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ABSTRACT

Homogeneous random tessellations in the 3-dimensiondidean space are considered that are stable under
iteration — STIT tessellations. A classification of verceegments and flats is introduced and a couple of new
metric and topological mean values for them and for the djpsell are calculated. They are illustrated by
two examples, the isotropic and the cuboid case. Severarexm problems for these mean values are solved
with the help of techniques from convex geometry by intradg@n associated zonoid for STIT tessellations.

Keywords: convex geometry, iteration/nesting, mean \@luendom tessellation, spatial statistics, stochastic
geometry, zonoid.

INTRODUCTION

A central problem in stochastic geometry is the 1,
development of mathematical models for random
structures whose properties are mathematically
feasible and not only accessible by simulation. A
standard example, where this account is fulfilled
is the so-called Boolean model, (see Stoytnal,
1995; Schneider and Weil, 2008). Mathematically
well developed models for random tessellations are
Poisson line or plane tessellations and Poisson-
Voronoi tessellations. Since random tessellations
can successfully be applied in material sciences,
geology or biology (Stoyast al,, 1995), our problem
mentioned at the beginning arises especially in the
theory of random tessellations. Particular structures
modeled by random tessellations are single-phase
polyhedral microstructures, foams, systems of cracks
(joints, fissures) in rocks, crag@e of thin layers or
systems of cells. Fig. 1. A realization of a homogeneous and isotropic

STIT tessellation.

However, the two mathematically manageable

standard models for random tessellations, the Poisson |, . underlying models used here for the non-

line or plane and the Poisson-Voronoi tessellations, .o o face cases are random tessellations which are
seem not in any case to serve the best choices fQfapie under the operation of iteration — so-called STIT
idealized mathematical models regarding the abovgsseliations. They were formally introduced by Nagel
mentioned examples. This is mainly due to the fact thagng Weiss (2005). In later papers Nagel and Weiss
their cells are face-to-face (see the definition below)(2006; 2008) have shown that many mean values can
Simulations of random tessellations which are nobe obtained from the characteristic stability property of
face-to-face are shown in Figs. 1 and 4, whereas ithe tessellations by writing and solving certain balance
contrast Fig. 3 shows a realization of a face-to-facequations. Because of that, random STIT tessellations
tessellation irR3, have the potential to serve as a new mathematical
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reference model — besides Poisson line or plane and SPATIAL RANDOM
Poisson-Voronoi tessellations — for random structures  TESSELLATIONS AND

tessellating the plane or the space. BASIC NOTATION

It is the aim of the prgsent paper to contlrlue A tessellation of the 3-dimensional Euclidean
the work of Nagel and Weiss (2006) and especiallyypace js a countable and locally finite family of convex
that of Nagel and Weiss (2008) by calculating furthemolytopes, thesells of the tessellation. They cover the
mean values for random STIT tessellations in thevhole space and have pairwise no common interior
3-dimensional Euclidean space. We will generalizgyoints. Theprimitive elementof a tessellation are
the planar concept of so-callet-, J- and K- the vertices edges plates and cells The edges are
segments introduced in Mackisack and Miles (1996Jine segments with no vertices in their relative interior
by considering in the spatial case four types ofnd the plates are convex polygons with no vertices
segments and three different types of facets, called fla@'d €dges in their relative interior. The boundary of
here. Moreover, we will distinguish between two types? Plate consists of vertices and edges. With a spatial

of vertices, the T-type and X-type vertices. It is one Oftessellatlon we can associate a familykenetworks

. . for k=0,1,2, where ak-network is the union of the
the main purposes of the present paper to find mean

| hich all tonological ch terizati fprimitive elements of dimensiok of the tessellation.
values which allow a topological characterizatlion Ol gengte by, E, P, C the class of vertices, edges,

the different types of vertices, segments and flatyaes and cells of a tessellation, respectively. An
Because STIT tessellations are not face-to-face theggyject of a clasX is often referred to as "an object

are interesting multifaceted new effects, for examplef typeX”, X € {V,E,P,C}.
it appears that the interior of a cell-facet contains
vertices and edges. We will explore some of thes
effects below.

Our definition does not exclude that on the
%oundary of a plate for example there could appear
additional verticesi(e., elements from the 0-network)
which are no corners of the polygon. This is the case

~ Another class of problems the paper deal§yhen the cells of the tessellation are fiate-to-face
with concerns extrema for the considered meaRee Schneider and Weil (2008, p. 447) for a formal
values. STIT tessellations are characterized by theiefinition and Fig. 2 for an illustration.

rf intensi n heir so-call irectional . . . .
surface intensity and by their so-called directiona To avoid terminological confusion and to

distribution and the metnf; mean value_s dep_enc_l (_)Histinguish between the primitive elements and the
both parameters. For a fixed surface intensity it i§,o,nqary structure of polygons and polytopes, we call
interesting to ask for which choices of directionalye o-faces of a polygon or a polytope dtsrners The
distributions these mean values become minimal]__faces of a po|yg0n are isdesand the 1-faces of a
Similar questions were studied in the literature forpolytope are called itddges Furthermore, we call the
Poisson line, plane or even hyperplane tessellatiorg-dimensional faces of a spatial polytopefasets
before, see Schneider and Weil (2008). The answer

to these questions can be given with the help of an

associated convex body — the Steiner compact — and

two inequalities known from convex geometry.

