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ABSTRACT – This paper discusses the problem of the freshwater reservoir effect in the radiocarbon 
dating of different sample materials, in particular food crusts on pottery. Charred food residue can 
be used to directly date of the use of the pottery. However, this material is highly complex, which can 
lead to various dating errors. 

IZVLE∞EK – V ≠lanku predstavljamo problem sladkovodnega ‘rezervoar u≠inka’ pri radiokarbonskem 
datiranju razli≠nih materialov, ∏e posebno zoglenelih ostankov hrane na lon≠enini. Ti se lahko upo-
rabijo za neposredno datiranje rabe kerami≠nih posod. Ker je njihova sestava zelo kompleksna, lah-
ko pride do napak pri datiranju. 

KEY WORDS – radiocarbon dating; freshwater reservoir effect; hardwater effect; pottery; food crusts; 
food residues 

Introduction 

Charred food residues on prehistoric pottery can be 
used in the direct radiocarbon dating of the use of 
the pottery. However, this material is highly com-
plex, which can lead to different dating errors. Espe-
cially reservoir effects have to be taken into account. 
The freshwater reservoir effect is of particular con-
cern due to its potentially large order of magnitude 
and high degree of variability. Different biomolecu-
lar methods can be used to discern the former con-
tents of the pottery, but not all of them are equally 
well suited to predict reservoir effects in food crust 
dating. 

In this paper I discuss the problem of the freshwa-
ter reservoir effect in radiocarbon dating of differ-
ent sample materials, in particular food crusts on 
pottery. I will elaborate on this topic based on my 
own research (e.g., Philippsen 2012), but try to draw 
some more general conclusions and suggest guide-
lines for radiocarbon dating of food crusts. 

The freshwater reservoir effect 

The carbon concentration in freshwater systems, 
lakes and rivers, can potentially be much lower than 
the carbon concentration of the atmosphere. Radio-
carbon dating of materials originating in the aquatic 
environment can therefore lead to spurious, too high 
ages – the so-called freshwater reservoir effect (FRE). 
The principle of radiocarbon reservoir effects is ex-
plained in Figure 1. Usually, we assume that all liv-
ing materials are in 14C equilibrium with the atmo-
sphere (black curve). The 14C concentration of the 
sample is measured (in this example, it is measur-
ed to 50% of the original concentration), and the ra-
diocarbon age of the sample can be read from the 
graph. However, aquatic samples can have a lower 
14C concentration to begin with. In Figure 1, this is 
exemplified by a fish that only has 80% of the 14C 
concentration of contemporaneous terrestrial sam-
ples. After its death, its 14C concentration decreases 
according to the exponential decay law (the blue 
curve). When a radiocarbon concentration of 50% 
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modern is measured in this case, the blue 
curve should be used to read off the age – 
which is significantly lower than the 5730 
years one would read from the graph when 
being unaware of the reservoir effect. The 
difference between the radiocarbon age of 
the aquatic sample and the contemporane-
ous terrestrial sample is called ‘reservoir 
age’, or ‘reservoir offset’. 

The risk of a freshwater reservoir effect was 
recognized already in the early years of 
radiocarbon dating, even before the marine 
reservoir effect was discussed (Deevey et al. 
1954; Oana, Deevey 1960; Godwin 1951). 
During the last two decades, research about 
the FRE has intensified with the studies of 
FREs in human bones and food residues on pottery 
(Lanting, van der Plicht 1995/1996; Cook et al. 
2001; Fischer, Heinemeier 2003; Shishlina et al. 
2007; Smits, van der Plicht 2009; Boudin, Strydonck 
and Crombé 2009; Olsen et al. 2010; Philippsen 
2010; Philippsen et al. 2010; Shishlina 2012). 

Different mechanisms introduce ‘old’ carbon into 
lakes and rivers. The most important mechanism is 
the dissolution of carbonate minerals, leading to 
hard water and thus the ‘hardwater effect’. Other 
mechanisms include the mineralisation of old orga-
nic matter, long residence time in aquifers, or CO2 

from volcanic activity. 

