i) < [(VI,T, e T) (i(T) <i(T,) ) <

(iAT) <iXT}) ) |-

In words: two topological indices i, and i, are
considered to be equivalent if they order all trees in the
exactly same manner.

We will prove:

Theorem 2. For each two distinct real numbers
A #n, the modified Wiener indices W, \(G) and W, (G)
are not equivalent.

It is beyond scope of this paper to provide further
motivation and/or possible chemical interpretation of
the new indices, which is necessary for proposing it as
a practically useful topological descriptor. However,
continuing along the research avenue initiated by
recent papers'®> we show that there are additional
new interesting ways of generalizations of the Wiener
number which posses certain important properties of
W and may provide interesting choices for topological
descriptors. Let us in conclusion resume some
noteworthy properties of the type of indices defined
here: (1) W,;,,(G) are in contrast to W not integer
valued, (2) W,;,,(G) is an additive function of edge
contributions, and, as shown here (3) W, ,(G) correctly
reflects the extent of branching of the molecular graph
for many values of the parameter A.
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Proof of Theorem 1

Instead of directly proving Theorem 1 we prove a somewhat more general statement, namely Theorem 3. For
this, consider the trees 7"and T, depicted in Figure 1. By R we denote an arbitrary fragment with 7, vertices, and
a>0,b>1.Hence both 7" and 7" have n=n,+a+b+1 vertices. Note that the vertex r belongs to the fragment R.
If » would be the only vertex of R , then it would be T'=T" . Therefore, the only interesting case is when nj > 2.

Pl Pz pu—I p.-;x:P ati pI PZ Pﬂ.] Pﬂ
¢ o i .00 PP
FEP =4,
coce—0—0 ve0 0 —0—0—0
qb-l 4 4 4, Iy 4, X=q;.;

T"
Figure 1. Graphs 7" and 7"

Theorem 3. Let T' and T" be trees the structure of which is shown in Figure 1. Then the transformation
T'— T" increases W, (G) if A=1andif A <0.

First, suppose that A > 7. We shall prove that W, ,(T")< W_; ,(T"). Let T be any acyclic molecular graph with
at least one edge, veV(R) and a > 0, b > 1. For the sake of simplicity, we shall denote r = p,=g,. We have:

Wi (T") =W, i (T) =
i ;T)((n e (u’v))i ~ (”"’)“)—uv;(r)((n'mr, (u,v))l —m,, (u,v)“) =
B MV§T)|:((n'mT" (”7"))/1 —my, (u’V)M)_((”'mT, (u’v))l . (u,v)“ )}4-

2 (0o () = o) V= (e (o)) = ()

b

+§|:((l’l -m, (qiaq[ﬂ ))‘ —-m,. (ql_,qm )24)_((n‘mrl (q’__l,q[))ﬂ m, (q,._l,q[)u ):|+
# (O (o)) = () )= (e ()Y = () @

Note that:

(n-my. (“"’))l —my (u,v) = (nmy. (u,v))

A A A )
(”'mr“(pm’pi)) _mT"(PHapi)z :(”'mr-(piapi+1)) _mT'(pi’pi+l)2 for each i=1,..., a, and that

1 24
— My, (u,V) , for eachuv eE(R), that

A 24

2
(”l'mr--((]nq,‘n)) _mr"(qn%ﬂ)u:(n'mr'(%—laqz')) _mT'(qi—l’ql‘) for each i=1,..., b.

Therefore (4) reduces to

Wiina (T")_Wmin,ﬂ (77)= ((an (v, ql))/1 —my. (v,q, )22)_((’1 My (v, P ))l —my. (v, p, )2/1) =

mm(q)}(m”)”[(m(”}[m(p)”]
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Let f;: ( )%Rbedefmedby fi(x)= xt—x* AsA =1,
fi'(x)=Ax A = 4 -(1—2xl) >0 and the limits (asx—)%) are >0 for A>1 and =0 for A=1.

L mg (v,u) .
From definition of m; we have ———~<— and because of m1,, (V, 2 ) <my., (V, q, ) it follows that

n(G) 2
W (T7) =W (T") =0 [fz (mr" (,:, 49 )J_fz [er' (;’, P )Jj > 0.