The paper is structured as follows: After a
short introduction on spatial random tessellations we
rephrase the definition of STIT tessellations and recall
some of their main features which are frequently used
later. Afterwards, we introduce the different types
of vertices, segments and flats appearing in spatial
STIT tessellations. Subsequently their mean values are
calculated, summarized for clearness and specialized
for two particular examples. Extremum problems for
the metric mean values will be discussed at the end of
the paper by introducing an associated zonoid for STIT
tessellations. Fig. 2.Cells that are not face-to-face.
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Spatial random tessellations were formally
introduced in Schneider and Weil (2008) or Stoydn
al. (1995). They can be seen as random variables with
values in the measurable space of spatial tessellations
Similarly to the case of deterministic tessellations
we can consider also for random tessellations the
collection of cells (formally the 3-network) and the
0-, 1- and 2-network. In this paper we will only
considerhomogeneousandom tessellations, whereby
we require the distribution of the tessellation to be
invariant under the group of all translations RR?.
Moreover, a random tessellation is said tagmropic,
if its distribution is invariant under the groupQ(3)
of all rotations inR3. In the homogeneous (and not
necessarily isotropic case) the technique of Palm
distributions allows us to speak of tigpical vertex,
edge, plate or cell of a random tessellation. For
example the typical vertex can be interpreted as a
vertex 'uniformly’ chosen from the O-network in a very
large observation window (this can be made precise in. o ] ]
the usual sense of ergodic theory by considering thE!9- 3- A realization of a homogeneous and isotropic
uniform distribution on the set of vertices in a largeP0isson plane tessellation.

observation window and by Iettlng the diameter of AS an examp|e of a homogeneous random Spatia|
this window tend to |nf|n|ty together with a suitable tessellation we consider the homogeneison
renormalization). Whenever in this paper the worthjane tessellation which is a plane tessellation
typical appears, it refers to such a definition. For th§nduced by a homogeneous Poisson process on the
mathematically exact theory we cite again Schneidegpace of planes iR3. A realization of a homogeneous
and Weil (2008) or Stoyaet al. (1995). and isotropic Poisson plane tessellation is shown in

To define mean values for typical objects of aFig. 3. It is well known that the law of a Poisson
random tessellation, we have to formalize in advancelane tessellation is uniquely determined by a positive
the concept of adjacent objects. An objeaif typeX  real constantr, its intensity, and a non-degenerate
is said to beadjacentto an objecty of typeY if either ~ probability measurek on the upper unit half-sphere
xCyoryCx. LetNyy be the mean number of objects (Schneider and Weil, 2008, and especially Chapter
of type Y adjacent to the typical object of clagg  10.3 therein). Such a random collection of planes
where the expectation is taken with respect to the Pallecomposes the space into convex polytopes whose
distribution of objects of typé&X. On the other hand, interiors are pairwise disjoint. It is a face-to-face
the primitive elements of dimensidnk = 0,1,2,3, are  tessellation as can easily be seen from the definition.
k-dimensional polytopes with-dimensional polytopal For the typical cell of a Poisson plane tessellation,
faces,j < k. For the typical primitive elementof typé  usually called thePoisson polytopethe following
of dimensionk we denote by;(X) the mean number mean values are well known, see Stogail. (1995):
of its j-faces,j < k. For example we have attentively
to distinguish between the mean number of vertices of V(C) =Ncyv =8, vi(C)=Ncg =12,
the typical cellNcy and the mean numbeg(C) of its V2(C) =Ncp =6,
corners. For tessellations in face-to-face position that
differentiation is not necessary, since both parameteise., the Poisson polytope has in the mean 8 vertices,
coincide. 12 edges and 6 plates and likewise 8 corners and 12

By Ax we denote théntensityof objects of clasX ridges and 6 facets. These values are frequently used

by which is meant the intensity of the homogeneoud” the course of the paper.

point-process of centroids of-type objects (where

the centroid function is assumed to be invariant under

translations). This is the mean number of centroids STIT TESSELLATIONS

of objects of classX per unit volume, which by

homogeneity is a well defined quantity and does not STIT tessellations form an interesting class of
depend on the choices of 'the unit volume’ and thehomogeneous random tessellations, whose cells are
centroid function. not in a face-to-face position and whose properties
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are mathematically feasible. They formally arisethe stability property with respect to (rescaled)
as limits of rescaled iterations (or nestings) ofiteration.
homogeneous random tessellations. The idea of
iteration is to subdivide the cells of a given
homogeneous tessellation independently by a
sequence of independent and identically distributed
homogeneous random tessellations having the sam: | s
distribution as the primary tessellation. An appropriate
rescaling is necessary in order to keep thaface
intensity &, i.e, the mean total surface area of
cell boundaries per unit volume, constant. STIT
tessellations can be characterized by the property
that their distribution does not change through
rescaled iterationj.e, we require the distribution
of the tessellation to bestable underiteration, a
property which also explains the abbreviation STIT.
A realization of a homogeneous and isotropic random
STIT tessellation is shown in Fig. 1, whereas Fig. 4
shows a realization of a homogeneous but anisotropic
STIT tessellation in the 3-dimensional space. In
Nagel and Weiss (2005) an explicit construction was
presented for such tessellations in a bounded conve;
window in Euclidean spaces of arbitrary dimension
> 2.
d=2 . _ ig. 4.A realization of a homogeneous and anisotropic
The finite-volume construction can be unders_too TIT tessellation whose directional distribution is
Toncentrated with equal weight to the three coordinate
Ldirections.