The hardwater effect 

Dissolved inorganic carbon, DIC, is the basis of the 
aquatic food chain, as it is photosynthesized by the 
aquatic vegetation. DIC comprises dissolved carbo-
nate, bicarbonate and CO2. It can be formed through 
the following process: rainwater seeps through the 
root zone, taking up CO2 from decaying vegetation 
(which has fairly recent radiocarbon ages and δ13C 
values around –25‰). The resulting carbonic acid 
can dissolve carbonate minerals, if present (which 
are infinitely old, ‘14C dead’, and have δ13C values 
around 0‰). In summary, the reaction is: 

–CaCO3 + H2O + CO2 = Ca2
+ + 2HCO3 

Thus, for each carbon atom from root zone CO2, one 
carbon atom from dissolved carbonate is added to 
the water. The resulting reservoir age can therefore 
be one half-life of radiocarbon (5730 years) at maxi-
mum. Typically, though, reservoir ages will be low-
er even in very carbonate-rich water, due to CO2 ex-
change with the atmosphere. The δ13C values of 

Fig. 1. The principle of radiocarbon reservoir effects. Please 
see the text for details. Author’s own work. 

water DIC depend also on the δ13C values of the car-
bon sources and their relative contributions. Figure 
2 illustrates the mechanisms and the resulting δ13C 
values. 

The FRE is therefore correlated with the carbonate 
concentration (alkalinity, or water hardness (Keave-
ney, Reime 2012)). However, the hardwater effect 
is not the only FRE. Other mechanisms can cause 
high freshwater reservoir offsets (FRO) as well. The-
refore, low alkalinity does not necessarily indicate 
the absence of an FRE. 

Other causes for FREs 

There are several sources of old carbon in lakes and 
rivers, beyond the hardwater effect. Therefore, even 
carbonate-free groundwater and surface water can 
have high FROs. In lakes, these can be caused by 
slow CO2-exchange with the atmosphere due to a 
large depth-to-surface ratio, good wind protection or 
extended periods of ice cover (Håkansson 1976; 
Björk, Wohlfarth 2001). Old groundwater (due to 
long residence times in the aquifer) can increase the 
FRO as well as the inflow of glacier meltwater con-
taining old CO2 or geothermal water and water con-
taining CO2 from volcanic activity (Sveinbjörnsdot-
tir 1992; Boaretto et al. 1998). Mineralisation of old 
organic matter is another mechanism that intro-
duces 14C-depleted carbon into the water (Boaretto 
et al. 1998). 

Reservoir ages measured in two Northern German 
rivers illustrate those mechanisms. The river with 
the higher alkalinity, the Trave River, has, contrary 
to expectation, a lower reservoir age than the less-
alkaline Alster River. The Alster originates in a spring 
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Fig. 2. Carbonate dissolution, fractionation processes in a freshwater sys-
tem, and resulting δδ13C values. Author’s own work. 

fen, which possibly introduces old organic carbon. 
Furthermore, the Trave flows through a shallow lake, 
which lies before the sampling locations. Therefore, 
CO2 exchange between water and atmosphere is pos-
sible, which lowers the reservoir age (Philippsen, 
Heinemeier 2013). Figure 3 shows the effect of dif-
ferent carbon sources on the reservoir age and δ13C 
values of the water DIC. Fossil carbonate and old 
organic matter CO2 increase the reservoir age, while 
atmospheric CO2 and root zone CO2 have young or 
negligible radiocarbon ages. The decay of organic 
matter, both old organic matter and recent organic 
matter in the root zone, lowers the DIC 
δ13C values. Fossil carbonate, in contrast, 
has high δ13C values around 0‰. The δ13C 
values of atmospheric CO2 are high as well, 
and usually vary around –7‰. 

Freshwater reservoir effect variability 
Freshwater reservoir effects can vary with 
time, space, and between different species 
or individuals from the same freshwater 
system. Temporal variation can be caused 
by long-term changes in the relief of the 
landscape and the development of the lake 
or river. But also short-term changes in the 
reservoir age of the water can be observed, 
causing the reservoir age to vary from one 
year to the other. 

Water DIC 
This short-term variability is illustrated in 
Figure 3, where measurements on two ri-

vers, the Alster and the Trave 
River in Northern Germany, 
are summarized. The sampl-
ing localities were not many 
kilometres apart; however, 
the rivers are separated by a 
watershed and have different 
reservoir ages and δ13C val-
ues. Within one river, the re-
servoir age varies by over 
1000 14C years during the 
three-year study period. Much 
of this variation can be ex-
plained by short-term weath-
er fluctuations. For example, 
the strong influence of atmo-
spheric CO2 on the Trave val-
ues from February 2009 
might be due to the fact that 
the ground was still frozen. 
Thus, any rain- or meltwater 

flowed directly into the river, without percolating 
through the root zone. For the other sampling dates, 
a correlation with the amount of precipitation in the 
week prior to sampling could be found (Philippsen, 
Heinemeier 2013). Large amounts of precipitation 
cause the reservoir age and the δ13C values of the 
water DIC to decrease. This is probably due to the 
fact that large proportions of this rainwater enter 
the rivers as surface-runoff, flowing through the 
root-zone. During this process, the water absorbs 
CO2 from the decay of vegetation. Root zone CO2 

usually has the same δ13C values as the vegetation: 

Fig. 3. Squares with error bars: 14C age and δδ13C values of 
water DIC from two rivers (Alster and Trave) in Northern 
Germany. Month and year of sampling are stated in semi-
transparent writing. Arrows indicate how the values would 
change with increasing influence of different carbon sour-
ces. Author’s own work. 
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the reactions during the decay of organic matter 
usually proceed to the end. Therefore, no fractiona-
tion is associated with this process (Galimov 1966) 
and root zone CO2 has δ13C values around –25 ‰. 

The correlations with short-term precipitation fluc-
tuations, as well as the highly variable reservoir 
ages during the study period of only three years, in-
dicate that rivers are highly complex systems in the 
context of the FRE. A high degree of variability is to 
be expected for river systems in general, especially 
because weather fluctuations and changes in the 
course of the rivers can be much larger during mil-
lennia, than during the short study period. However, 
it could be argued that short-term fluctuations are 
balanced during the growing season. Therefore, 
fluctuations might be smaller in plants and animals 
from those rivers. To test this hypothesis, several 
projects (including my own) have radiocarbon dated 
modern samples of aquatic flora and fauna. 

Freshwater plants 
In terms of radiocarbon dating and stable carbon 
isotopes, aquatic plants are very complicated orga-
nisms. The reason is the multitude of possible car-
bon sources for aquatic photosynthesis: 

❶ DIC in the water is one possible carbon source. 
It occurs as different species, mainly CO2 and bi-
carbonate (HCO3 

– ), with different 13C values (Os-
mond 1981; Emrich, Ehhalt and Vogel 1970; An-
drews, Riding and Dennis 1993; Romanek, Gros-
sman and Morse 1992). Some 
plants can use both species, oth-
ers specialise in one of them. De-
pending on which species the 
plants specialise in, and how 
abundant it is at the pH value of 
the water, the plants might expe-
rience a restricted carbon pool, 
which limits fractionation. As men-
tioned above, the DIC itself can 
have different origins with poten-
tially very different radiocarbon 
ages and δ13C values. 

❷ Floating and emerging plants or 
leaves can assimilate atmospheric 
CO2, in addition to other carbon 
sources. 

❸ CO2 from the rhizomes or sedi-
ment can be transported through 
the plant’s stems and photosyn-
thesized in the leaves or stem 
and leaf sheaths (Dacey 1980). 

Ten samples of aquatic plants from two northern 
German rivers illustrate the complexity of aquatic 
photosynthesis. They are shown in Figure 4, which 
presents radiocarbon ages and δ13C values of wa-
ter DIC, aquatic plants and animals such as fish, mol-
luscs and crayfish. The data have been published 
before; tables with all isotope data and radiocarbon 
dates can be found in Philippsen (2012) and Philip-
psen, Heinemeier (2013). 

The radiocarbon ages of the aquatic plants range 
from –74 to 2273 14C yr BP (Fig. 4). Compared to 
the atmospheric 14C level of the respective growing 
season, this results in reservoir ages between 347 
and 2700 14C years (Philippsen, Heinemeier 2013). 
Currently, no factors are known which could explain 
the reservoir ages of the individual samples. The re-
servoir age is not connected to species or whether 
the plant grows submerged or floating; not to which 
river it grew in; and not to sampling season. For 
example, a floating plant with a reservoir age of 
1300 14C years was collected on the same day and 
location as a submerged plant with a reservoir age 
of only 350 14C years. 

