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ABSTRACT

An algorithm is proposed to improve the performance of skin detection algorithms under poor illumination
conditions. A hybrid skin detection model is addressed to solve these problems by combining two Gaussian
models of skin under normal conditions and bright illumination. According to the distribution of the
combined models, the algorithm automatically evaluates the skin segmentation result of an adaptive
threshold algorithm based on a Gaussian model by estimating the illumination conditions of image. If the
estimation result shows that the illumination condition is very different from the normal one, the skin color
of the original image needs compensation, and then the algorithm feeds the compensated image back to the
Gaussian model for finer skin detection. The experimental results show that our algorithm can cope with a
complex illumination change and greatly improve skin classification performance under inferior illumination
conditions.
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INTRODUCTION

Skin color is an important visual cue for face
detection, face recognition, visual tracking, video and
image comprehension. A lot of algorithms in the
above areas use a skin color detection algorithm as a
post-processing step to separate skin regions from the
background of a scene and treat the skin regions as
candidate faces for detecting and tracking. Therefore,
precise and reliable skin region detection and
segmentation under different conditions is the key
factor to improve the performance of these algorithms
in face detecting and tracking.

Most existing skin detection algorithms work
well in a normal environment, but are not reliable in
the case of unpredictable and drastically changing
real-world environments. Under a distinct change of
illumination, skin color shows up as too bright or too
dark, or exists with highlight regions somewhere on
the forehead, cheekbone and arms, or with shadow
regions somewhere over the face. Even in varying
colored light conditions, the colors that skin shows
are very different from the original skin color. In the
above-mentioned cases, most existing skin detection
algorithms often detect nothing or fragmented skin
regions, which will seriously influence the performance

of a face detecting and tracking algorithm based on
the face color cue. As a result, skin detection under
the above conditions has become a ‘hot’ issue in
recent years. In order to deal with a dynamically
changing environment, a robust algorithm is proposed
in this paper by automatically evaluating and adjusting
the skin segmentation result based on a hybrid skin
detection model.

SKIN COLOR DETECTION UNDER
UNCONSTRAINED ILLUMINATION
Conventional skin detection algorithms consider

that the distribution of human skin color of different
people is clustered in a chromatic color space and can
be represented by a Gaussian model. By measuring
the probability that each pixel belongs to the skin
cluster, skin colors and non-skin colors are separated.
The research shows that luminance may vary across a
person's face due to the ambient lighting and is not a
reliable measure in separating skin from non-skin
regions. It follows that skin colors of different people
differ much less in color than in brightness. In other
words, skin colors of different people are very close.
So luminance can be removed from the skin color
representation in the chromatic color space, and a
‘pure’ color space, without the luminance component,
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is used to modeling skin color; for instance, the Cb-
Cr and I-Q space instead of the YCbCr and YIQ
space. But under significantly changing illumination,
skin colors of different people, even of one person,
differ a lot in color. This changes the skin color
distribution and weakens the skin clustering effect in
the chromatic space. In order to segment human skin
regions from non-skin regions based on color, we
need a reliable skin color model that is adaptable to
people of different skin colors and to different lighting
conditions.

To reduce illumination disturbance, a normalized
color space is used in the representation of the human
skin model in many proposed approaches; for
instance, the image is transformed from RGB space
to r-g space, where r = R/(R+G+B), g = G/(R+G+B),
or from YCbCr space to NCb-NCr space, where
NCb = Cb/(Y+Cb+Cr), NCr = Cr/(Y+Cb+Cr). This
can reduce the brightness dependence in the
chromaticity coordinates r and g, or NCb and NCr.
This technique is the simplest solution for unpredictable
illumination conditions. But it can only achieve a
minor improvement in skin detection results and is
successful only if the lighting conditions do not change
too dramatically.

Under varying color lighting conditions, skin color
may change not only in the luminance component, but
also in the chrominance components. For instance,
captured skin color deviates towards bluish if the face
is illuminated by fluorescent light, or towards reddish
under tungsten light. One solution for skin detection
under colored lighting conditions is to correct the
image color first, which is also called color constancy.
But most color constancy algorithms are constraint
approaches. The priori conditions these algorithms
rely on, such that the average color in the scene must
be gray, and that the illumination change must be
global, are rigorous only sometimes for real-life cases.