This proves the first part of Theorem 3. When 1<0, analogous reasoning gives

Wi (T") =Wy (T7) = 2 [f( T“(:"’I)J—f{mf'(:’pl)j}o,

because  f; '(x) =1-x" -(1 - le) >0 for A < 0, concluding the proof of Theorem 3.

Note that the statement Theorem 1 follows from Theorem 3, because the path P, and the star S, can be obtained
from any tree by repeated application of the transformation 7°— T or its inverse. We now show that statement

Theorem 3 does not hold for other A.

Lemma 4. Let A<[0,1) and G(xy) stand for the graph given on Figure 2. There are numbers a',a",b',b"e N
such that
a'<b' a"<b"
Wona (Ga'+1,b")) < (5) Wona (G(a"+1,6") > (6)
W2 (G(a'b'+1)) > W2 (G(a",b"+1))

q qy -1 qy -2
G(x,y)
Figure 2. Graph G(xy).

Note that G(x,y) has x+y+2 vertices. Similarly as in the previous section, we will compare graphs G(a,b+1)
and G(a+1,b). Letn=|G(a+1,b)| =|G(a,b+1)|=a+b+3.

(G(a,b+1)) =W, , (G(a+1,b))=
[(;ZJ_(G:;I‘]_

2 21Y |
["’G(a,bﬂ)(“‘fl)} _[mG(a,hH)(V’ql)J J_
[ a+1 jl_( a+1 ju
a+b+3 a+b+3
From the Lagrange’s theorem, it follows that there are numbers 7,s € (0, l) such that

A-1 A-1
21 a+l+r a+l+s
. —W = A ——| -2 ——— Q)
wina (G(a.b+1)) =W, (G(a+1,0)) = (a+b+3) [ (a+b+3j (a+b+3] J

/4

min, 4

2. :(a+b+3)u

n

2 21
[mG(aH,b)(v’pl)] _[mG(aH,b)(v’pl)J J
W
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Therefore,

1 A-1 a+2 21-1
W (G(a,b+1))-W,. ,(G(a+1,b))>(a+b+3)" /1( ar J —2/1( )
mm,l( (a )) mm,/i( (a )) (a ) a+b+3 a+b+3
A-1 22-1
2
=(a+b+3)”-/1( atl ) T )4_1- —
a+b+3 (a+1)"" (a+b+3)
24-1
) (a+2) 1
Note that lim|1-2- ks - =1,
b (a+1)" (a+b+3)

Therefore, if we take @'= a and sufficiently large b'= b'(a ') we have

/4

min, A

(G(a',b'+1))-W,

min, A

(G(a'+1,b"))>0.

This proves (5). Let us return to the relation (7). We have

A-1 22-1
(G 1)y (Gla10) = (a b3 | A L2 o 28 )
It follows that . .
W, (G(ab+1) =, , (G(a+1,b))< (a+b+3)" /1( h j —2/1( il j .
min,A ’ min.4 ’ a+b+3 a+b+3

For b= a + 1 the last inequality reads

Wi (Ga,a+2)) =W, (G(a+1,a+1))< (2a+4)" - 2- [( a+2 jﬂ_l—z( atl jm].

2a+4
Note that

-1 22-1 -1 241 -1 A
lim a+2 -2 atl =(lj —2.(lj :(lj . 1_2(lj
a>e|\ 2a+4 2a+4 2 2 2 2

Therefore, for the sufficiently large @" and b"=a"+1, we have

w, (G (a",b"+ l)) W ina (G (a"+1,b ")) < 0. This proves the relation (6) and Lemma 4.

min, 4

Proof of Theorem 2

Let us define

(a+b)~([(a+3b+1)-1]”—1'7)+b-([(a+3b+1)-2]”—2")+
P(ab,e,m)=| +b-([(a+3b+1)-3] =3") = (a+3b=c)-([(a+3b+1)-1] -1") -
—c([(a+3p+1)-2]" -27)
(a+b)-([(a+4b+1)1]" =17} +b-([(a+4b+1)2] =27 )+
0(a,b,c,n) = +b-([(a+4b+1)”-3]—3’7)+b-([(a+4b+1)”-4]—4")_

(a+4b—c)-([(a+4b+1)” -1:|—1”)—c-([(a+4b+1)~2]"—2")
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Furthermore, observe that for the graphs G’ (a,b) and H’ (a,b,c) with a+3b+1 vertices sketched on Figure 3,
we get, after straighforward computation using only the definition of W, ,,

/4

min, 77

(G(,5)) =W, (H'(asb)) = Plasb,e.m)

a+3b-2c -
C

G'(a,b) H'(a,b,c)

Figure 3. Graphs G’ (a,b) and H' (a,b,c).