-

e

At time t = 0 the construction starts with a compac
convex polytopal windoww c R3, for example a

cube or a ball. After a random lifetimg that is The algorithmic construction of STIT tessellations
exponentially distributed (with parameter related ton polytopal windows described above immediately
the geometry ofW and the directional distribution leads to an effective simulation algorithm. This

R) a random plane with directional distributidR  algorithm was used to create the simulations shown in
is introduced inW, thus W splits into two new Figs.1and 4.

polytopes and cell-facets (at their birth time also
plates) are born with birth timg. Then, sequentially,

all extant polytope¥\, ..., W with the respective birth and Meckeet al. (2008b). Some mean values for

timesty, ...,  are divided independently of each 0therhomogeneous random STIT tessellations in the plane

in the same way. The lifetime oM is a random : . .
variable, exponentially distributed and with parametefgl ppeared in Nagel and Weiss (2006) and for the spatial

depending o the geomety W an the prevousy 2o ' 0% A1 Wil (2000, Some of e herei
fixed directional distributioriR (when constructing an '
isotropic tessellation, this lifetime is proportional to ~ We will now list some of the key-properties
the mean breadth of the respective cell). At the end odf STIT tessellations, which are important for the
its lifetime, the polytop&\ is subdivided by a random present paper. We will formulate them for the 3-
plane, which is chopped of by the boundary of thedimensional case, even if they are valid for arbitrary
cell, W dies and two new polytopes and cell-facets argpace dimensions:
born. The state at a fixed timte> O is a tessellation of

The law of a homogeneous random STIT

W, in the sequel denoted B)(t,W). It can be shown LT e _ ;
that ®(t,W) is consistent inV, which means that it~ tessellation inR* is uniquely determined by

A direct global construction of a whole-space
STIT tessellations was found in Mecke al. (2008a)

is independent oV and there exists a homogeneous
random tessellatiod(t) of the whole spac®® such
that

(W) 2 d(t) W,

with standing for equality in distributions.
Remarkably, the tessellatiod(t,W) and®(t) enjoy
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its surface intensity O< Sy < o and by a
probability measureR on the upper half-sphere
Si, whose support is not concentrated on a
great half-subsphere. The measiirdescribes the
distribution of the direction of the unit normal
vector at a uniformly chosen point (the so-called
typical point with respect to the boundary measure
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of cells) of the 2-network associated with the TYPES OF VERTICES
tessellation andy is the mean total surface area
of cell boundaries per unit volume. Homogeneous planar STIT tessellations Only have
T-shaped vertices, which means that in any vertex there
— The interior of the typical cell of a spatial arethree outgoing edges and two of them are collinear.
homogeneous random STIT tessellation has therom the construction of a STIT tessellation given
same distribution as the interior of the Poissorabove it follows that a homogeneous spatial STIT
polytope with parameterSy and R. This means tessellation has two different types of vertices, namely
that mean volume, mean surface area and length T.yerticesand
of the edge skeleton of the typical cell of a
STIT tessellation are the same as for the Poisson
polytope. The difference between STIT and A T-vertex appears on a ridge of a cell, when this
Poisson plane tessellations arises from the mutuakell is intersected by a plate which is born, whereas
arrangement of the cells (compare Figs. 1 and 4n X-vertex emerges, when two plates born in two
with Fig. 3) which implies that the topological neighboring cells intersect in the relative interior of
parameters, such as the mean number of verticed, common plate of the two cells. These two possible

edges and plates adjacent to the typical cell, wilSituations are illustrated in Fig. 5. Note that the notion
differ. of a T- or X-vertex is based on the plates which create

that vertex. The two types of vertices and the geometric
— Thecells of STIT tessellations are not face-to-facelifferences between them are essential for our further
which means that the intersection of two cells withconsiderations as will be seen below.
a common plate is not necessarily a cell-facet of
both cells. An example of two cells that are not
face-to-face is shown in Fig. 2.

X-vertices

— The intersection of a homogeneous STIT
tessellation in R® with a plane induces a
homogeneous random STIT tessellation in
this intersection plane. The induced random
tessellation will be isotropic, whenever the spatial
tessellation is isotropic, too. If we intersect a
homogeneous random STIT tessellatioifwith
a line g, we obtain a homogeneous Poisson point
process om.

For details on STIT tessellations we refer to Nagel and
Weiss (2005), Nagel and Weiss (2006), Me@keal.
(2007), Nagel and Weiss (2008), Mecakeal. (2008a)
and Meckeet al. (2008b), Mecke (2009), Taie (2009)

or Schreiber and Tale (2010). Also Schneider and

Weil (2008), pp. 469—-470 contains some comments on
STIT tessellations. Fig. 5.A T-vertex (top) and an X-vertex (bottom).

. . The intensities of T- and X-type verticas., mean
In Weiss and Cowan (paper SUl:)m'tte‘jnumber of T- and X-vertices per unit volume, are

for publication), a systematic study of spatialgengted byly, and Ay, respectively. Furthermore,
homogeneous tessellations which are not face-to-facg, _ ), " A, is the intensity of vertices, meaning
T X ’

IS undertake.n. STIT tessellations are considered thetge mean number of vertices of the tessellation per unit
as one particular example and the results for meaggjume.

values are deduced from rather general formulae.