For skin detection under unconstrained lighting
conditions, a single Gaussian model is not sufficient
to model the distribution of human skin color. Adaptive
skin selection approaches model the distribution of
skin color as multiple fixed Gaussian models and
adaptively select the best one of the Gaussian models
as the skin model in measuring the skin-like color
probability. Phung et al. (2002) argue that the
decision boundary between skin and non-skin in the
chrominance plane is reduced for low and high
luminance. Therefore, in their approach, the luminance
component is taken into account in skin and non-skin
classification. The distribution of skin color is
modeled with three Gaussian clusters that correspond
approximately to three levels of luminance: low,

medium and high. If the minimum distance from a
pixel to the three Gaussian clusters is below a certain
threshold, the pixel is classified as skin. Wong et al.
(2003) separate the Gaussian model into six groups
along the luminance axis, any one of which has its
own skin decision boundary. A pixel in the image is
classified as skin if it belongs to any one of the six
groups. Their approaches constitute a successful
solution to skin detection under poor or strong
lighting condition. But in real life, the manner of the
illumination change is more complex.

The skin model mixture approach also models the
distribution of skin color as multiple Gaussian
components, but the skin decision is based on the
mixture contribution of these Gaussian components.
Tang et al. (2000) use Gaussian models under two
normalized color spaces, r-g and NCb-NCr. The
image is first transformed into the two normalized
color spaces, and next, skin color similarities of each
normalized image pixel are measured in the r-g space
and in the NCb-NCr space, respectively. The final
skin color similarity of each pixel is obtained by
combining the two similarities in the two normalized
color space. In the Gaussian mixture model (Raja et
al., 1998; Yang and Ahuja, 1999), the conditional
density for an image pixel belonging to skin is modeled
as a mixture with multiple component densities. Each
component is Gaussian with its own mean and
covariance matrix, and the mixture parameters decide
the contribution of each component to the skin
similarity. Expectation Maximization (EM) provides an
effective maximum likelihood algorithm for fitting the
mixture. The Gaussian mixture, in fact, models the
different skin tones as different Gaussian clusters, which
enhances the ability of the skin model adapting to the
change of skin tones under different illuminations.

In order to cope with a wide variation in
illumination, we require a dynamically adaptive skin
model. The parameters of the skin model are learned
and updated online to reflect the changing color of
skin under varying illumination. Model updating (Sahbi
et al., 2001) is achieved by recursively adapting the
mean, covariance matrix and prior probabilities of
each Gaussian cluster using pixels from the detected
face region. Since the face is generally oval in shape,
pixels from an oval region on the face tracking result
may be taken as training pixels. But this incurs a risk,
because not all pixels in the oval region can be safely
treated as skin, especially when tracking failures occur.
Therefore, avoiding color data from the erroneous
frames to be used to adapt the skin model, tracking
failures have to be detected for frames-selective
adaptation (Raja et al., 1998). The skin locus (Soriano
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et al., 2000; 2003), which is a chromatic constraint
using the knowledge of the range of skin color under
the normalized color coordinates, is added to
geometric constraints for selecting training pixels to
update the skin model. In general, the dynamically
adaptive skin model is used in face detection in video
sequences or real-time face tracking, and the training
data for updating the model is sampled from the
observed frames. It usually assumes that the lighting
conditions must change smoothly over time and that
the updated skin model based on the previous frames
must reflect the lighting change in the next frame
correctly. Therefore, it is not suitable for face detection
in still images obtained under unconstrained lighting
conditions.

Unlike the previous work, we use two Gaussian
skin models, namely one Gaussian model as the ground
truth model for skin detection and segmentation, and a
second one for adaptive skin segmentation result
evaluation. The adaptive skin detection scheme based
on this model can cope with complex illumination
changes, and the adaptive method is suitable for face
detection in both still images and live video.

BIGAUSSIAN SKIN DETECTION
MODEL
The selection of a color model to represent

human skin color is important for face detection in a
color image. The YCbCr color space is suitable for real-
time application and is used in many image and video
standards. But in order to show the efficiency of the
proposed approach, the YCbCr space is used instead of
normalized color spaces like r-g and NCb-NCr.

The distribution of skin color can be represented
by a Gaussian model ),( CmG , with the mean
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Selecting training pixels from manually segmented
skin regions can access the ground truth skin model
parameters. But the model parameters may vary for
individually selecting training data. Under changing
illumination, the color of skin pixels have also
changed and distributed outside of the skin color
cluster according to the normal skin color model, and
the conventional skin detection algorithms can be
unstable. If selecting distinct skin color pixels under

those conditions into the training set when accessing
the distribution model parameters, the skin model is
trained and adapted to accept the skin pixels under
those conditions as skin. But it will weaken the skin
color clustering effect in the chromatic space and
make the performance of skin detection algorithms
worse, because many non-skin pixels are incorrectly
classified as skin pixels. Consequently, a strongly
clustering skin color model leads to an increasing
skin false rejection and a decreasing skin false alarm.
On the contrary, a weakly clustering skin color model
leads to a decreasing skin false rejection and an
increasing skin false alarm. That is to say, there are
constraint relations between the degree of skin color
clustering and the performance of the skin detection
algorithm. A better clustering skin model can be
evaluated as that having both smaller skin errors and
meanwhile having a higher correct skin decision.

In order to investigate skin color distribution, skin
pixels obtained under different lighting conditions
from persons of different ethnicities - Asian, Caucasian
and African - are used. We draw one point for each
skin sample in YCbCr color space according to the
luminance and chrominance values of each skin
sample, and finally we get the skin color cloud shown
in Fig. 1, where Fig. 1a represents the distribution of
human skin colors under normal illumination. From
Fig. 1a, we can clearly find that the skin distribution
boundary in the chrominance plane varies along the
luminance axis. The middle part of the skin color
cloud has a larger boundary; on the contrary, the low
and high parts have a smaller boundary. This implies
that different skin decision boundaries should be
applied for different lighting conditions. But unlike
the previous work that splits the skin distribution into
three parts (Phung et al., 2002) or six parts (Wong et
al., 2003) along the luminance axis, we divide skin
color samples into two training sample sets for
normal and special environments. To determine the
distribution of human skin color under normal
conditions, skin samples are extracted from images
obtained under normal illumination and selected
equally between different ethnicities. Skin samples
under special conditions are gathered from bright skin
regions in images obtained under strong lighting
conditions, but with the exclusion of samples from
the highlighted skin regions. Fig. 1a and Fig. 1c
represent the skin color cloud under normal and
strong lighting conditions. The projection of the skin
color cloud on the Cb-Cr plane, which is illustrated in
Fig. 1b and Fig. 1d, can be considered to represent
the largest skin distribution boundary on the Cb-Cr
plane.
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a) Skin colors cloud (normal conditions) b) Projection of Fig. 1a on Cb-Cr plane

c) Skin colors cloud (strong lighting conditions) d) Projection of Fig. 1c on Cb-Cr plane

Fig. 1. Skin colors cloud of training samples for normal and special conditions in YCbCr space

.

As discussed in section 2, the ability of a skin
model adapting to illumination changes can be
strengthened if the skin samples from unconstrained
lighting conditions are modeled as separate skin
models. Therefore, each of the skin color sample sets
is modeled as a Gaussian model in the proposed
approach. Thus, we get two Gaussian skin models.
The formal one under normal conditions can be
represented by ),( sss CmG , standing for the standard
Gaussian skin model. The latter one, obtained under

special conditions, can be represented by ),( wwwG Cm ,
standing for the special skin model. By combining the
two clustering Gaussian models, we get the Bigaussian
skin detection model. Fig. 2 shows the distribution of
the model fitted by our data. In the following algorithm,
only the standard skin model is used as the ground
truth model in skin detection and segmentation,
whereas the special skin model is used as a reference
to take part in the automatic estimating and adjusting
steps in the adaptive algorithm.
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Fig. 2. Bigaussian skin detection model (left) and its projection on chrominance plane (right).

ILLUMINATION ESTIMATION AND
COMPENSATION
By comparing Fig. 1b and Fig. 1d, it can be found

that the skin distribution projection shifts on the Cb-
Cr plane noticeably, which is due to the different
lighting conditions when obtaining the skin color
samples. This implies that the change of lighting
conditions affects not only the luminance component,
but also the chrominance components of skin pixels.
The shift orientation and the shift range can be used
to estimate the environmental illumination.

Once the skin color regions have been detected
from a test image, we can estimate the illumination
conditions in the image based on the detected skin
regions. Since the illumination conditions under
which we have obtained the standard Gaussian model
are known and treated as normal standard conditions,
we use the chromaticity shift of detected skin regions
on the Cb-Cr plane to check the illumination diference
between the normal conditions and conditions derived
from the test image. If the illumination in the test
image is estimated to be close to normal conditions,
the skin segmentation result based on the standard
Gaussian model may be good enough, and most of
the skin pixels in the test image could have been
detected. On the contrary, if the illumination is
estimated to be very different from normal conditions,
the illumination change may affect the skin pixels
chrominance values. Therefore, the skin segmentation
result could be unreliable and needs improvement.

In the proposed algorithm, four statistics derived
from the skin models are used. They are the chromi-
nance component mean values m  and covariance C
in the Gaussian distribution model, standard deviation

S of chrominance components and luminance mean
value Y . The vector that characterizes the skin cluster
center is defined as TY ),( mv = , the components of
which are the mean luminance and chrominance
values. For the standard skin model ),( sssG Cm and
the special skin model ),( wwwG Cm , we have

T
sss Y ),( mv =  and T

www Y ),( mv = , where the
subscripts s and w denote the corresponding elements
of the normal and special skin models, respectively.

Suppose that skin color regions have been
detected from an image based on the standard skin
model and Gaussian probability metrics. We now
evaluate how seriously the illumination change affects
the chromaticity of skin pixels in the image and
decide whether or not the detected result needs
improvement. As the majority of pixels in detected
skin regions can be safely treated as reliable ground
true skin pixels, we can consider the detected skin
regions as known skin in the image. For simplification,
we use the mean values of the skin regions to
characterize the whole detected skin region. The
mean values can be treated as a known skin pixel P in
the image, which is sure to belong to the standard
skin cluster.

So for the detected skin regions, we have the
mean vector T

ppp Y ),( mv = . Three distances related
to P are determined as follows:
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where d ps is the distance between P and the standard
skin cluster center, d pw is the distance between P and
special skin cluster center, and d sw is the distance
between the two cluster centers.

On the chrominance plane, Cb-Cr, by measuring
the position of the known skin pixel P in the standard
skin cluster region, we can estimate the illumination
and color deviation of the original image. If P is out
of the maximum inscribed circle of the standard skin
cluster, which is centered in the standard skin cluster
center and has the maximum radius of all inscribed
circles of the standard skin cluster, the detected skin
results are affected by the illumination conditions of
the image and need improvement; otherwise, the
results are accepted as the final best results.

The evaluation criteria can be represented as

Rd ps >
~ , (4)

where R  is the radius of the maximum inscribed
circle of the standard skin cluster, and psd~ is the
Euclidean distance between the known skin pixel P
and the standard skin cluster center on the
chrominance plane Cb-Cr. So,

)()(),(~ 22
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where )( bps Cm∆  and )( rps Cm∆  are the bC  and rC
components of chrominance vector psm∆ , respectively,
and || ⋅  denotes the absolute value.

For fast evaluation, we need a simpler evaluation
equation than Eq. 4, hence we zoom in and zoom out
the left part value of Eq. 4.

For 0)( ≥∆ bps Cm and 0)( ≥∆ rps Cm , we have:

)()(~
rpsbpsps CmCmd ∆+∆≤ , (6)

and { })(,)(max~
rpsbpsps CmCmd ∆∆≥ . (7)

As P is a reliably known skin pixel, it can be
considered as a special point in the standard skin
cluster marked as Px = . So, we derive as follows:
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)(xSs  is the standard deviation of x , so 0)( >xS .

Then we have:

)()( bsbps CSCm =∆  and  )()( rsrps CSCm =∆ .

So, we zoom out the left part of (6) as follows:
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From Eq. 6 and Eq. 8, we have the simplified
evaluating equation
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where S s is the chrominance standard deviation of the
standard skin cluster.

If the evaluation is based on the special skin
cluster, we obtain another form of simplified evaluating
equation, namely
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where wS is the chrominance standard deviation of
the special skin cluster.

If Eq. 9 or Eq. 10 is satisfied, the illumination
conditions of the test image are estimated as having
seriously affected the chromaticity components of
skin pixels. Therefore, we must compensate for the
illumination change to improve the skin detection
results.

Illumination compensation is done on the whole
image by adjusting chromaticity components so as to
minimize the chromaticity shift. But it could be a risk
to accept non-skin pixels as skin pixels because the
chromaticity components of non-skin pixels are
changed. Therefore, the compensation values must be
controlled within a certain degree so that we can
safely accept skin-like color pixels as skin.

Because the illumination conditions under which
we obtain the special skin color model are known, the
chromaticity shift of special skin color can be a
reference to access the safe range for compensation.
Thus, the adjusting values in the YCbCr color space
are estimated using the distance of the two skin
clusters swd . The adjusting factor is defined as
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where ω is the scale factor ( %1=ω ), and the
adjusting factor of the chrominance pair components

),( rb CC  is determined by

T),(),( CrCbrb CC ηη=η , (12)

and the adjusting factor of luminance is determined by

YY η=)(η . (13)

In addition, since P is a reliable skin pixel of the
image and belongs to the standard skin cluster, the
chromaticity shift of P could be a safe range for
compensation. Therefore, the adjusting value vector
of the chrominance pair components is defined as

psrb CC mηδ ∆⋅= ),( , (14)

where the safety compensation range is determined by

psrb CC mηδ ∆⋅= ),( , (15)

and the compensation orientation is determined by
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In fact, Eq. 14 always tries to minimize the
chromaticity shift along the opposite directions of the
shift. As a result, it has no constraint to illumination
change and shows robustness for skin detection.

ADAPTIVE ALGORITHM PROCEDURE
Based on the Bigaussian skin color model, the

adaptive algorithm uses the illumination estimation
and compensation techniques discussed above to
evaluate the skin detection result automatically. If
necessary, the algorithm adjusts the original input
image and feeds it back to the Gaussian model
adaptive threshold algorithm for fine skin region
segmentation, shown in Fig. 3. Therefore, the basic
skin segmentation method that our algorithm uses is
also the Gaussian model adaptive threshold algorithm.
The present adaptive algorithm using the Bigaussian
model has four steps and is described in detail as
follows.

Fig. 3. Structure of the adaptive algorithm.

Input
image

Skin detection
using standard

Gaussian model

global minimum
thresholding

local minimum
thresholding

Illumination estimation
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Known skin P exist ?
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Yes
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Skin-reconstructed
 image
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1. For the input image, we use Eq. 17 to get the
likelihood value of each pixel belonging to the
standard skin cluster

),(),( rb CCPjiP =

 )]()(5.0exp[ 1 mxCmx −−−= −T , (17)

where ( )Trb CC ,=x  is the chrominance vector.
So we transform the original image to a gray
scale image. Each value of a pixel in this gray
scale image is the corresponding likelihood value
of the original image pixel. By using the adaptive
threshold technique, we get a binary image clearly
indicating the skin region and non-skin region.

2. We apply the binary image to the original image
and obtain the skin regions of the original image.
If the total area of the detected skin regions is up
to 0.5% of the whole image, the detected skin
regions can be safely treated as reliable ground
true skin in the image, and the mean values of the
skin regions can be treated as a known reliable
skin pixel P. Otherwise, the known skin pixel P
does not exist; the algorithm considers the skin
detection result in the first step as good enough
and outputs the binary image as the final skin mask.
If the known skin pixel P exists, we estimate the
illumination conditions of the input image by
measuring the position of P in the standard skin
cluster region on the Cb-Cr chrominance plane.
No matter which one of Eq. 9 or 10 is satisfied,
the skin detection result in the first step needs
improvement.

3. If Eq. 9 or Eq. 10 is satisfied, we compensate the
illumination change using Eq. 14 and apply the
adjusting value to the input image. Then we feed
the adjusted image back to step (1) in order to
segment skin regions again.

4. If the adjusted image needs to be output, the
luminance component must be adjusted, too.
Otherwise, this step is bypassed. The binary skin
mask output in step (3) is applied to the adjusted
image and the original image. Thus, we get a
skin-reconstructed image.

The adaptive procedure of the algorithm is
illustrated in Fig. 4. In Fig. 4a, a highlight exists in
the face and arms as the girl is under bright lighting
conditions. Therefore, the skin-likelihood values
measured by the Gaussian model, in Fig. 4b, are too
small to safely accept the corresponding pixels as
skin. When using the adaptive thresholding technique,
the result is not good in Fig. 4c. By automatic
evaluation, the detected skin regions are treated as a
reliable known skin pixel P in Fig. 4h, and its
position in the Cb-Cr plane is measured in Fig. 4i. P
(up triangle) is outside the red circle that indicates the
decision boundary we get from the evaluation criteria
Eq. 9. Therefore, Eq. 9 is satisfied and the whole image
is compensated. We see that the skin-likelihood values
in Fig. 4e are enhanced, and the skin detection results
in Fig. 4f achieve a notable improvement.

From Fig. 3, we clearly see that the algorithm
adapts to different lighting conditions by feeding the
illumination variation from the known standard
illumination conditions back to the basic segmentation
algorithm. Since the compensation always tries to
minimize the chromaticity shift due to the illumination
change, the algorithm adapts to different manners of
variation in illumination conditions.

For live video, the skin detection results of the
current frame can be used to estimate current
illumination conditions, and the compensation and
skin segmentation can be done on the next frame.
Therefore, the feedback becomes feedforward.
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a) b) c) d) e) f) g)

h) i)

Fig. 4. Illustration of the adaptive procedure. a) Original image. b) Gray scale image that indicates the skin
likelihood of original image. c) Skin detection result obtained from Fig. 4b using standard Gaussian model and
global minimum thresholding technique. d) Illumination compensated image using Bigaussian Model. e) Skin
likelihood of Fig. 4d. f) Final skin detection result obtained from Fig. 4e using standard Gaussian model and
Local minimum thresholding technique. g) Skin-reconstructed image. h) The detected skin regions in Fig. 4c
are projected on chrominance plane Cb-Cr and the mean values can be treated as a known skin pixel P. i)
Illumination estimation and compensation using Bigaussian model. The model with part upon the global
minimum threshold we used in Fig. 4c is projected on Cb-Cr plane. The large circle indicates the decision
boundary we get from the evaluation criteria Eq. 9.

THRESHOLDING IN THE ALGORITHM
Since different people with different skin colors

have different likelihoods, a fixed threshold value
cannot be found. An adaptive thresholding process is
required to achieve the optimal threshold value TOPT
for each run. Fig. 5 represents a typical ROC (Receiver
Operating Characteristics) for skin color detection for
different thresholds. In Fig. 5, TH and TL determine
the threshold search range, in which image pixels
with skin-likelihood higher than TH are classified as
skin, while pixels with skin-likelihood lower than TL
are classified as non-skin.

Fig. 5. ROC (Receiver Operating Characteristics) for
skin color detection for different thresholds.
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If we step the threshold value down from TH to
TL, the segmented regions increase. As a result, the
correct skin decision increases sharply, while the skin
false alarm gradually increases so that other non-skin
regions get included. However, the increase change in
the segmented region will gradually decrease until the
correct skin decision reaches a high value. If the
threshold value is too small, the segmented regions
have included many non-skin regions and the area of
segmented regions increases sharply, consequently
the skin false alarm increases sharply, too. Thus the
adaptive thresholding procedure aims at searching for
the optimal threshold value TOPT shown in Fig. 5, at
which the correct skin decision is high while the false
alarm is kept at a small value. In practice, the ground
truth skin for a test image is unknown. Therefore, we
use the increasing change of the segmented region
area to estimate the optimal threshold.

Fig. 6. Example of two thresholding strategies.

In our algorithm, shown in Fig. 3, two thresholding
strategies are used in different segmentation steps.
The global minimum threshold TGM is defined as the
threshold value at which the minimum increase in
segmented region size is observed while stepping
down the threshold value. The local minimum threshold
TLM is defined as the threshold value at which a local
minimum of the segmented region size is first observed
while stepping down the threshold value from TH to
TL. Evidently, TLM is always higher than or equal to
TGM. Fig. 6 illustrates the threshold searching results
under the two strategies. In our algorithm, the image
is segmented using the global minimum threshold TGM
in the first step. If the illumination estimation shows
that the skin-segmented result needs improvement, the
adjusted image is segmented using the local minimum
threshold TLM. The reason is that the chromaticity

shift has been compensated for in the adjusted image,
and thus a more restricted thresholding strategy must
be used so that we can safely accept skin-like color
pixels as skin.

EXPERIMENTAL RESULTS

To compare skin classification performance, the
standard skin model in our algorithm and the Gaussian
model using the adaptive threshold algorithm use the
same skin model parameters. The test images are
collected from the Web, with some from the ECU
face database (Phung, 2002). These images are divided
into two test sets: 120 images for SET-A and 60
images for SET-B. Any one of the images in the two
test sets would not be used in obtaining the skin color
model. SET-A is used as a normal image test set,
assuming that each image in it is obtained under
normal lighting conditions. On the contrary, SET-B is
used as a special image test set, in which a distinct
variation in illumination is observed in the skin
regions of each image, e.g., a large highlight or dark
regions in the skin, or skin under bright or dark
illumination, or skin under colored lighting conditions.
In order to obtain ground truth for a performance
evaluation, the skin regions in each image are marked
by hand.

In the following comparison, four different metrics
(Zarit et al., 1999) are used to evaluate the results of
the skin detection algorithms. SE (skin error, standing
for skin false rejection) is the number of skin pixels
identified as non-skin, divided by the number of
image pixels. NSE (non-skin error, standing for skin
false alarm) is the number of non-skin pixels identified
as skin, divided by the number of image pixels. S
(percent of skin correct standing for a correct skin
decision) is the proportion of all skin pixels identified
correctly. C (percent correct) is the proportion of all
image pixels (both skin and non-skin) identified
correctly. Considering the correlativity of the four
metrics, three derived metrics are defined as follows:

2/122
E )NSESE(M += ,

2/1222
S ))S1(NSESE(M −++= , (18)

2/12222
C ))C1()S1(NSESE(M −+−++= ,

where EM checks both kinds of error, while SM
and CM evaluate the skin detection results as a whole.

Thus, we have seven metric values for each
image and use the mean metric values of all test
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images to indicate the skin detection performance on
the test image set. For accurate evaluation, no additional
processing step is used to remove skin noise due to
segmentation.

Table 1 shows the performance of the two
algorithms on the normal image test set, SET-A. We
clearly see that the Gaussian model using the
adaptive thresholding technique achieves good
performance on SET-A. Both errors (SE and NSE)
remain at a low level, and the correct skin decision
(S) is 88.12%. On SET-A, the error level EM and
correct decision S of our algorithm increase little.
This implies that the skin detection result of our
algorithm is somewhat like an over-segmentation in
comparison with the Gaussian model. However, false
alarms of skin color can be removed by later stages of
face detection. Therefore, as a whole, our algorithm
achieves equivalent performance (see Ms and Mc) to
the Gaussian model. In fact, for most of the test
images in SET-A, our algorithm in Fig. 3 accepts the
segmentation result of the Gaussian model.

On the special image test set, SET-B, the
performance of the Gaussian model is unsatisfactory,

even when using the adaptive thresholding technique.
Due to the illumination problems, skin correct (S) is
much lower than that under normal conditions, and
the level of skin errors (SE) is high. This indicates
that the improvement of the thresholding technique
adaptive to illumination change is minor. In contrast
to this behavior, our algorithm works well and can reach
skin classification performance similar to that under
normal conditions. The improvement of skin detection
performance is very noticeable; the correct skin decision
(S) increases twice, while the error level ME keeps a
value equivalent to the Gaussian model. Fig. 7
compares the metric MS of the two algorithms on each
image in SET-B. We clearly see that for most of the test
images, the improvement is notable. But for some
images, MS values are equal to the Gaussian model,
because the algorithm considers the segmentation result
of the Gaussian model as a good enough and accepts
it, or that the colors of skin in the image are very
different from the normal ones and the algorithm
accepts the skin segmentation result of Gaussian
model for safe detection reasons. Fig. 7 also shows
that the simplified evaluation criteria Eq. 9 and Eq. 10
are effective in estimating the variation in illumination.

Table 1. Skin detection performance on SET-A.
__
C

___
SE

______
NSE

__
S E

___
M S

___
M C

___
M

Gaussian model with adaptive thresholding 0.9120 0.0287 0.0594 0.8812 0.0775 0.1605 0.1884
Our algorithm 0.8984 0.0219 0.0797 0.9078 0.0924 0.1546 0.1905

Table 2. Skin detection performance on SET-B.
__
C

___
SE

______
NSE

__
S E

___
M S

___
M C

___
M

Gaussian model with adaptive thresholding 0.7892 0.1700 0.0408 0.4618 0.1933 0.5851 0.6277
Our algorithm 0.8121 0.0590 0.1290 0.8265 0.1675 0.2741 0.3390

Fig. 7. Skin detection performance (Ms ) on SET-B.
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Fig. 8 illustrates some examples of test images in
SET-B and compares the skin detection results of the
two algorithms. We clearly see that there exists a wide
variation in illumination conditions in the images of
SET-B. Skin tones under these inferior conditions are
very different from those achieved under normal
conditions. Therefore, skin-likelihood values measured
by the Gaussian model are small (the second column
in Fig. 8). Evidently, adaptive thresholding helps
little in these cases. After illumination compensation,
skin tones have been reconstructed, and thus the skin

likelihood values are enhanced (the fourth column in
Fig. 8). With the help of the adaptive thresholding,
the skin detection results of our algorithm are
satisfactory. However, the detection results of our
algorithm in Fig. 8b and Fig. 8e fail to locate some
skin regions. As skin tones in these regions are
unreliable, the algorithm has to reject them for safe
detection. Additionally, the skin-reconstructed images
(the last column in Fig. 8) represent a good result,
and it could be a solution to color constancy based on
skin tone cues.

                     Gaussian model with adaptive thresholding                    Our algorithm

    original image       skin-likelihood        detected skin        skin-likelihood       detected skin        reconstructed skin

a)

b)

c)

d)

e)

f)

Fig. 8. Examples of images in SET-B and comparison of the skin detection results. a) Face with shadow and
highlight regions. b) Face under dark illumination. c) Faces under strong sunlight. d) Faces appear greenish.
e) Face appears pinkish. f) Face appears bluish violet.
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CONCLUSION

For images with a wide variation in the
illumination conditions, the improvement afforded by
the adaptive thresholding technique is minor, especially
for images obtained in a dynamically changing
environment. Bigaussian skin detection is suitable for
coping with a complex illumination change. Based on
this model, an adaptive skin detection algorithm is
presented. It automatically evaluates the detected skin
result by estimating the difference between the
illumination conditions of the image and the normal
one we derived for the skin model. The variation in
illumination is compensated, and the compensated
image is fed back to the Gaussian model for finer skin
detection. The experiment shows that our algorithm
achieves a noticeable performance improvement in
comparison with the adaptive threshold Gaussian
model algorithm, and offers a robust solution for skin
detection under varying illumination.
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