ISSN 2590-9770 The Art of Discrete and Applied Mathematics 2 (2019) #P2.06 https://doi.org/10.26493/2590-9770.1333.152 (Also available at http://adam-journal.eu) Regular antilattices Karin Cvetko-Vah ∗ Department of Mathematics, Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 21, SI-1000 Ljubljana, Slovenia Michael Kinyon † Department of Mathematics, University of Denver, Denver, CO 80208, USA Jonathan Leech Department of Mathematics, Westmont College, Santa Barbara, CA 93108, USA Tomaž Pisanski ‡ Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, SI-6000 Koper, Slovenia, and Andrej Marušič Institute, University of Primorska, Muzejski trg 2, SI-6000 Koper, Slovenia, and Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 21, SI-1000 Ljubljana, Slovenia, and Institute of Mathematics, Physics and Mechanics (IMFM), Jadranska 19, SI-1000 Ljubljana, Slovenia Received 18 November 2019, accepted 21 December 2019, published online 30 December 2019 Abstract Antilattices (S;∨,∧) for which the Green’s equivalences L(∨), R(∨), L(∧) and R(∧) are all congruences of the entire antilattice are studied and enumerated. Keywords: Noncommutative lattice, antilattice, Green’s equivalences, lattice of subvarieties, enumer- ation, partition, composition. Math. Subj. Class.: 06B75, 05A15, 05A17, 03G10, 11P99 ∗Corresponding author. †Michael Kinyon was supported by the Simons Foundation Collaboration Grant 359872. ‡Work of Tomaž Pisanski is supported in part by the ARRS grants P1-0294, J1-7051, N1-0032, and J1-9187. E-mail addresses: karin.cvetko@fmf.uni-lj.si (Karin Cvetko-Vah), michael.kinyon@du.edu (Michael Kinyon), leech@westmont.edu (Jonathan Leech), pisanski@upr.si (Tomaž Pisanski) cb This work is licensed under https://creativecommons.org/licenses/by/4.0/ ISSN 2590-9770 The Art of Discrete and Applied Mathematics 2 (2019) #P2.06 https://doi.org/10.26493/2590-9770.1333.152 (Dostopno tudi na http://adam-journal.eu) Regularne antimreže Karin Cvetko-Vah ∗ Department of Mathematics, Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 21, SI-1000 Ljubljana, Slovenia Michael Kinyon † Department of Mathematics, University of Denver, Denver, CO 80208, USA Jonathan Leech Department of Mathematics, Westmont College, Santa Barbara, CA 93108, USA Tomaž Pisanski ‡ Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, SI-6000 Koper, Slovenia, and Andrej Marušič Institute, University of Primorska, Muzejski trg 2, SI-6000 Koper, Slovenia, and Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 21, SI-1000 Ljubljana, Slovenia, and Institute of Mathematics, Physics and Mechanics (IMFM), Jadranska 19, SI-1000 Ljubljana, Slovenia Prejeto 18. novembra 2019, sprejeto 21. decembra 2019, objavljeno na spletu 30. decembra 2019 Povzetek Obravnavamo in preštevamo antimreže (S;∨,∧), za katere so Greenove ekvivalence L(∨), R(∨), L(∧) in R(∧) tudi kongruence na celotni antimreži. Ključne besede: Nekomutativna mreža, antimreža, Greenove ekvivalence, mreža podraznoterosti, preštevanje, particija, kompozicija. Math. Subj. Class.: 06B75, 05A15, 05A17, 03G10, 11P99 ∗Kontaktni avtor. †Michael Kinyon je bil podprt s strani Simons Foundation Collaboration, dotacija 359872. ‡Delo Tomaža Pisanskega je delno podprto s strani ARRS, dotacije P1-0294, J1-7051, N1-0032 in J1-9187. E-poštni naslovi: karin.cvetko@fmf.uni-lj.si (Karin Cvetko-Vah), michael.kinyon@du.edu (Michael Kinyon), leech@westmont.edu (Jonathan Leech), pisanski@upr.si (Tomaž Pisanski) cb To delo je objavljeno pod licenco https://creativecommons.org/licenses/by/4.0/