Freshwater fish and mollusks 
The great variability in radiocarbon ages can also be 
found on higher levels of the aquatic food chain. For 
this study, different samples of the aquatic fauna 
have been dated (orange symbols in Fig. 4). Most 
samples were fish bones, but also a crayfish, a snail 
shell and a bivalve shell, and a mallard feather were 

Fig. 4. Radiocarbon dates and δδ13C values of water DIC, plant and 
animal samples from two North German rivers, Alster and Trave. 
The hatched pink lines connect samples from the same individual of 
Nuphar lutea (leaf and petiole, respectively) (after Philippsen 2012; 
Philippsen, Heinemeier 2013; Philippsen et al. 2013). 
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analysed. The latter had the same age as the con-
temporaneous atmosphere (a negative 14C age in 
Fig. 4), so this mallard must have had a terrestrial 
diet. Generally, the fauna samples span about the 
same range as the aquatic vegetation, although none 
of them has as high reservoir ages as the ‘oldest’ 
plants. Correspondingly, the fauna δ13C values fol-
low the same trend as the plants’ values. They are 
shifted slightly towards more positive δ13C values, 
which is to be expected when, for example, compar-
ing a fishbone with the fish’s diet. Two fauna sam-
ples have very positive δ13C values; these were car-
bonate samples of a snail shell and a bivalve shell. 
Generally, most plant and animal samples from 
these rivers follow a roughly linear relationship, 
where higher 14C-ages are correlated with more ne-
gative δ13C-values. However, to draw any secure 
conclusions or to formulate a correction for the re-
servoir effect, more samples would be needed. 

Reservoir effects in food crusts on pottery 
It was hypothesized that surprisingly old radiocar-
bon dates on charred food residues on pottery were 
the result of the freshwater reservoir effect. This hy-
pothesis was tested using a two-fold approach: on 
the one hand, food crusts were prepared experimen-
tally from ingredients with known reservoir ages; 
on the other hand, multiple archaeological samples 
from two sites with hunter-gatherer pottery were 
analysed. 

Experiments 
Three series of food crusts experiments have been 
performed so far; the material from the third is still 
under analysis. Ingredients with different radiocar-
bon ages, as well as different carbon and nitrogen 
isotope values, have been prepared in the pottery. 
These include cereals, nuts, roots and leaf vegeta-
bles, freshwater and marine fish, bovine milk, and 
terrestrial herbivore meat. Different mixtures of 
these resources were prepared to test whether cer-
tain ingredients would dominate the food crusts. 

The result of these experiments was a reference col-
lection of food crust samples made of known ingre-
dients. As an interesting side effect, we were able to 
study the suitability of the pottery for food prepara-
tion (Glykou 2012; Philippsen, Glykou and Paulsen 
2012). One conclusion was that the formation of 
food crusts requires a lot of time and energy, espe-
cially in the case of lean fish and/or vegetables. New 
experiments in August 2015 will show if food crusts 
also can form during long-term ‘normal use’, i.e. food 
preparation without charring. 

The first question was whether an ingredient with a 
reservoir age would form a food crust with the same 
reservoir age. Therefore, a food crust was made from 
freshwater fish, roach (Rutilus rutilus), with a reser-
voir age of 722±47 years. The crust had a reservoir 
age of 756±41 years, which is statistically undis-

Fig. 5. Calibrated radiocarbon ages from the Ertebølle site Kayhude, Northern Germany (from Philippsen 
2012). Calibrated with OxCal4 and IntCal09 (Bronk Ramsey 2009; Reimer et al. 2009). 
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tinguishable from the fish’s reservoir age (Philip-
psen 2010). The second question was whether the 
reservoir age of the cooking water would have an 
influence on the reservoir age of the food crust. The-
refore, a sample of wild boar meat was cooked in ri-
ver water; the water had a radiocarbon age of more 
than 1000 14C years. The wild boar food crust had 
a reservoir age of –540 14C years. Calibrated with 
the bomb pulse calibration curve (Kueppers 2004), 
extended to present using an exponentially decrea-
sing curve, this resulted in a calibrated age of 3±2 
years (Philippsen 2010). Therefore, we can conclude 
that the reservoir age of the ingredients determines 
the reservoir age of a food crust, irrespective of the 
radiocarbon age of the cooking water. 

Case study: Hunter-gatherer pottery from 
Northern Germany 
Several samples from the inland Ertebølle sites Kay-
hude on the River Alster and Schlamersdorf on the 
River Trave were radiocarbon dated to determine 
the local reservoir effect, the risk of reservoir effects 
in food crusts on pottery, and the true age of the ear-
liest pottery in this part of Germany. The results are 
presented in Figures 5 and 6. 

In Kayhude, the samples were collected from a rel-
atively undisturbed stone paving (pers. comm. I. 
Clausen 2007). The age difference of over 3000 
years between the fish and the charcoal from Kay-
hude is much larger than the reservoir ages that we 

Fig. 6. Calibrated radiocarbon ages from the Ertebølle site Schlamersdorf, Northern Germany (from Phi-
lippsen 2012). Calibrated with OxCal4 and IntCal09 (Bronk Ramsey 2009; Reimer et al. 2009). 
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find for modern fish, but of the same order of mag-
nitude as the reservoir age for modern water and 
plants (see above). One terrestrial sample has a ra-
diocarbon age of more than 9000 BP. This bone must 
be an admixture from earlier layers, as it is not only 
older than the other terrestrial sample from Kay-
hude, but also older than the oldest finds of the 
entire Ertebølle culture. This exemplifies that the 
stone paving where we found our samples cannot 
be regarded as totally undisturbed. Direct radiocar-
bon dating of the pottery is thus necessary as we 
cannot be sure which terrestrial samples are clearly 
associated with the pottery. None of the food crusts 
are as old as the fish bones, though. The base-solu-
ble fraction of three food crusts has also been dated. 
It is likely to consist of humic acids and other degra-
dation products from the soil, and is thus removed 
from the samples. Here it is older than the food 
crusts (Fig. 5), indicating contamination with an old-
er soil substance. However, all purification proce-
dures are also likely to remove some of the original 
food crust. The base-soluble fraction, for example, 
could contain fat or other base-soluble food remains. 
Therefore, it can be difficult to find the right balance 
between removing as much contamination as possi-
ble, while removing as little original food crust as 
possible. 

The terrestrial age range of 
Schlamersdorf (Fig. 6) com-
plies with earlier charcoal 
dates from this site (Hartz 
1993). The age range of ter-
restrial samples is very broad. 
This does not mean that this 
site has been inhabited con-
stantly for 1000 14C years. It 
was probably occupied re-
peatedly for shorter periods, 
as archaeological analysis in-
dicated that the site was a 
hunting or fishing station. The 
broad terrestrial age range re-
veals the necessity of direct 
pottery dating. Two fish bone 
samples, AAR-11842 and AAR-
11844, were associated with 
the red deer sample AAR-
11476. The radiocarbon ages 
of the fish bones agree with 
each other, whereas they are 
significantly older than the red 
deer sample. The full fresh-
water reservoir effect during 

that period is thus more than one thousand years. 
Two sub-samples of the food crust AAR-11484 have 
been dated. The smaller sample is slightly younger. 
This might be the effect of a constant amount of 
modern contamination that enters the samples dur-
ing preparation or measurement. The wildcat bone 
AAR-11398 and the food crusts AAR-11482 and AAR-
11484 had been found quite close to each other. It 
is therefore probable that they are contemporane-
ous. Their radiocarbon ages indicate a small reser-
voir effect in the case of AAR-11484 (the larger sam-
ple is the one dated more precisely), and no reser-
voir effect on AAR-11482. 

Methods to detect aquatic ingredients 
The formation of food crusts is a highly complex 
chemical process. It depends on the nutrients pre-
sent in the pot and on the cooking parameters such 
as temperature and duration. If the cooking tem-
perature is high enough, and the food left to cook 
long enough, the water will evaporate completely. 
Therefore, the temperature inside the pot can in-
crease to over 100°C. In the water-free food, pro-
teins and some sugars combine in the Maillard reac-
tion, while the carbohydrates caramelize. Finally, 
the food carbonises to form the characteristic food 
crusts. 

Fig. 7. δδ15N and δδ13C values of experimental and archaeological food 
crusts. The experimental food crust values are denoted by symbols of dif-
ferent shape and colour, while letters mark the values of food crusts from 
three archaeological sites (Schlamersdorf and Kayhude, inland sites; Neu-
stadt, coastal site; all are Ertebølle sites from northernmost Germany). 
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Stable isotopes 
Often, the bulk food crust ma-
terial is used for radiocarbon 
dating (after removal of pos-
sible contaminations). There-
fore, a method is needed 
which detects the presence 
and preferably abundance of 
aquatic ingredients in the 
bulk food crust. Stable isotope 
analysis is such a method. The 
δ13C values are in fact mea-
sured on exactly the same ma-
terial as the radiocarbon age. 
However, δ13C values alone 
are not very accurate for the 
reconstruction of ingredients. 
Therefore, other isotopes are 
usually measured together 
with the δ13C values, typically 
δ15N. Measurements on mo-
dern samples provide refe-
rence values. Preferably, char-
red food crusts are analysed 
instead of the raw ingredi-
ents, as isotope values might 
change during cooking (Fer-
nandes et al. 2014). However, 
in this study, only minimal 
changes in isotope ratios during cooking and char-
ring were observed (Philippsen 2012). Isotope val-
ues of several experimental and archaeological food 
crusts are presented in Figure 7. 

Interestingly, samples from the same experimental 
pot can have very different δ13C and δ15N values. 
The δ13C values of mixtures of marine and terres-
trial ingredients can cover a large range of up to 6‰. 
The δ15N ranges of some of the mixtures are of the 
same order of magnitude (Fig. 7). This implies that 
measurements on a single sherd might not be suf-
ficient to reconstruct the former contents of the ves-
sel. Many measurements would be necessary to get 
the whole picture. Furthermore, when using stable 
isotope measurements to correct radiocarbon dates, 
one should make sure to perform the measurements 
on the same, homogenized, sub-sample. 

The expected isotope values of the experimental 
food crusts were calculated with the relative pro-
portions of the different ingredients, their isotope 
values and their carbon and nitrogen concentra-
tions. In some cases, the measured isotope ratios de-
viated clearly from the calculated expected values. 

Fig. 8. Stable isotope measurements on experimental and archaeological 
food crusts (cf. Fig. 7). Measurements on samples from the Femern pro-
ject on the island of Lolland, Denmark, are marked by light-green squares. 
Measurements on sherds belonging to the same vessel (‘pot 22’) are ad-
ditionally marked by a little black square. 

This is most likely caused by the inhomogeneity of 
the charred food residue, as none of the measured 
values was outside the range of the isotopic values 
of the different ingredients (Philippsen 2012). 

The effect of pretreatment was tested for three ar-
chaeological food crust samples from Kayhude. The 
chemical pretreatment procedures remove contam-
ination from the burial environment such as carbo-
nates and humic substances. However, the pretreat-
ment does not result in a systematic shift of isotope 
ratios (Fig. 7). Furthermore, the changes are small 
compared to the wide range of possible isotope val-
ues and compared to the variability of values even 
within one vessel. Therefore, it is concluded that the 
chemical pretreatment is not necessary prior to food 
crust isotope analysis. 

The archaeological food crusts from Kayhude indi-
cate different proportions of terrestrial and fresh-
water ingredients. Lower δ13C values and higher 
δ15N values are associated with older radiocarbon 
ages. This agrees with our expectations, as freshwa-
ter resources are characterized by low δ13C and high 
δ15N values. 
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The δ15N values from Schlamersdorf would suggest 
a mixture of terrestrial plants and terrestrial herbi-
vore meat. The δ13C values are also in the range of 
terrestrial plants, but in the very negative part of 
the range, with values around –28 ‰. However, the 
very old radiocarbon ages of the food crusts from 
Schlamersdorf indicate a significant freshwater reser-
voir effect. It is therefore possible that low-trophic 
level aquatic food was used. Changes of isotopic ra-
tios in the burial environment cannot be excluded 
as well and will be tested through the analysis of 
buried experimental food crusts. 

In Figure 8, food crust measurements from the 
Femern project on the island of Lolland, Denmark, 
are compared to the food crust data discussed above. 
These data are part of an ongoing project with Carl 
Heron and John Meadows (Universities of Bradford 
and Kiel). The sherds have not been dated directly 
yet, but context dates and the archaeological inter-
pretation indicate that they belong to the late Erte-
bølle culture and Funnel Beaker culture, i.e. the tran-
sitional phase between the Mesolithic and the Neoli-
thic of this region. The δ13C and δ15N measurements 
indicate that both terrestrial and marine resources 
were exploited, while freshwater resources could 
not be detected. The δ15N values are generally lower 
than those of the experimental food crusts. This 
could be due to changes in land-use practice, e.g., 
manuring of modern-day vegetables, or to processes 
in the burial environment. Several sherds from our 
food crust experiments have been buried and were 
excavated again – they will indicate isotopic changes 
during burial. 

Many of the analysed sherds from the Femern pro-
ject belonged to one vessel, ‘pot 22’. They are mark-
ed by additional small black squares in Figure 6. In-
terestingly, the food crust from this pot seems to be 
quite homogeneous. The δ13C values cover a range 
of less than 1‰, while the δ15N values vary by about 
2‰. The food prepared in this vessel most likely de-
rived from terrestrial herbivores, probably mixed 
with plants. Ingredients with very similar isotope 
values were used, or the food was thoroughly mixed 
and homogenized during preparation. 

Other methods 
Several biomolecular methods are available to recon-
struct vessel use and, important in the context of ra-
diocarbon dating, detect aquatic ingredients. Pro-
bably the most widespread method is lipid analysis. 
Lipids can be preserved in the food crust or absorbed 
in the clay matrix. They indicate the presence or ab-

sence of a variety of fats and can, for example, dis-
tinguish between ruminant and non-ruminant fat, 
marine and terrestrial fish, milk and body fat (Cop-
ley 2004; 2005; Evershed 2007; Evershed et al. 
2001; Heron, Craig 2011; Craig et al. 2007; 2011). 
However, lipid residues and charred food crusts can 
potentially form from different ingredients (the food 
crusts from proteins and carbohydrates). Therefore, 
the results of a lipid analysis can only be used with 
caution for correcting pottery dates or identifying 
reservoir effects in food crusts. 

Reservoir effects as a source of information 
So far, we have treated radiocarbon reservoir effects 
as a source of error. However, when the objective of 
food crust analysis is more than a chronology of pot-
tery-use, reservoir effects can be used as a source of 
information. When a chronological control is avail-
able, e.g., radiocarbon dates of terrestrial material 
from a secure context with the pottery, the reservoir 
effect can detect the preparation of aquatic resour-
ces in two difficult cases: 

❶ When the concentration of aquatic food is very 
low, it will be difficult to detect with isotopic me-
thods. This is especially the case with freshwater 
resources. When the freshwater reservoir effect 
in the study region is high, even small amounts 
of freshwater food will result in a measurable 
reservoir age. 

❷ In some cases, aquatic food can have the same 
isotopic signature as terrestrial food. Low-trophic 
level aquatic food has approximately the same 
δ15N-values as terrestrial food. Furthermore, a 
mixture of freshwater and marine resources can 
result in ‘terrestrial’ δ13C-values. Here, again, a 
reservoir effect in a ‘terrestrial’ food crust will in-
dicate the preparation of aquatic ingredients. 

The same principles can also be transferred to radio-
carbon dating of human remains. 

Conclusion 

The freshwater reservoir effect is a highly complex 
issue. In general, the characterisation of the reser-
voir effect in a freshwater system requires more than 
a few water, plant and animal samples. Freshwater 
reservoir effects in a river can vary significantly on 
short and long timescales, spatially, and even be-
tween individuals of the same plant species, grow-
ing in the same year in the same part of the river. 
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This complexity is transferred throughout the food 
chain, further complicated by the fact that fish can 
migrate within the river system or include smaller 
or larger proportions of terrestrial food into their 
diet. Food residues on pottery can be a mixture of 
terrestrial, marine and/or freshwater resources. Even 
‘terrestrial’ animals can have reservoir effects, e.g., 
elk/moose which consume aquatic plants (Philip-
psen 2015) or sheep fed with seaweed (Balasse 
2005). As the radiocarbon ages of the ingredients 
are transferred to the food crusts, they can also have 
very high and variable reservoir ages. In an estua-
rine environment, varying influence of sea water vs. 
terrestrial run-off and freshwater will furthermore 

complicate the analysis of radiocarbon dates (e.g., 
Philippsen et al. 2013). 

Therefore, samples for radiocarbon dating should be 
chosen wisely when the aim is to construct a chrono-
logy. Stable isotope analysis (δ13C, δ15N) of food 
crusts on pottery can indicate which of the samples 
contain the smallest proportions of freshwater and 
marine ingredients. Therefore, food crusts with the 
lowest risk for reservoir effects can be selected for 
dating. In many cases, however, reservoir effects can 
also be a source of information regarding the cuisine 
and diet of the past, or changes in the aquatic envi-
ronment. 

∴∴ 

References 

Andrews J. E., Riding R. and Dennis P. F. 1993. