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The modelling and simulation of material degradations, particularly fractures in solids of different lengths and time scales, remains challenging 
despite the numerous approaches that have been developed. In this review, the focus is set on research work concerned with a very promising 
non-local method: peridynamic modelling. With this approach, continuous phenomena may be described, and the complete evolution (i.e., 
initiation, propagation, branching, or coalescence) of cracks and other discontinuities can be followed in solids in an integrated framework. 
Evaluating the large number of publications on this topic, the authors chose to present concisely the key concepts, applications, and results 
in identifying possible future paths: the incorporation of mechanics of large deformations and material nonlinearities, and the development 
of high-efficiency peridynamic solvers. This review does not intersect with recent relevant reviews, which reflects its significance to readers.
Keywords: peridynamics, fracture mechanics, damage mechanics, non-local mechanics

Highlights
•	 Basic concepts and different branches of peridynamic modelling of crack propagation are introduced.
•	 The evolution of peridynamic research is assessed based on a wide and representative review of the literature.
•	 The most frequent fields of applications are highlighted where consensus and contention are reached in modelling.
•	 Evaluating the features of peridynamic modelling, future research perspectives are highlighted in treating material and 

geometrical nonlinearities, improving numerical efficiency.

0  INTRODUCTION

Analytical and numerical methods of continuum 
physics are the most successful methods in solving 
engineering problems of solid and fluid mechanics. 
As the performance of computers has increased, 
motivated by safety and economic reasons, the 
field of solvable problems has become wider. New 
maintenance strategies introduced reliability and risk-
based operation methods [1] and [2]. In these methods, 
the damage of a structure may not lead to the end 
of its operability. The lifetime ends when reliability 
decreases under a predefined limit. The definition of 
this criterion and the estimation of the risk require the 
analysis of the damaged structure.

Structural failure is a complex phenomenon; it 
is usually initiated on the micro-scale with micro-
damage of the material. After the evolution of 
microdamage, damage appears in the meso- and 
macro-scales. As this mechanism is in process, the 
mechanical behaviour of the whole structure may 
change (e.g., post-buckling behaviour or unstable, 
brittle failure); sometimes, the change is localized 
(e.g., ductile failure).

In classical continuum mechanics (CCM), the 
continuity and usually the differentiability of the 
state variables are assumed. As failure involves 
discontinuities, solving the governing equations 

defined by CCM with typical computational methods 
is troublesome [3]. CCM can follow the displacements 
and strain field as a function of external loads with 
various material models from simple elasticity to the 
viscoplastic flow of solids. Limitations of the analytical 
description are reached when discontinuities appear 
in any state variables. Continuum damage mechanics 
can account for the effect of the microcracks and 
voids through homogenized material properties [4]. 
Unfortunately, it fails when the size of the damaged 
zone reaches the macroscale [5].

For an accurate simulation of the fracture 
process, the numerical method needs to be capable of 
modelling crack initiation, propagation, bifurcation, 
coalescence, and separation. Classical linear elastic 
fracture mechanics (LEFM) or non-linear fracture 
mechanics (NLFM) may be applied for the load-
bearing structures of simple geometry and predefined 
cracks only. By employing special numerical methods, 
e.g., extended finite element method (X-FEM) [6] or 
meshless methods [7], more complicated problems 
can be solved with acceptable accuracy. The chosen 
method is acceptable if it is not mesh-dependent. In 
most cases, the mesh generation at every time step 
of the solution is necessary to fulfil this requirement 
[6]. The increased time of mesh generation is a very 
serious drawback. Additionally, crack initiation and 
crack branching remain open questions in this context, 
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and the crack-tip kinematics has to be controlled with 
artificial criteria [3].

The above problems are not inherited in the 
analysis of discrete mechanical systems, e.g., 
molecular dynamics [8]. Unfortunately, on the 
available computational resources, only a very limited 
volume and time segment can be handled: the size of 
the observable body is at 10–6 m³ in volume, and the 
time segment is in 10–6 s scale. In these models, an 
ultra-high speed load is necessary. From experimental 
results, it is uncertain whether the mechanism of 
damage at ultra-high speed is similar to that at normal 
speed [9].

These drawbacks and open questions were the 
motivation, in the year 2000, when the first article 
of Silling was published, founding the basics of the 
peridynamic material model [10]; several publications 
have followed this.

This review aims to summarize the state of the 
art of the peridynamic theory of solids concisely, 
and highlight possible future directions. The review 
is concerned with the theoretical background, 
classification, and the recent applications of 
peridynamics. A deep investigation into the different 
approaches of the peridynamic modelling and the 
details of numerical implementation is outside 
the scope of this work. Based on the review, we 
are identifying and emphasizing four paths of 
developments in peridynamics: (1) handling materials 
nonlinearity with improvements in solver technology, 
(2) handling geometric nonlinearity with improved 
numerical stability, (3) efficiency of numerical 
solvers, and application of parallel computing, and (4) 
applications in coupled multiphysical problems.

The theory and classification of peridynamics 
are described in Section 1. The peridynamic 
specified enforcement of boundary conditions and 
the simulation of discontinuities are also covered in 
this section. Constitutive models of peridynamics and 
their applications are described in Section 2. All the 
references cited in this review can help to navigate 
and find the appropriate publication between the 
expansive set of peridynamics related papers.

1  THE PERIDYNAMIC THEORY

The name of the peridynamic model was proposed 
from ancient Greek words “near” and “force”. The 
model is a strongly non-local model; the equilibrium 
(or the motion) of the material particle is affected by 
finite distance interactions [10].

With its first formulation during the motion and 
deformation, each particle pairs have an internal force 

between them, and the motion of a particle depends on 
the sum of these forces. Let X and X' be two arbitrary 
particles of the body. Let u(X, t) be the displacement 
field. The equations of motion of particle X are:

 � � � �u L bu ,  (1)

 L f u u t dXu V
� � ��� , , ,'  (2)

where b is a prescribed volumetric load, ρ is the 
mass density and  is the acceleration at particle X. 
The Lu operator is the peridynamic force function. It 
represents the non-local effect on particle X caused by 
the deformation of its environment.

1.1  The Bond-Based Peridynamic (BB-PD) Model

In Silling’s pioneering article [10], the so-called bond 
based model was introduced, which proved to be very 
accurate. The peridynamic force, f was the exclusive 
function of the relative displacement vector, η = u' – u. 
The scheme of the bond-based kinematics and kinetics 
is shown in Fig. 1. Despite the simplicity of the model, 
it was proved to be highly successful at modelling 
crack initiation, propagation, and branching in brittle 
materials.

Fig. 1.  The kinematics and kinetics of neighbours in Bond-based 
Peridynamic model; a) initial (undeformed) configuration of the 

body, b) current (deformed) configuration of the body,  
c) the pairwise force between material points

In this model, the material was linear elastic 
originating from the relation between the stretch of 
the bond between the two particles and the linear 
peridynamic force. Nevertheless, the relation was 
strongly non-linear in a geometric sense. The direction 
of the peridynamic force was parallel with the current 
direction of the relative position.

In physical interactions, the intensity of the 
effects usually decreases rapidly with the distance 
between the interacting particles. It suggests defining 
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a characteristic length to cut the radius of interaction 
around particle X. In peridynamic literature, this 
radius is referred to as material horizon, δ. Let the 
reference vector of two arbitrary particles X and X' be 
ξ := X – X'. The intensity of interaction between two 
points can be characterized by an influence function 
ω(X, X' ). The influence function is a strictly positive, 
finite support function. The radius of the support is the 
material horizon. When it depends only on the 
reference vector, ω(X, X' ) = � �( ) , it is called 
structureless. If it depends only on the Eulerian length 
of the reference vector, ω(X, X’ ) = � �� � , it is called 
‘spherical’! [11].

Let X  be the set of points in the body where 
ω(X, X' ) > 0. The X  set is called to a family of particle 
X. Assuming a finite material horizon, Eq. (2) can be 
written in simplified form:

 L f u u t dXu
X

� � ��� , , .'


 (3)

In the peridynamic model, the force function 
f  contains all the constitutive information. In the 
previous two decades, this very simple model was 
applied in many fields of engineering: elasticity, 
plasticity, damage and fracture of solids, heat 
conduction and thermo-elasticity, etc. Some 
applications are summarized in Section 3.

Unfortunately, bond-based peridynamics have 
some disadvantages, e.g., the limited value of 
Poisson’s ratio or the disability of the separation of 
volumetric from distortional deformation, which 
required the development of a more general theory of 
peridynamics.

1.2  The State-Based Peridynamic (SB-PD) Mechanical 
Model

Independently of the formulation in the above-cited 
articles, a generalized version of the peridynamic 
model was proposed by Silling et al. [12]. By 
employing the main concept of the state-based model, 
the peridynamic force between two material points is 
the function of the deformation state of the points.

The state of order (m) is a tensor-vector function 
 ⋅ . The most relevant applications of the states are 
the scalar (0th-order), vector (1st-order) and tensor 
(2nd-order) states.

The initial and the current configuration of a 
material point can be described by the reference state  
  and the deformed state  , respectively:

  X X X� � � � ��� � ,  (4)

  X x x� � � � � ��� � � .  (5)

The displacement state   can be defined with a 
similar expression:

  X u u� � � ��� .  (6)

Neither the reference nor the deformed state, as 
shown in Fig, 2, have to be a continuous function of 
the vector variable.

However, a first-order state is a more general 
vector-vector function; therefore, the reduced form 
of the state can be defined. Vice versa, if a tensor is 
given, then an expanded state can be defined.

Fig. 2.  The neighbourhood (family) around a material point in 
State-based peridynamics; a) the reference state  [X] ,  

and b) the deformed state  [X]

Let ω(X, X' )  be the influence function. Let ξ be 
the reference vector, and W be a second-order tensor. 
The vector state expanded from the tensor is

  X W� � � �� � .  (7)

The tensor product of two vector states A and B 
is defined as:

 A B X X A B dX
X

* , .� � � � �� � � �' '


 (8)

The reference shape tensor is defined as

 K =  * . (9)

Let   be a vector state. The tensor reduced form 
W of the vector state is

 W K� � � � �V X* 1
,  (10)

It is worth mentioning, assuming continuous 
displacements, the 0-limit of horizon leads to

 F X K� � � � � �� �
�

�
lim ,
� 0

1Y X*  (11)

where F(X) is the deformation gradient of CCM at 
particle X [12].

Let a and b are two vector states. The dot prod-
uct between the two vector states is defined by

 a b A B dX
X

� � �� � � '


.  (12)

In CMM, the constitutive information is 
contained in the stress-strain relationship. In bond-
based peridynamic theory, the material behaviour 
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is described through the bond stretch–bond force 
relationship. In state-based peridynamics, the 
deformation state–force state relationship plays this 
role. The force state is a deformation-dependent 
vector-vector function. The equation of motion 
contains the force state.

 � � � �u L bu ,  (13)

 L T X t T X t dXu
X

� � � � � � �� , , .� �' '


 (14)

Fig. 3.  The kinetics of state-based peridynamics;  
a) properties of bond-based, b) ordinary- and c) non-ordinary state-

based peridynamic force

It is worth introducing the reference and deformed 
direction states, respectively:

 er 



= ,  (15)

 M X X X� � � �� 


.  (16)

In bond-based peridynamic theory, the bond force 
vector is parallel to the instant direction of the bond, 
and the magnitude is a pairwise function:

 f X f x x M f X� � � � � � � � � � �� �, ' ' .  (17)

In ordinary state-based peridynamic theory, the 
direction of the force vector state is parallel to the 
instant direction of the bond, but the magnitude of the 
force from X to X' can be different from X' to X:

 T X X X t x x M� � � � � � �� , ,'  (18)

 f X t x x M t x x M� � � � � � � � � ��� , ,' '.  (19)

In non-ordinary state-based peridynamic theory, 
the direction of the force vector state is not parallel to 
the instant direction of the bond and the magnitude of 
the force from X to X' can be different from X' to X:

 T X X X t x x M� � � � � � �� , ,'  (20)

 T X X X T X X X� � � � � � �� �' .  (21)

The relation of bond-based, ordinary state-based 
and the non-ordinary state-based peridynamic models 
are compared in Fig. 3.

Recently, other physical states (i.e., heat flux 
state, chemical concentration state, etc.) have been 
introduced and applied with success to model 
discontinuous field problems. In Section 3, some 
major fields of applications are shown related to the 
present concept.

1.3  Damage Evolution and Crack Propagation

In peridynamics, material damage is modelled by the 
bond failure between pairs of particles. Once a bond 
is broken, the interaction between particles provided 
by that bond will no longer exist during the rest of the 
analysis. The damage index φ(X, t) has been suggested 
to measure the relation of damaged bonds and active 
bonds for any given particles.

 �
� �

X t
t dX

dX
X

X

,

,

,� � � �
� ��
�

1




'

'
 (22)

and

 
� � , .t� � � ��

�

1

0

if the bond is active

if the bond is broken  (23)

This is based on Eq. (23),0 ≤ φ(X, t) ≤ 1, where 
0 represents the undamaged state and 1 represents 
the breakage of all the bonds of a given particle. 
The damage parameter μ(ξ, t) is used only to specify 
whether a bond is active or broken. The influence 
function ω(X, X' ) will equal to zero when μ(ξ, t) equals 
to zero.

Fig. 4.  The damage model of peridynamics: a) The damage 
parameter-strain function, b) The force-strain function

This condition ensures that damaged bonds 
are excluded from the calculation of the equation 
of motion in the case of bond-based peridynamics, 
or they can be excluded during the calculation of 
deformation gradient tensor F and shape tensor K 
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and that the resulting force state T[X]<ξ> is set to 0 at 
damaged bonds.

For isotropic brittle materials, based on energy 
release rate equivalency of CCM and PD, Silling and 
Askari [13] derived the critical stretch for bond failure 
as

 s
G
kc �
�
� �

5

9

0

�
,  (24)

where, G0 is the fracture energy of the material. The 
simplest damage parameter-strain and force-strain 
functions are shown in Fig. 4.

The disadvantage of the above, naive criteria is 
that, for some materials, it is an oversimplification. 
Conversely, using this approach, the complete PD 
fracture mechanics may be defined without the 
necessity of strain and stress concepts.

If the critical stretch for the failure of a given 
bond is dependent on conditions in all other bonds or 
the orientation of the bond, then a more sophisticated 
PD model is necessary. For anisotropic (composite) 
materials, Shang et al. [14] advised the introduction 
of multiple failure conditions, dependent on the end 
positions of the specified bond. In their article, the 
bond failure criteria correspond to mechanical stress 
components (calculated based on peridynamic force 
state) through the combination of “Maximum stress” 
and “Hashin” failure criteria of damage mechanics of 
composites.

If the energy release rate equivalency is too 
complicated or such traditional failure criteria cannot 
be adopted, then the critical stretch parameters can be 
obtained using experimental methods [15] and [16] or 
calibration using an inverse approach [17].

In concurrent methods (X-FEM, meshless 
methods), maintaining the crack geometry is a 
dedicated problem. To couple the chosen numerical 
solver with the level set method to follow the evolution 
of the crack is the most popular way to solve the above 
problem. This coupling is very robust (fast and stable), 
but the descriptions of crack initiation, branching or 
fragmentation are open research areas. Additionally, 
the crack-tip kinematics has to be controlled with 
artificial criteria [3]. Controversially, crack initiation, 
propagation (or complete fragmentation) in PD 
framework, using of any additional database on crack 
geometry is not necessary: peridynamic bond activity 
delivers the solution. Orientation and speed of the 
crack tip are also determined by the bond damage 
evolution. (e.g. [18] to [20])

In a paper by Zhao et al. [21], the  crack 
propagation of double-notched and double-centre 
crack specimens were studied. Comparing X-FEM and 

peridynamics, PD is more computation consuming, 
and the numerical stability is an open question [22]. 
To improve the efficiency of PD, additional efforts are 
usually necessary. The related results are summarized 
in Section 2.3.

In the detailed review by Diehl et al. [23], PD and 
experimental results were collected and compared 
based on 39 publications. The abilities of PD for 
wave propagation simulation were compared on 
four common experiments and on crack propagation 
problems was compared on five such experiments. 
Both the wave analysis and the crack geometry and 
velocity analysis of crack tip during dynamic loading 
show excellent accuracy with experimental results.

1.4  Evaluation of Boundary Conditions

In primal problems of classical continuum mechanics, 
mechanical problems are usually defined by a 
boundary value problem containing the governing 
partial differential equations, Eqs. (25) to (27), the 
essential, Eq. (28), and the natural, Eq. (29), boundary 
conditions (BC). These equations are valid only in 
the linearized theory of small displacements. The 
essential BCs are the constraints on a subregion of the 
body surface. The natural BCs are the surface tractions 
(or free surface) of the adjoint subregion of the body 
surface. The relation between the surface traction, the 
mechanical stress, and the partial derivatives of the 
displacement field are essential.

 � �� � � � �u b X V,� ,  (25)

 � � � � � � �� � � � �� �or   , , ,  (26)

 � � � �� � ��� �1

2
u u ,  (27)

 u u X Su� �
0
, ,  (28)

 � � � �n t X St, .  (29)

In peridynamic theory, the governing Eq. (1) is 
an integro-differential equation containing the time 
derivative and spatial integral of the displacement 
field. The direct evaluation of essential boundary 
condition in peridynamics is easily possible. It is 
worth mentioning that, during the numerical solution 
of peridynamic problems, to avoid the appearance of 
artificial bond failures near the essential boundary 
conditions, the failure mechanism has to be forbidden 
[13].

The evaluation of natural boundary conditions 
in a peridynamic framework is not trivial. Observing 
the theory of peridynamics, it is clear that a complete 
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framework is built and that deformation, crack 
initiation, and propagation of a peridynamic body can 
be determined without the introduction and using the 
concept of spatial derivatives. The concept of surface 
traction is incompatible with the usual theory of 
peridynamics [10].

Considering the literature, three methods are 
developed to enforce natural boundary conditions: 
(1) in article of Le and Bobaru [24], using an (inner or 
artificial extern) boundary layer, the surface traction 
can be transformed to an artificial volumetric load. 
The thickness of the boundary layer is suggested 
as being equal to the peridynamic horizon. (2) By 
the articles [25] and [26], in correspondence (non-
ordinary) state-based peridynamics, using the 
approximation of strains, the stress tensor and the 
surface traction can be enforced directly. (3) Huang 
[27] recommends the modification of the equation of 
motion to take the local interactions into account to 
evaluate the surface traction. The first method is very 
popular in the numerical solution of bond-based and 
native (non-correspondence) problems. In problems 
of correspondence peridynamics, almost solely the 
second method can be found. The third method is very 
new and promising, although it has not been widely 
applied yet.

The enforcement of contact conditions between 
solids leads to strongly non-linear equations, because 
of the changing boundary conditions on the solid 
surfaces. In traditional computational methods 
(FEM, Meshless), depending on the magnitude of the 
displacements and the complexity of the behaviour 
(material, geometry, surface conditions), there are 
usual methods of discretization (from “node to node” 
to “surface to surface” discretization) and to find the 
contacting surface between loaded bodies (penalty, 
Lagrange multipliers and augmented Lagrange 
methods).

In peridynamics, similarly to particle methods, 
the surface of the body is not modelled. For modelling 
contact conditions, extraordinary efforts are necessary. 
In the recent literature, only a few articles deal with 
this problem. Most applications contain peridynamic-
rigid interactions inheriting contact models of particle 
methods. [28] The first dedicated article on this topic 
[29] deals with the contact of peridynamic and finite 
element models. An inverse isoparametric mapping 
technique and a node-to-surface contact algorithm 
are customized and implemented, and a penalty 
method enforcing displacement constraints is then 
incorporated for the transient analyses using the 
explicit time integration. Good agreement between 
numerical simulations and the analytical model is 

observed in the analysis of the residual velocities. 
The physical process of perforation is captured 
accurately in the simulations. In a recent paper [30], 
a new state-based (SB) non-local friction model was 
developed and compared with a bond-based (BB) 
contact model. The properties of various peridynamic 
contact models were demonstrated by applying them 
in finite element and meshfree peridynamic analyses 
of benchmark problems and an impact/penetration 
test. The BB model was computationally efficient and 
accurate to model Coulomb-friction but did not satisfy 
the physical principles of objectivity and balance of 
angular momentum. The SB model was physically 
correct and accurate to model Coulomb-friction, but 
the efficiency was less satisfactory.

1.5  Concepts of Convergence

Previously, the main concepts and definitions of the 
peridynamic material model were introduced. Some 
aspects of the relationship between the classical and 
peridynamic model were mentioned, but from the 
application point of view, one of the most important 
questions is the convergence abilities of the model.

The non-local nature of the peridynamic model 
allows the definition of the concept of convergence 
in different ways. On the one hand, it is worthwhile 
to observe the behaviour of the analytical solution of 
the peridynamic problem when the material horizon δ  
converges to zero. On the other hand, the convergence 
of the discretized model is also highly important.

The first aspect was studied in article [31] by 
Silling et al. This paper addresses the question of 
whether the peridynamic model for an elastic material 
reproduces the classical local model as this length 
scale approaches zero. If the motion, constitutive 
model, and any inhomogeneities are sufficiently 
smooth, then the peridynamic stress tensor converges 
to this limit to a Piola-Kirchhoff stress tensor that is a 
function only of the local deformation gradient tensor, 
similarly as in the classical theory. This limiting Piola-
Kirchhoff stress tensor field is differentiable, and its 
divergence represents the force density due to internal 
forces. The limiting, or collapsed, stress-strain model 
satisfies the conditions in the classical theory for 
angular momentum balance, isotropy, objectivity, and 
hyperelasticity, provided the original peridynamic 
constitutive model satisfies the appropriate conditions.

The convergence behaviour of peridynamics 
were studied in article [32] in which Mikata proved 
the δ-convergence of elastic PD model to classical 
continuum model in case studies of statics (peristatics) 
and dynamics (peridynamics). He studied the wave 
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dispersion abilities of the peridynamic model and, 
in the case of finite material horizon δ, found an 
interesting difference to CCM: some peridynamic 
materials can have negative group velocities in certain 
regions of wavenumber.

The second numerical aspect was studied in 
articles [33] and [34]. Considering a one-dimensional 
(1D) peridynamic bar with an equidistant Δx set of 
nodes, the region [x – δ, x + δ] contains 2m + 1 number 
of nodes, where m = 2δ ÷  Δx and ÷ is the integer 
division operator. Based on this discretization, three 
types of convergency can be defined:
• The m-convergence: δ is fixed and m → ∞. By the 

results of the article, the numerical peridynamic 
approximation converges to the exact non-local 
peridynamic solution for the given δ.

• The δ-convergence: δ → 0 and m is fixed or 
increases but at a slower rate. (The number of 
nodes in the material horizon is fixed.) By the 
results, in this case, the numerical peridynamic 
approximation converges to an approximation 
of the classical solution almost everywhere. 
The larger m is, the closer this approximation 
becomes. The convergence is not guaranteed to 
be uniform.

• The (δm)-convergence: δ → 0 and m increases 
with decreasing δ with a higher rate than the 
δ goes to zero. In this case, we will see that 
the numerical peridynamic approximation 
converges to the analytical peridynamic solution 
and converges uniformly to the local classical 
solution, almost everywhere.
The results of standard numerical methods 

in fracture modelling usually suffer from mesh 
sensitivity. One of the main goals of the peridynamic 
model was to solve the problem of crack initiation 
propagation, branching, and material fragmentation 
without similar drawbacks.

Henke and Shanbhag [34] studied the effect of 
the spatial position of nodes on the results in the case 
of simple brittle crack propagation problems. They 
found that the case of a regular cubic set of nodes 
can cause artificial crack lines along the symmetry 
of the set. Using centroidal Voronoi tessellation 
(CVT) and an irregular set of nodes, this problem 
can be avoided. They mentioned that getting the 
same accuracy with these methods requires a higher 
number of nodes in the material horizon; m has to be 
higher. Unfortunately, it increases the computational 
cost. Their work showed that the careful placement of 
nodes seems to eliminate any obvious signs of mesh 
sensitivity without incurring significant additional 
computational costs within the simulation. This is an 

important result because, in many cases, the added 
cost of generating point distributions is amortized 
over several simulation runs that share the same 
geometry. In their article, equivolumetric nodes were 
used, but it seems that when using improved methods 
of positioning and weighing peridynamic nodes, 
the drawbacks of mesh sensitivity and increasing 
computational cost can be neglected.

2  CONSTITUTIVE MODELS AND APPLICATIONS IN 
PERIDYNAMICS

Constitutive equations and the related material 
properties are adequately defined in the framework 
of CCM. These parameters originated in the strongly 
local nature of the CCM material model. The bond-
force or the force state model is strongly non-local 
[35]; consequently, the material properties and their 
meanings are completely different. To find the relation 
between the two sets of properties, two methods were 
introduced.

In the native (or non-correspondence) methods, 
after analysing peridynamic kinematics and kinetics, 
deformation and force measures are defined. After the 
definition of the material model, its assumptions and 
the corresponding peridynamic material properties, 
deformation energy density is identified. Assuming 
equality between the classical material model and 
the peridynamic model through simple cases of 
deformation (homogenous deformation, uniaxial 
tension, pure shear), the relation between the material 
properties can be found.

In the correspondence methods, new material 
properties are not introduced. Instead, the 
peridynamic approximation of classical deformation 
and force measures are defined. It is demonstrated 
that the limits of these approximations are identical 
to the classical measures as the peridynamic material 
horizon approaches zero [31]. After the identification 
of the relationship between classical and peridynamic 
measures, the classical material properties can be used 
in peridynamic balance laws [31].

To demonstrate the two strategies, the derivation 
of equations of peridynamic elasticity is shown in the 
following subsection.

2.1  Peridynamic Elasticity

In the framework of bond-based peridynamics, 
Emmrich and Weckner [36] derived the relation 
between the displacement field and the peridynamic 
force vector. In their work, the strain s and instant 
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other fields (see details in following subsections), 
from its beginning until recently. The original theory 
was analysed and compared with other fracture 
mechanics related methods, [18], [40] and [41], and 
it was modified to overcome the Poisson’s ratio 
limitation [38] and [42] to [46].

As noted in Section 1.2, the shortcomings of BB-
PD led to the conception of the more generalized 
state-based peridynamics theory. The kinematics of 
deformation in the neighbour of a material point X is 
written by the deformation state,  . In case of elastic 
behavior, the specific strain energy function depends 
on this quantity, W = W( ,  t). Similar to the previous 
paragraph of BB-PD, in case of small displacements, 
the force state T is

 T � � .  (38)

The elements of the modulus state   can be 
written as second derivative of the strain energy 
destiny:

  � � � � �
�Y Y Y X

YW .  (39)

According to Aguiar [47], relations between 
material properties of classical homogeneous isotropic 
linear elastic materials and elastic peridynamic 
materials are given more specifically. In the reference 
configuration, the reference direction er<> and 
angular state en< , '> can be defined, respectively 
as:

 er 



= ,  (40)

 e
e e e

sinn
r r r 
  

, ,� �
� �� � �

� �
1 '

�
 (41)

and α is the smallest angle between the two observed 
bonds   and  '.

Introducing the difference displacement ratio 
state by

 h =
U
X

,  (42)

the linear and shear strain states can be defined as

 � � �e hr ,  (43)

�        , , .' ' ', '� � � � �� �1

2
e h e hn n (44)

Using these deformation states and reduced 
quadratic form of free energy function of an isotropic 
simple elastic material [48], yields

direction vector e of the peridynamic bond was 
introduced as

s
x x X X

X X
X u X u X X

X X
�

� � �

�
�

� � � � �

�

� �

�

� � �

�
, (30)

 e x x
x x

X u X u
X u X u

�
�
�

�
� � �
� � �

�
�

� �
� �

.  (31)

Assuming small deformations and linear elastic 
behaviour, one can introduce the pairwise potential in 
the deformed bond as a quadratic form of the instant 
relative position of the endpoints of the bond:

   w X X x x C X X x xT
, , ' ,� � �� � � � �� � � � � � �� �1

2
 (32)

where C is the material stiffness tensor

 C c
� �� ��� �
�

� �
3

.  (33)

Based on the equivalency of deformation 
energy of CCM and BB-PD material under simple 
deformation cases, the material property c can be 
calculated as

 c k
�

�
�

18
4� �

 in three dimensional, (34)

 c k
�

�
� �
72

5
3� �

 in two dimensional, (35)

 c k
�

�
� �
18

5
2� �

 in one dimensional problems, (36)

where k is bulk modulus of the material.
The peridynamic pairwise force f was written as 

the derivative of the elastic potential by the relative 
displacement:

 f w
u u

C u u�
�

� �� �
� � �� �

�
� .  (37)

One of the greatest drawbacks of the original 
bond-based elastic model is the limited value of 
Poisson’s ratio [37]. Similar to Navier’s central 
force elastic model, Poisson’s ratio of the bond 
based peridynamic material is v = 1/4 in spatial and 
v = 1/3 in planar problems. In many practical cases, 
this limitation is acceptable (e.g., crack propagation 
of concrete structures [38] and [39]), but such an 
approximation is unacceptable in many engineering 
applications.

Despite the limited value of the Poisson’s ratio, 
BB-PD has been applied with success in fracture 
mechanics of brittle materials [20], [38], [40], and 
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where ω(·,·) is a given symmetric weight function 
and α11, α12, α13 and α33 are elastic peridynamic 
constants. Assuming equivalency between the 
elastic strain energy of classical Hookean material 
and the peridynamic elastic material, the relation of 
classical material properties and peridynamic material 
constants are

   � �
�

� �
�

�
11 2 12 2 33 2

5 9 5

2

20
�

�
�

� � �
�

�
�

m m m
, , ,  (46)

where the constant m is defined by

 m d� � � � � ��4

0

4� � � � �
�

.  (47)

The remaining constant α13 is the coupling 
constant in elastic strain energy between linear and 
angular strains. A similar material property is not 
available in classical elasticity. Assuming a finite 
peridynamic horizon if the quadratic free energy 
function of the material is given, then the value of 
α13 can be determined from Eq. (45). In this sense, 
the material property α13 means a correction to 
compensate the effect of finite peridynamic horizon.

An alternative method to determine the state-
based peridynamic material constants is to decompose 
the deformation state to dilatation and deviatoric 
terms. Silling et al. [12] and Madenci and Oterkus 
[49] followed slightly different ways during this 
decomposition and achieved different results.

In Silling’s work the force state is

 

T X M X

k
m m

ed

� � � � � �

�
�
� � � �

�
� ��

�
�

�
�
�

� �

� �
�
�

3 15
 ,  (48)

where k and μ are the bulk and shear modulus, 
respectively. The scalar reference and extension state 
are defined, respectively:

  = ,  (49)

 e Y Y X� � � � .  (50)

Weighted volume has to be introduced:

 m � �� � ��   .  (51)

The dilatation- and deviatoric extension states are 
defined over the scalar extension state as:

 � �Y X Y� � � � �� � � � �3

m
e ,  (52)

 e ed Y Y
Y X

� � � � � � � � ��
3

.  (53)

In Madenci’s work
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The dilatation-state in this context was:

 � �Y
Y X
X

Y X
Y XH

� � � � �
�

�
�
��d dX

X
'.  (55)

The constants a, b and d in the above expressions 
were:

   a
k b d�
� � �

�
�

� �
�

� �
3 5

2

15

2

9

4
5 4

� �
� � � �

, , .  (56)

In articles and book by Madenci and Oterkus [49], 
and [50], the elastic peridynamic material properties 
were also analysed. In their works, the peridynamic 
states defined above were applied on a set of discrete 
material points.

Van Le and Bobaru [51] showed that the 
applicability of the above results is limited. Madenci’s 
model is valid only in the case of small strains and 
infinitesimal rotations; Silling’s model is valid in case 
of small strains and finite rotations [51]; Van Le has 
not found a valid peridynamic model for the case of 
finite strain and finite rotation deformations.

Using the approach of the above methods, in 
the applications, the concepts of strain and stress are 
not necessary. In the literature, this type of approach 
is referred to as a native or non-correspondence 
peridynamic model.

As mentioned, with the second method, the 
introduction of peridynamic material properties is 
not necessary. The peridynamic approximation of the 
displacement gradient can be written as

 � � � � � �u KU X* 1
.  (57)

The approximating engineering strain tensor and 
the stress tensor are

 � � � �� � � �1

2

1U X X U* * K ,  (58)

 � �� �C .  (59)
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Using Eq. (7) of expanded vector state, the 
peridynamic force state is:

 T X K� � � � � � � ��� � � � �1
.  (60)

Substituting Eq. (60) into the equation of motion, 
Eq. (13):
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�

�

�

�
�

u K dX

K dX b X
X

X

1

1




.  (61)

The correspondence peridynamic model has the 
ability to describe large displacement, rotation, and 
deformation problems – theoretically. In numerical 
applications, some stability issues of this method were 
reported. Recently, several stabilization methods have 
been suggested for the original correspondence model 
[22] and [52] to [54], but this area still has some open 
questions and challenges.

Parallel to the development of a peridynamic 
model for three-dimensional elastic bodies, the 
research of other special fields of elasticity appeared 
in the peridynamic literature. Silling and Bobaru 
[55], used peridynamics to model the behaviour of 
rubberlike membranes and fibres. Gerstle et al. [38] 
introduced the micropolar bond-based peridynamics 
and used it to solve plane stress problems of concrete 
structures. With the micropolar model, one can avoid 
the drawback of fixed Poisson’s ratio anomaly of bond-
based peridynamics. Kilic et al. [56] published the first 
article about the peridynamics of composite laminates. 
They modelled the effect of fibre orientation on the 
crack propagation in planar composites. Oterkus et 
al. proved the validity of peridynamic theory through 
qualitative and quantitative comparisons against the 
test results for a stiffened composite curved panel with 
a central slot under combined internal pressure and 
axial tension [15]. The crack propagation of composite 
laminates under dynamic (impact and explosive) 
loads was modelled by peridynamics [19] and [57]. 
The peridynamic predictions correlated well with the 
experimental results available in the literature. Crack 
propagation in ceramic matrix composites [58] and in 
fibre-reinforced composites [59] was modelled using 
the peridynamic framework.

State-based peridynamics of beams was 
developed [60] to solve the problem of the Euler-
beam. Yang et al. formulated the peridynamic 
theory of functional graded Thimosenko-beam [61]. 
The validation of the model was proven by testing 
different boundary conditions and loads. The results 
showed good agreement with analytical and finite 
element results.

2.2  The State-Based Peridynamic Plasticity

Although plasticity can be included in the bond-
based theory by permitting permanent deformation 
of individual bonds [62], this results in permanent 
deformation of a material undergoing volumetric 
strain (without shear). Metal forming experiments 
have suggested volumetric incompressibility of plastic 
deformation. It means that only shear deformations 
can induce plastic response [63]. Consequently, the 
bond based peridynamic model, in its original form, 
cannot describe the plastic deformation of metals.

In the work of Mitchell [64] and Littlewood et al. 
[65], the ordinary state-based (non-correspondence) 
peridynamics was used to model elasto-plasticity and 
viscoplastic behaviour. The first paper is a theoretical 
foundation of PD plasticity without qualitative or 
quantitative results. The second publication contains a 
quantitative comparison between PD and experimental 
results.

In article of Mitchell [64], PD plasticity was 
defined over continuous sets of points, using integral 
forms and Frechet-derivatives. In the article of 
Madenci and Oterkus, a discretized set of points was 
used to introduce inelasticity [50].

Plastic deformation, in the case of most metals, 
is independent of volumetric deformation and 
hydrostatic pressure. To separate the hydrostatic 
effects from shear effects, the decomposition of 
deformation state is required to volumetric and 
deviatoric part. Using Eqs. (52) and (53), the 
deformation state can be decomposed to dilatation θ 
and deviatoric ed terms. Using this assumption, the 
plastic deformation depends only on the second term 
of Eq. (48). The deviatoric part of the deformation 
extension state can be decomposed to elastic ede and 
plastic edp parts:

 e e ed de dp� � .  (62)

Hence, the rate form of the balance Eq. (48) is

 



 t k
m m

e ed dp�
�
� � � �

�
� � �� �3 15

� �
�
� .  (63)

Following the way of classical plasticity [66], a 
perfectly plastic flow rule, consistency parameter (λ) 
and Kuhn-Tucker conditions were derived. Based on 
these quantities and relations, through linearization 
of the deformation and force states, the implicit time 
integration of the plastic model was developed.

The peridynamic yield function f of perfectly 
plastic material is

 f t td d� � � � � � �� �
0

0.  (64)
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The relationship between the peridynamic yield 
condition ψ0 and yield stress of the classical material 
model is

 �
� �0

2

5

75

8
�

�
�
Ey

,  (65)

where Ey is usually measured in uniaxial Ey �
�

1

3
 or 

pure shear Ey = σ12 stress conditions.
Later, in the article [50], peridynamic plastic 

deformation according to the von Mises yield criterion 
with isotropic hardening was also developed.

Stefanelli et al. [67], in the framework of non-
local vector calculus, analysed the solution of the 
peridynamic elasto-plastic problem. The existence 
and convergence to the CCM solution were proved. 
Based on this and other non-local vector calculus 
(NLVC) related publications, one can assume that 
the NLVC could be a pillar of the generalized, robust 
mathematical background behind the peridynamic 
theory.

The correspondence peridynamic model was 
first applied on viscoplasticity by Foster et al. [68]. 
Littewood reported a plastic localization model using 
peridynamics [65]. Sandia National Laboratories 
announce “Sandia Fracture Challenges”, in every 
second year, with more and more challenging problems 
to predict material damage and crack propagation in 
ductile materials. State-based peridynamic solutions 
are often submitted, the results are published. and the 
accuracy of SB-PD is improving, but acceptable [69] 
to [71].

2.3  Relation of Peridynamics with Classical and 
Experimental Results

Out of the nearly 500 referred articles of peridynamics 
published in the previous two decades, 40 are related 
to damage, 124 are about fracture, and 70 are crack-
related articles. On some fields of applications, only a 
few papers were published, although other fields were 
more fruitful (Table 1).

Topics with few publications are those for which 
the authors mostly only develop the PD framework 
of the specified problem and prove the capability of 
peridynamics to simulate the phenomena on some 
essential problems. On the more studied areas, usually 
the formulation of PD is better established and (next to 
the essential problems) more real world applications 
can be found. Here we would like to highlight only a 
few application areas where peridynamics have been 
successfully applied.

The most frequent research area in peridynamics 
is fracture mechanics. In applications, the 

comparability and relation between the classical and 
the PD material models are essential. The relation 
between peridynamics and material properties 
of classical fracture mechanics has been widely 
studied. The peridynamic non-local J-integral has 
also been thoroughly analysed in [72] and [24]. The 
displacement-based J-integral formulation, developed 
in [73], can be obtained with bond-based or state-based 
peridynamic models. In the article of Panchadhara 
and Gordon [74], a new peridynamic stress intensity 
factor (SIF) was introduced. This quantity enables 
peridynamics an effective way of replacing the more 
or less ad-hoc fracture criteria to motivate fracture 
initiation and direction of fracture propagation 
in conventional numerical techniques of fracture 
mechanics. It was proved that the peridynamic SIF 
used in conventional numerical methods improves the 
robustness of the solution. Furthermore, peridynamic 
SIFs may be applied to study complex fracture 
physics, such as the branching and interaction of 
stress waves with propagating fractures that would 
otherwise be difficult using conventional numerical 
methods.

Table 1.  Number of papers on the fields of PD applications 

Field of application Number of published papers
Elasticity 23
Heat conduction, Thermoelasticity 12
Fluid transport and porose material 1
Plasticity 15
Damage 10
Fracture 76
Fatigue 9
Structural Stability 1
Corrosion and chemical damage 4
Electricity 4
Multiscale problems 2
Phase transformation 2
Technology and manufacturing 4

The most frequent research area in peridynamics 
is fracture mechanics. In applications, the 
comparability and relation between the classical and 
the PD material models are essential. The relation 
between peridynamics and material properties 
of classical fracture mechanics has been widely 
studied. The peridynamic non-local J-integral has 
also been thoroughly analysed in [72] and [24]. The 
displacement-based J-integral formulation, developed 
in [73], can be obtained with bond-based or state-based 
peridynamic models. In the article of Panchadhara 
and Gordon [74], a new peridynamic stress intensity 
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factor (SIF) was introduced. This quantity enables 
peridynamics an effective way of replacing the more 
or less ad-hoc fracture criteria to motivate fracture 
initiation and direction of fracture propagation 
in conventional numerical techniques of fracture 
mechanics. It was proved that the peridynamic SIF 
used in conventional numerical methods improves the 
robustness of the solution. Furthermore, peridynamic 
SIFs may be applied to study complex fracture 
physics, such as the branching and interaction of 
stress waves with propagating fractures that would 
otherwise be difficult using conventional numerical 
methods.

The linear elastic and later hyperelastic extension 
models were applied to describe the crack propagation 
phenomena in homogenous and heterogenic bodies of 
3-D or 2-D (plane stress/strain) geometries [15] and 
[75]. The problem of tearing and crack propagating 
in shells and fibres were also solved with promising 
qualitative results [55]. These papers demonstrated the 
ability of PD in this field through different problems 
with visualized results but did not contain quantitative 
data comparable with the results of classical analytic 
or numerical methods.

O’Grady and Foster published the NOSB-
PD model of a Kirchoff-Love plate. [37] In their 
paper, the simple bent square plates with different 
boundary conditions were studied and compared with 
analytical solutions. The δ-convergence of transverse 
displacements of the applied model was shown. A 
demonstration of brittle fracture in a bending (double 
torsion) plate showed the potential of this model to 
broaden the class of problems that can realistically be 
modelled using peridynamics.

Chowdhury et al. derived the PD formulation of 
thin and thick curved plates under the assumptions 
of linear elasticity. [76] Their proposal on the 
peridynamic shell theory is numerically assessed 
against simulations on static deformation of spherical 
and cylindrical shells, that of flat plates and quasi-
static fracture propagation in a cylindrical shell.

Recently, based on a more general SB-PD model, 
the complete Reissner-Mindlin shell theory was 
adapted to the peridynamic framework, and validity 
was proven through several numerical problems of 
continuous and damaged, discontinuous thick shells 
[77]. The tested models (containing attractively low 
PD nodes) were compared to the analytical and FEM 
results and showed excellent accuracy in the cases of 
small and large displacements/deformations.

Crack initiation, propagation, and bifurcation 
were modelled in the framework of PD in multilayer 
structures [78] and composite laminates [56], [19], [57] 

and [79] under thermal and dynamic loads. Mechanical 
damage was modelled in impact loaded layered glass 
[80], tensioned hydrated cement paste [81] and glass-
polycarbonate-glass layered structure [59] by BB-PD. 
Also, a modified BB-PD was used to model dynamic 
fracture in functionally graded materials [82]. The 
results of PD models were compared with different 
experimental setups. The capability of peridynamics 
to simulate different damage modes of multilayer and 
composite structures were proven. The main advantage 
of PD against other existing models is the ability to 
identify all of the failure modes without simplifying 
assumptions. Damage is inherently calculated in 
a PD analysis without special procedures, making 
progressive failure analysis more practical. The price 
for this completeness is the necessity of severe PD 
nodes (each layer of composite has its own set of 
nodes and bonds are defined in plane and in transverse 
directions) and the time-consuming computations.

The BB-PD model of heat transfer was 
introduced by Bobaru and Duangpanya [83]. Using 
the concept of very simple and intuitive thermal-bond, 
1-D transient heat conduction was simulated under 
different boundary conditions. - and -convergence 
of the model were observed. Both converged to the 
analytic solutions.

Fully coupled OSB-PD thermo-elasticity was 
developed by Oterkus et al. [84]. The derivation of the 
governing equations was based upon thermodynamic 
considerations. The capability of a PD model was 
tested and proved on simple 1-D and 3-D convergence 
studies to analytic, FEM and BEM results. In their 
paper, practical problems were not studied.

Thermo-mechanically induced damage and 
fracture in viscoelastic solids was simulated using 
OSB-PD by Madenci and Oterkus. The deformation 
analysis successfully captured the relaxation behaviour 
of the material. The numerical results concerned first 
the verification problems and subsequently, a double-
lap joint with a viscoelastic adhesive where failure 
nucleates and grows.

The very complex thermo-plastic material 
behaviour was simulated in the framework of 
NOSB-PD by Amani et al. [86]. The Johnson-Cook 
constitutive and damage models were used. Two 
experimental configurations (Taylor-bar impact test 
(TBIT) and Kalthoff–Winkler test (KWT)) were 
simulated and compared. The numerical results agreed 
well with the available experimental data, instead of 
the moderate number of peridynamic nodes (5400 in 
TBIT and 60291 in KWT).

Recently, thermo-mechanically induced fracture 
was also analysed in peridynamics [87]. This paper 
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presented an effective way to use a variable grid size 
in a weakly coupled thermo-mechanical peridynamic 
model. The proposed numerical method was equipped 
with a stretch control criterion to transform the grid 
discretization adaptively. Hence, the fine grid spacing 
was only used in limited zones where it was required. 
The computation time using the adaptive method was 
less than one third of the original fine grid. Predicting 
complex crack patterns without any a priori hypothesis 
on cracks is automatic in this model.

3  CONCLUSIONS

Aiming to highlight findings that are concerned with 
theory and applications of a new, strongly non-local 
method of continuum mechanics – peridynamics – 
foundations of the method are reviewed while seeking 
new paths in future developments. 

In peridynamics, the advantages of classical 
continuum mechanics and molecular dynamics are 
alloyed (especially in the field of fracture mechanics) 
based on the theory and work of Silling. It was 
found that the nonlocality of peridynamics plays 
a significant role in the ability to simulate crack 
propagation, branching, and coalescence in brittle 
materials. Peridynamics was shown to describe the 
above phenomena without any artificial conditions 
of crack-tip velocity with excellent accuracy to 
experimental data in plenty of standardized and “real-
world” configurations. Using the overview of the 
works published in the recent decades, directions for 
future developments are identified in four paths:
(1)  Applying peridynamics in non-linear and ductile 

fracture mechanics possess broad potential. 
Combining peridynamics and ductility is 
challenging, and the usual explicit solvers of 
peridynamics are not sufficiently effective. The 
development of implicit and/or more effective 
explicit solvers is needed.

(2)  Numerical stability issues were observed in large 
deformation peridynamics, and only a few authors 
have dedicated their work to these problems. The 
relation between the meshless methods and the 
peridynamics is established. Based on this fact, 
the introduction of higher-order peridynamics 
may provide a solution to these stability issues.

(3)  Analysis of numerical stability, robustness, 
and efficiency of peridynamics are also 
research directions that may require more 
focus in the coming years. The peridynamics 
are very accurate, but the speed and efficiency 
in “industrial problems” are lower than the 
concurrent methods, such as Extended-FEM or 

meshless methods. Coupling of PD with these 
methods is very efficient [16] and [88] to [90] and, 
as an alternative solution the parallel computing 
(e.g. supercomputers or GPGPU), seems natively 
applicable in peridynamics, which could increase 
the speed and efficiency of the method [91] to 
[93].

(4) It has also been noticed that there is an 
emerging number of coupled multiphysical and 
multidisciplinary works. In the case of successful 
implementation of peridynamics on mechanics 
of large deformation of solids, the research of 
separation (crack propagation) or merging of 
soft tissue would initiate and open opportunities 
for further biomechanical and other biophysical 
applications.
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