Denote by G” (a,b) and H" (a,b,c) graphs on a+4b+1 vertices on Figure 4.

a+4b-2c \“\ ﬁ_’/

G"(a,b) H'(a,b,c)

Figure 4. Graphs G" (a,b) and H" (a,b,c).

Note that W, , (G "(a,b)) W i (H "(a,b, c)) =((a,b,c,1n) . We will now prove that for each pair of

distinct A and # there are numbers a, b, ¢ such that at least one pair of corresponding graphs is ordered differently
by the corresponding indices.

Distinguish three cases:

CASE1l: (A>0and#n<0)or(A<0andzn>0).

Without loss of generality, we may assume that A > 0 and 5 < 0. Note that 2' +1#2"+1 or equivalently that

243 +4" -3 2M+3' -2 274374473 2"+37-2
2% -1 24 -1 2" -1 2"-1

At least one of the following subcases applies:
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2434 -2 27437-2
y * .
24 -1 2" -1

24434 -2 274372 24434 -2 27437-2

< and > .
24 -1 2" -1 24 -1 2" -1

2°+3°-2 274372

24 -1 2" -1

SUBCASE 2.1:

Two subsubcases, can be observed, i.e.

Since they are solved in similar way, we shall assume that . Hence, there is a rational

2" +34 =2 27437 -2
24 -1 2" -1

c
number q such that . Denote g = Z, ¢,b € N and let us calculate

m P(“’b_’caﬁi =lim((a+b)-1*+b-2" +b-3" —(a+3b—c)-1" —¢-2%) =
“"‘”(a+3b+1) a—eo

=b(2ﬂ+3ﬂ—2)—c-(2ﬂ—1)=b-(21—1)-(%—q}0

Note that lim P(a,b,c,m)

() ()b (2 eb () (aw3b-e) () (2))

Hence, for sufficiently large a, the last expression is positive. Let us calculate the denominator of this expression:
2-2"-3" 2" 43"-2
b(2-2"-3")+(2"-1)c=b(2"-1)| =—=——+q |=b(1-2")| =——Z-¢ |>0
2" -1 2" -1

Therefore, there is a sufficiently large @ € N such that P(a,b,c,\) < 0 and P(a,b,c,n) > 0 and hence, for the graphs
G’ (a,b) and H' (a,b,c) graphs depicted on Figure 3,

Wi (G'(a,b))—Wmm,l (H'(a,b,c)) = P(a,b,c,A)<0;
Woion (G'(a,b))—Wmhw (H'(a,b,c)) = P(a,b,c,n)>0

The claim is proved in this subcase.

24 +34 444 -3 . 27 +37 447 -3
24 —1 27 —1 '
24 434 444 3 - 21 437 447 3

SUBCASE 2.2:

24 +34 444 -3 S 27 437 447 -3

Again, there are two subsubcases: 7l and 7
2" -1 2" -1 27 -1 27 —1
A A A n n n_
Since both cases can be treated analogously, we assume that 2"+ 3/1 +4 3 < 27 +3 +4" -3 . Hence,
27 -1 27 —1
Al 44 _ N An 47 _ c
there is a rational number g such that 2743 +47 -3 <g< 2T+ +47 -3 . Denote ¢ =—, b,ceNand
24 -1 27 -1 b

> (a +4b+1)ﬂ a—e

=b-(2’1+3’1+4’1—1)—0(2’1—1)=b(2’1—1)(2ﬂ+21t?1_1—qj<0
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On the other hand,  lim Q(a.b.cm) =1
== [(a+b)(=17)+b-(=2")+b(=3")+b(-4")~(a+4b-c)(-1")-c(-2") ]

Hence, for sufficiently large the last expression is positive. Let us calculate the denominator of this expression:

(a+b)(=1")+b-(-2")+b(-3")+b(-4")-(a+4b—c)(-1")-c(-2") =

:b(3_277_377_477)_bq(1_277):b<1_2,7)(2’7+3’7 +4’7—3_q}>0.

27-1
Therefore, there is @€ N such that Q(a,b,c,?]) >0 and G(a,b, C,?]) < 0, which implies, for the graphs
G"(a,b)and H"(a,b,c) given on Figure 4,

W (G"(a’b))_Wmin,/l (H"(Cl,b,C)) = Q(a,b,c,/i) < O

min, 4

[/ (G"(a,b))—Wmm,n (H"(a,b,c))=0(a,b,c,17)>0.

CASE2: A, u>0.
Note that 2% +1#27 +1 or equivalently that
24+3ﬂ+44—3_2*+34—2¢ 2" 43" +47-3 2"437-2
241 241 2 _1 My

At least one of the following must hold:

2°+3 -2 274372

SUBCASE 2.1: ——
24 —1 271
24434 -2 274372

Without loss of generality, we may assume that < . Hence, there is a rational number

24 —1 271 _1

2ﬂ+3l—2<q< 214372

q such that
24 —1 27 1

C
. Denote ¢ = E, c,be N . Let us calculate

lim——=—=2"2 =lim((a+b)-1" +b-2* +b-3* = (a+3b—c)-1* —c-2*) =
== (a+3b+1)"
:b(2’1+3l—2)—6.(21_1):[).(2@_1). M_q <0

24 -1

. P(a,b,c, ) i i
Completely analogously, we get lim————>—= > (. Therefore, there is a sufficently large @ € N such that

= (a+3b+1)"
for graphs G’ (a,b) and H' (a,b,c) from Figure 3. The claim is proved in this subcase.

Yy Y N M, qM _
SUBCASE 2.2: 2+ +4 3¢ 273 +4 3.

2% —1 27 1
Ayar gt n_3M 47 _
Without loss of generality, we may assume that 243 g T4 -3 < 27+3 ; +47 -3 . Hence, there is a rational
27 -1 27 -1
A 2 A _ n n n_
number g such that 2 +3 +4 3<q< 27+37 +4 3,Den0teq=£, b,ce N and
24 -1 2 | b
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1imM=hm((a+b)-1ﬂ+b-2ﬂ~+b-3l+b-4‘—(a+4b—c)-1”~—c-2i)

= (a+4b+1)" o=

=b-(2‘+3*+4*—1)—c(2‘—1):b(24—1)(2“;14:?1_1—(1}0

whereas lim%’c”&z >0.
a—e (a +4b+ l)

Therefore, there is a sufficiently large a € N such that, for graphs G"(a,b) and H "(a,b,c) (see Figure 4),
Wona (G"(a,0)) =W, (H'(a,b,¢)) = G(a,b,c,A) <0

Woiny (G"(a,0)) =W, (H "(a,b,¢)) = G(a,b,c,1) > 0.

CASE3: 4,1<0,

This case can be solved by a similar techniques to ones used in the proof of the Case 2. We omit the details.
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Nedavno so Nikoli¢, Trinajsti¢ in Randi¢ predlagali modifikacijo Wienerjevega Stevila W(G), definirano z
"W(G)= E ng(u,v)"! ng(u,v)'. Invarianto so Gutman in avtorja posplosili na'W(G)=3 ng(u,v)" ng(u,v)*.

Tu obravnavamo posplositev podobnega tipa,
pomembne lastnosti W(G),

Woinn(G)= E (V(G)*mG(u vY'mg(u,v)?)  in'pokazemo, da nekatere
"W(G) and '"W(G), VCl]a_]O “tudi za
Dokazemo, da za poljubno drevo (povezan acikli¢en graf) z n toc¢kami 7,
Wi P) > Wi i (T,) > Wi 1(S,), zavse A > 1 in A < 0. Za te vrednosti parametra je torej W,

mm,/\(G) za velino vrednosti parametra A.
, ki ni pot P, ali zvezda S, , velja
(G) razred topoloskih

min, A

indeksov, ki so lahko uporabni pri obravnavi od razvejanosti odvisnih lastnosti v QSPR in QSAR. Dokazemo tudi,

da so vsi novi indeksi razli¢ni v naslednjem smislu: ¢e uredimo vsa drevesa glede na

vrednosti parametra A dobimo razline urejenosti.

W in2(G) potem za razlicne
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