In the current paper, the mean values for STIT

tessellations will be derived from the topology and the  TYPES OF SEGMENTS

special properties of these tessellations. Furthermore,

Weiss and Cowan do not consider what we later call For planar tessellations whose cells are not in
I-segments and I-flats. a face-to-face position, Mackisack and Miles (1996)

147



THALE C ET AL: New mean values for 3D STIT tessellations

introduced a classification of the linear segments of
the 1-network associated with the tessellation. More
precisely, they introduced the notion of, J- and

K-segments for the planar case. For spatial STIT
tessellations we introduce now a similar concept
and make the following classification for segments
contained in the 1-dimensional network of the 3-

dimensional STIT tessellation:

— a K-segmentis an edge of the tessellation, that
means it is a linear segment in the 1-network
between two vertices but with no further vertex in
its relative interior,

— anl-segmentis the maximal union of connected
and collinearK-segments, that means it cannot
be enlarged by another collineak-segment
(alternatively, the-segments are the sides of the
plates born during the spatio-temporal construction
of STIT tessellations explained earlier),

~ aJ?-segmenis a side of a plate and Fig. 7.A plate (red) with a proper &-segment (cyan)
— aJ®-segmenis a ridge of a cell, see Fig. 6. on its boundary.

In Fig. 7 it is illustrated that the classd&) and

J® do not coincide, by constructing a 'propel?-

segmenti.e., one which is not &-, J®)- or |-segment
] at the same time. To see it, observe at first that the
cyan segment in Fig. 7 is a side of the red plate, hence
a J(@-segment. Further note, that it has a vertices in
its relative interior, hence it is not ld-segment, it is
also not a ridge of any of the involved cells, thus, it
cannot be d®-segment. Moreover, it can be enlarged
by another collineaK-segment, which means that it
| cannot be am-segment.

/ The classes oK-, |-, J@- andJ®-segments are

denoted byKj, |1, Jiz) ande’), respectively. Fol €
/ {K,1,3@ 331, the intensity ofY-segmentsi.e., the
mean number of -segment midpoints per unit volume
is denoted byAy,. The mean length of the typical
Y-segment isly, and analogously to the concept of
Fig. 6.Each time two K-segments (redj?3segments adjacent objects, the mean number of vertices in the
(cyan), 3¥-segments (yellow) and I-segments (green)elative interior of the typica¥-segment is denoted by

Note that the class oK-segments is equal to Nrelint(v;)v -
the class of edgek of the tessellation. Thel-
segments are 1-dimensional faces,, the sides, of

the primitive elements of the tessellatiod(® of TYPES OF FLATS
the 2-dimensional primitive elements, the plates, and
J® that of the 3-dimensional primitive elements, In referring to the different types of segments we

the cells. It is important to point out that the pointconsider now the 2-dimensional network associated
processes formed by the collection of #f)- andJ®®-  with a random STIT tessellation and introduce the
segment midpoints, respectively, is not simple, whictHollowing classification of the different types of plates
means that the segments are counted with multiplicitywe call thenflatshere in order to distinguish between
according to the number of plates or cells they belonghem, the primitive plates and the faces and facets of
to. the cells):
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— akK-flatis a plate of the tessellation, that meansitis The mean number of edges in the relative interior
a 2-dimensional convex polygon bounded by edgeer on the boundary of the typica{-flat is denoted
of the 1-network and without edges and vertices irby Nigjint(x,),e @nd Nogx,),e, respectively, withX
its relative interior, {K,J,1}, where we say that an edge- E is located

in the relative interior of aixX-flat x € X if relint(e) C

relint(x). Moreover we introducéN, p and Ny, p for

— an I-flat is the maximal union of coplanar and the mean number of plates adjacent to the typikal
connectedK-flats and cannot be enlarged by flat or the typical -flat, respectively.
another copland(-flat, see Fig. 8. Alternatively;
flats are the polygons born during the construction

of a STIT tessellation homogeneously in time. PARAMETERS FOR CELLS

— alJ-flatis a facet of a cell and

We will also derive some new topological mean
values for the typical cell of a spatial STIT tessellation.
As already mentioned in the section on STIT
tessellations, the typical cell of a STIT tessellation and
the Poisson polytope of a Poisson plane tessellation
with the same surface intensity share the same metric
mean values, such as mean volume, mean surface
area and mean length of the edge skeleton. For this
reason we will restrict our attention to the topological
parameters. We denote Isk(c) the 1-dimensional
boundaryi.e., the edge skeletonf objectsc of class
C.

We are interested in the following topological
mean values: The mean number of vertidégc) v
and the mean number of edghg.c) e on the edge
skeleton of the typical cell.

Fig. 8. A K-flat (red), a J-flat (blue) and an I-flat
(green).

_— . SUMMARY OF NOTATION
Note, that by definition the sides of l&-flat are

J2)-segments,)®-segments coincide with the sides  For clarity we summarize here the notation mostly
of J-flats andl-flats are surrounded blrsegments. introduced so far. LeY ¢ {K’J(Z)’\](3),|} and X ¢
Moreover, the class oK-flats is equal to the class {K,J,1}. Furthermore we use the abbreviatigns.v.

P of plates and the collection al-flats corresponds for 'per unit volume’, typ. for 'typical’ and r.i. for

to the class of cell-facets. Again, the homogeneougelative interior.

point process of-flat centroids is not a simple one in Intensities:

general, since one plate can be a common facet of two '

neighboring cells. Sy — surface intensity,e., mean total surface area

From now on we denote b¥,, J, and I, the p-u.v.

classes oK-flats, J-flats andl-flats, respectivelyi.e., Ly — edge length intensity,e,, mean total edge
we use the subscriptto make clear the dimension of length p.u.v.

the objects under consideration in order to distinguish M, e, Ap, Ac — mean number of vertices, edges,
between flats and segments, where for the latter we plates, cells p.u.v.

have used the subscriptlready in the last section. .
_ _ _ Ay, Ay, —mean number of T-, X- vertices p.u.v.
By Ax, we denote the intensity of-flats,i.e., the

mean number oKX-flats per unit volume (this is the
mean number oX-flats centroids per unit volume) and
by Ax, andUy, the mean area and perimeter of theTypical objects:
typical X-flat, whereX stands for one of the literals,
Jorl. Furthermore, IeNgjint(x,),v @NdNpqx,) v be the
mean number of vertices in the relative interior or on  Ay,, Ux, — mean area and mean perimeter of the
the boundary of the typica{-flat, respectively. typ. X-flat

Ay, Ax, - mean number of -segments anX-flats
p.u.Vv.

Ly, — mean length of the typX.-segment
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W(X),(C) — mean number ok-dimensional where the integration is always ovBf and [us, up]

polytope face(t)s of the typX-flat (k= 0,1) and denotes the area of the parallelogram spanned by

the typ. cellk=0,1,2) up and ux and [ug,Up,us] is the volume of the
Adjacent objects: parallelepiped spanned by the vectoysu, andus (in

No, o, — mean number of primitive objects of type the terminology of Schneider and Weil, 2008;, uy]

0, adjacent to the typ. object of ty@y, Oy, O, ¢ and [ug,up,us] are subspgce determlnants). T.hese
{V,E,RC}: two constants reflect the influence of the directional

distribution R on the mean values of the random

Nrelint(v;)v — Mean number of vertices in the r.i. of tessellation.

the typ.Y-segment

Nrelint(xp),v» Nod(xp) v — Mmean number of vertices in In the isotropic case these constants have the
the r.i. and on the boundary of the tyg-flat particular valuesl, = /4 and s = /8 as can be
Nrelint(x,),E — Mean number of edges in the r.i. of concluded from Thm. 4.6.5 in Schneider and Weil
the typ.X-flat (2008).

N3, p, Ni,,p — mean number of plates adjacent to

the typ.J-flat or to the typl-flat, respectively The following formulas for mean values for

Nekc)v: Nec) e — Mean number of vertices or homogeneous spatial STIT tessellations were already

edges, respectively, in the edge skeleton of the tygroved in Nagel and Weiss (2008):
cell

The following mean value relations can easily be Ay = §7Z3, AE = 2§753,
derived: 7 1
Ap = 6§7Z3> Ac = 6§7{3’
Ny, v = Nrelint(Yl),V +2 and Ny, E = Nrelint(Yl),V +1 1¢
2
for the mean number of vertices and edges in the Le = 25, 3’
relative interior of the typica¥-segment, 18 7, 6 1
UP — e 7 AP = -0 7
Nbd(xy),E = Nod(x,)v 7Sy {3 7, {3
for the mean number of edges on the boundary of the Npyv = Npg = %S, Ney = 24,
typical X-flat, ’ 7 ’
Nce =36, Nep = 14
Nx, v = Nretint(x,).v + Nod(xp) v
and Moreover, for the edge length intenslty we have
Nx,.E = Nrelint(%,),E + Nod(x,) v
for the mean number of vertices and edges adjacent to Ly = S

the typicalX-flat.

These values will be used in the sequel to derive further

KNOWN MEAN VALUES mean value formulas for STIT tessellations in 3D.

STI¥Vete;esgeE?|$i£:1%>nz Sr;())v:',v%? sug‘g?eo?rig?\g::; (s}gatial Fpr completeness we recalllnow the values. for the
Sy < o and fixed directional distributiof®, which is a metric mean values of the typical cell. Denoting by
probability measure on the upper half-sph&te such Vol the mean volume, b the mean surface area,

that the set of directions in the support®fspans the PYUc the mean length of the edge-skeleton (perimeter)

whole 3-dimensional space. and byB¢ the mean breadth of the typical cell we have
We define the two constan{s and{s by
6 1 121
VO = a3 5 = =3,
b= //[ul,uz]ﬂz(dul)ﬂz(duz) : b S¥E = S¥E
18¢, 3 {
{3= ///[Ul,uz,U3]9{(dul)93(duz)9z(dus) , Ue=5,7 B~ 25,2
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TOPOLOGY OF VERTICES NEW MEAN VALUES FOR
VERTICES

The two different types of vertices and moreover
their topology illustrated by Fig. 5 will play a crucial In this section we derive at first expressions for the
role. For later reference, we summarize now some dhtensitiesAy; and Ay, i.e, the mean number of T-
their most important properties. We start with the T-and X-vertices per unit volume, respectively. To do so,

type vertices and note that a T-vertex is ... recall that the mean total number of vertices per unit
volume equals$y,{s, i.e, Av = Ay, + Ay = S5,{3. We
... an endpoint of 4 edges, observe now that each T-vertex is a corner of exactly

. ~ 2 cells and an X-vertex cannot be a corner of any
... an endpoint of 10)-segments and located in cell. With vo(C) = 8 we have 8¢ = 2\, and with

PR >
the relative interior of anotheX?)-segment, Ac = 1825 it follows

.. an endpoint of 8(3-segments and located in the 5
relative interior of anothed(®-segment, Ay =4Ac = §§7(3

... an endpoint of 2-segments and located in the
e . ; and
relative interior of a third one,

2 1
... acorner of 5 plates and located on the boundary ~ Av = Av — Ay = Sy{s— §§753 = §§753-
(but no corner) of a sixth plate,

Thus, for a spatial STIT tessellation we have obviously
... a corner of 6J-flats, located on the boundary the proportion

(but no corner) of two othed-flats and in the
relative interior of a ninth one, Ay Ay =211

.. a corner of oné-flat, located on the boundary \oreover, the following topological mean values are
(but no corner) of anotharflat and in the relative  gasily derived from the topology of vertices in a spatial

interior of a third one, STIT tessellation:
... a corner of 2 cells, located on the edge skeleton Ny g =Ny, g =4
(but no corner) of a third cell and in the relative i o ’
interior of a cell-facet of a fourth one. Nvy.p = Ny, p = 6,
X-type vertices have the following topological and
features: An X-vertexis ... Nvr.c =Ny c=4,
see Fig. 5.

... an endpoint of 4 edges,

... an endpoint of 8(?-segments and located in the

relative interior of another twd(?-segments, NEW MEAN VALUES FOR
TYPICAL SEGMENTS

... located in the relative interior of##3-segments,
.. located in the relative interior of2segments,, The present section is devoted to mean values
for the four different types of segments introduced
... a corner of 4 plates and located on the boundaryhove. It is our aim to calculate their intensities, their
(but no corner) of two further plates, mean lengths and the mean number of vertices in their
relative interior, which are denoted by,, Ly, and
Nrelint(v;).v» respectively, wher¥ stands for one of the

literals from{K,J J®) 1},

Recall at first from the section on known mean
values that
... located on the edge skeleton of 4 cells. Ak =Ae = 2§753

. : . and that
These relationships will from now on be used 1 &

frequently in the course of our considerations.

... located on the boundary (but no corner) af-8
flat,

... located on the boundary (but no corner) df2
flats and in the relative interior of a third one,
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Moreover, it follows from the definition df-segments From the equation, L, = Ly we get furthermore
that

Nrelint(k,)v = O- L — Ly 3 &
1

We have seen above that each T-vertex is a corner Ay 25083
of exactly 5 plates and each X-vertex is a corner o
exactly 4 plates. Thus, we haxgvo(P) = 5Ay; +4Ay,
and therefore the typicd{-flat has in the mean four

f\/loreover, each T-vertex lies in the relative interior of
exactly one I-segment and each X-vertex in the relative
interior of exactly two. By taking into account the

cornersy.e., proportion of T- and X-vertices, we arrive at
Vo(P) = Vo(Kz) =4, 4
_ Nrelint(ll),v -)\|l = 1-)\VT + 2')‘Vx = éAV'
With /\pVo(P) = AJ(Z) and )\J(z)LJ(z) = 3Ly — recall
that each edge ils contairlmed lin the boundary oHence,
exactly 3 edges and thatsegments are counted with N B %)\v _5
multiplicity — we obtain now relint(ly),V = A
1
14 9 & meaning that the typicdlsegment contains 2 vertices
)‘Jia = 33%753 and Lﬁz) 145,75 in its relative interior in the mean. Note, that this is in

line with the observation thaf;, = 3L, .

The typicalK-flat has in the meaﬁ7§ vertices on its

boundaryNpy = 376 Since — in the mean — 4 of them

are corners of the plat&flat) we get NEW MEAN VALUES FOR
i TYPICAL FLATS
N —ﬂ(N _4)_7_4_2
relint(3{”) v AJ<2> i 4T Mean values for the typicdl-flat were considered
' by Nagel and Weiss (2008). They obtained
i.e, in the mean, the typical®-segment containg 7 s, 6 1
vertices in its relative interior. A, = 6§7Z3’ Ak, = S @?
K 3
From the property that a STIT tessellation has a 36 1; Z
Poisson-typical cell we get immediatel = == - 252
yp g y Nk,v = Nk, E 7 Uk, 75, 78"
1
L.@= 7% Additionally, in the previous section we have shown
A Sy s

that vo(K2) = 4. Moreover, from the definition ok-

from Stoyan et al. (1995) in the isotropic and flats it follows
Schneider and Weil (2008) in the anisotropic case. The
fact that each edge is adjacent to two ridges of cells and Nrelint(kz) v = Nrelint (k)£ = O-

thatJ-segments are counted with multiplicities implies : . .
g P P We consider now the typical-flat. Since STIT

2Ly tessellations have Poisson typical cells, the mean area
)‘Jf?) LA 2§7(3' of the typicalJ-flat is the same as the mean area of
(3) . .
I a facet of the Poisson polytope, which is well known

from the literature (see Stoyaet al, 1995, for the

To _Obta_mNrennt(Jﬁ),v we observe thaLJfD = 2Lk, isotropic case and Schneider and Weil, 2008, p. 490,
which yields for the mean value in the anisotropic case). From this
Nre”m( W)y~ 1 it follows
We calculate now the intensity,,, i.e, the mean 21 4
R : AJz — T~ 7 UJ2 - 7
number ofl -segments per unit volume. To this end we S ¥ Sy {3
notice that any T-vertex is the endpoint of exactly two
I-segments and arlysegment has two endpoints andand also
they are T-vertices. ThusA\? = 2Ay;, which leads to Vo(J) =4,

2 i.e, the typical J-flat is in the mean a topological
A= §§753- quadrangle.
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The intensity A;, can be calculated from the as follows from the fact that STIT tessellations have

relationAy, Ay, = 2Sy, which yields Poisson typical cells, the observation that sectional
STIT tessellations are again stable under iteration and
Az, :5\:'753- the known mean values for Poisson line and plane

To consider the mean number of edges in the relativi£SSellations in Stoyaet al. (1995) or Schneider and

interior of the typicalJ-flat, we use the following eil (2008). Inorder_to obtain the uncond_itioned mean
topological property of STIT tessellations: Any edgeV‘"‘Iue'A'2 we havg to |ntegratA|2(B . S) with respect
of the tessellation is adjacent to three cells. In one o &/l possible birth times. To this end we need the
them that edge is contained in the relative interior of £I1h time distribution of the typicdl-flat or its density
facet and in the two others it is contained on a ridge oPg(*)- To obtain a formula, note that from invariance

these cells. in order that we obtain reasons (homogeneity of the tessellation) it follows
that the intensity, (B < s) of I-flats with birth time
Ae smaller thars equalscs® with some universal constant

Ny =E -2
relint(%2).€ = 35, ¢ > 0 not depending oa Thus, by the definition of the

Next we remark, that any T-vertex is contained in themark distribution as given in Chap. 3.5 of Schneider
relative interior of exactly oné-flat and that any X- and Weil (2008) we see that the birth time distribution

vertex is contained in the relative interior of aeflat. 'S 9'VeN BY
This implies
M,(B<s) ¢ &
PB<s)=5"r—c =—g=a 0<s<Sy
Nrelint(3,) v = v _ g AL(B<Sy) ¢S S
2) AJZ 3

Hence, the birth time densityz (s) equals
Any vertex of a STIT tessellation is located on the B5(S) €

boundary of eight cell-facets. Therewith we obtain
3s
8Ay pﬁ(s):§, 0<s< Sy.
Nod(3,)v = Nod(3,),E = 3= 8.

J2
Integration ofA, (8 = s) with respect to this birth time

The mean number of plates adjacent to the typieal density yields immediately the value far,:

flat is given by

Sy
No= 2= L Ay = [T A(B = 9pa(e)ds
J
- Sv 21 3¢ 6 1
because each plate is a part of twdflats. = ??‘Tds:*?'
Summarizing, we find for homogeneous spatial STIT 0 3 Sy €

tessellations the following mean value relation .
For a closely related approach in the planar case see

Ny,p-Ap =Ay,. Meckeet al. (2010).
Now, we consider the typicatflat, whose mean area  Having calculated the mean area of the typical
is given by flat, we observe now thalj, A, = Sy implies
6 1
/A\|2 - 5 5 - SV 1
(s A= =287
S I A, 69%7(3

This can heuristically be seen as follows (the
mathematical justification of this approach is provided-, .| = _ y lcul h :

by Corollary 2 in Schreiber and &k, 2010): We Ofr?mn;mel;fu'z we can caiculate the mean perimeter
regard the STIT tessellation under consideration as 2

a time-augmented random processlefats, where Ly 6 &
the flats are marked by their respective birth times U, = YA
B € (0,Sy) in referring to the construction explained L Svds

in the section on STIT tessellations. Observe now, th
conditioned on its birth time & 3 =s< Sy, the mean
areal, (3 = s) of the typicall -flat is given by

al&bove we have seen that any T-vertex is a corner of
exactly onel-flat, is located on the boundary but no
corner of anothef-flat, and is contained in the interior
21 of a third one. On the other hand, any X-vertex is
A,(B=s)= 2 located on the boundary and is no corner of twftats
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and in the interior of a thirt-flat. We obtain from these We conclude that the typical cell of a STIT tessellation

considerations

Av

has in the mean 36 edges, 24 of them are located on the
edge skeleton and 12 in the relative interiors of cell-

Nrelint(1,)v = " =6, facets, in the mean.
2
Nogy = 2V _12
Pdlz)V ), - SUMMARY OF THE MEAN
Niov = Nretint(1,),v + Nba(i,) v = 18, VALUES
My _ .

vo(l2) = 5™ =4 The following tables summarize the mean values

12 obtained so far. First, the new mean values for

In particular, the typicall-flat is in the mean a the typical cell are presented (Table 1). Next, we
topological quadrangle, which is not surprising, sincesummarize the new mean values for the different types

| -flats areJ-flats at their birth time.

of vertices (Table 2), segments (Table 3) and flats

Any edge of a STIT tessellation is located in the(TabIe 4).

relative interior of exactly oné-flat, so that the mean
number of edges in the relative interior of the typical
|-flat can be calculated from

AE
Nrelint(lz),E = )‘Tz =12 w C sKC)
For the mean number of plates adjacent to the typical Nvy 24 20 v(C)=8
|-flat we obtain
Nwe 36 24 vi(C)=12
N p— 2P —7 '
P = , .

From this we get a mean value relation for the typical
I-flat of a STIT tessellation analogously to that for theTable 2.Mean values for vertices.
typical J-flat:

Table 1.Topological mean values for the typical cell.

Nizp-Ap = As. Z Z=T Z=X both
A, 3830 1SS Sis
NEW MEAN VALUES FOR THE ’
TYPICAL CELL Nee 44—
6 6 —
To deduce mean values and mean value relations N
for the typical cell, we consider again the topology of Ny, ¢ 4 4 —
the vertices mentioned earlier in a separate section. :
Recall, that each T-vertex is located on the edge-
skeleton of three cells, whereas each X-vertex is
adjacent to the skeleton of four cells. Hence, it foIIowsT
able 3.Mean values for segments.
Y VRV Y
N. =—1 X =20.
MOV A T A v, ke 3P 9Py
The typical cell of a STIT tessellation has in the mean 3 143 3 23
24 vertices, 20 of them are on the skeleton (8 corners M, 25)0s 350 25y(s 35v(s
and 12 in the relative interiors of the ridges) and 4 Ly, 1L 9 & 14 3%
vertices are located in the relative interiors of the cell- ! By Wl Svi v
facets, in the mean. Neelintyp)y O Z 1 2
Any edge of a STIT tessellation is adjacent to the Ny 2 16 3 4
edge skeleton of two cells, which implies e 7
2Ae Nrelint(v;),E 1 9 2 3

NSk(C),E — K - 24
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Table 4.Mean values for flats. U, = 12 A, = 48
2 S\77 2 7]_[%7
16 48
=—, A, =—5.
X2 Ke & I =g M =g
Axy ;S S S Cuboid caseHere we have, = 3//32 = 2/3and {3 =
3!/33 = 2/9 and hence
A 61 21 61
X2 RE KRG R 3 27
LK ~ A 2 = T e
186 46 68 too2syt ) 14sy’
Ye 5% w6 wé 3SV ' ;‘SV
L R — a L| = Ac
Vo(X2) 4 4 4 aAT Sy 2y
54 12
UK = Sa UJ = a
Nrelint(Xo) .V 0 % 6 2 7Sy 2 Sy
o, 18,7
Noayy ¥ 8 12 2Ty T Ty
9 27
Nx, v 376 %6 18 Ay A 2 2
Nrelint(%,),E 0 2 12
SOME EXTREMUM PROBLEMS
Nod(x,).E 3 8 12 . . .
We have seen in the section on STIT tessellations
N 36 10 24 that the law of a homogeneous spatial random STIT
Xo,E 7 . . . . .
tessellation is uniquely characterized by its surface
7 intensity and by its directional distribution. The surface
Nx,.p 0 3 7

intensity is a positive real constant0Sy < « and the
directional distributiorR is a probability measure on
the upper half-sphe@{ fulfilling the non-degeneracy
condition from above.

TWO EXAMPLES
Recall, that a convex bodi c R® is uniquely
The new metric mean values considered so fadetermined by itsupport function (K, -) defined by
i.e, the quantitieslLy,, Ux, and Ax, with Y ¢
{K,J@ 3B 1} and X € {I,J,K} are now calculated
e?<plic_itly in two _spe_cial s_ituations..Namer, v_vhe_n theFor the law of any homogeneous random STIT
g:?s?m—nﬁ!e?ss;?rgggfgsless?: Igigl.f?.rrf ;rl,ztr\',eﬁégn at(E(Tssellation with sur);ace intgnsity 9 Sy < © and

h(K,u) :=max{(x,u) : xe K}, ueR3

. . . irectional distributioriR we define now a convex body
is concentrated with equal weight on three orthogon

e . . . ,R) by puttin
directions. Since in the latter case the cells are cuboi S(SV )by p 9
with probability 1 we call this case tlwiboid casesee
Fig. 4 for an illustration.

h(M(Sy, R), ) = SV/S2 (V) [R(dv), ueRS.

Isotropic case:Here we havel> = /4 and {3 = /s,

which leads to The centrally symmetric convex body(Sy,R) is

called Steiner compacassociated with the law of the
STIT tessellation or itassociated zonojdy referring
to the characteristic property Bf(Sy,R). Notice, that

©

the zonoid'1(Sy, R) is at the same time the associated
zonoid of the homogeneous random Poisson plane
tessellation with the same parameters, see Schneider
and Weil (2008). From the general theory ibidem we
infer that M(Sy,R) is uniquely determined by the
parameter$y, andXR and that given a centered zonoid
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there is exactly one law of a random STIT tessellatior5f(I1) /Vol(I) or br(I) /Vol(M). These expressions are
having the given convex body as its Steiner compactvell known from convex geometry asoperimetric
Because of this one-to-one correspondence all meamd the latter assepiphanic coefficienBy applying
values for homogeneous spatial STIT tessellations argassical inequalities for intrinsic volumes of convex
expressible in terms of the geometric characteristics dfodies from convex geometry, see for example Gruber

the associated Steiner compact. These are: (2007), we can deduce that the mean vallgs
Vol(f) = Vol(N(Sy,R)) - the volume of Ux, and A with Y € {K,J® 3?1} and X €
N(Sy,R), _{I,J,K} ach_leve thelr_ minimal valu_es if and or_1|y.
if the associated Steiner compact is a ball. This is
Sf(N) = Sf(M(Sy,R)) - the surface area of gy iy the case, when the directional distributiBn
M(Sv,R), is the uniform distribution orSi, i.e, in the case
br(M) = br(MN(Sy,R)) - the mean breadth of when the homogeneous random STIT tessellation
M(Sy,R). is additionally isotropic. The lower bounds for the

resulting inequalities can now be obtained from the the

Here, we us&/ol, Sf andbr instead ofV, SandB in . X .
grevious section and we get the following couple of

order to distinguish between these functionals and th

mean values considered in an earlier section. Inequalities:

Note that from Thm. 10.3.3 in Schneider and Weil Le > 1 Lo i Lo 3 L~ i
(2008) it follows thatvol(IM), Sf(M) andbr (M) are in K1 =g, W=7s, WP =g, =g,
terms ofSy, (> and{3 given by 36 8 12

UK2 > BT UJz e ) U|2 > o
Vol( S%7Z ~ > >
0 = A~ 9
g 6 I W
sf(n) = o, nsy S nSy
br(Nn) = % with equality holding only in the isotropic case.
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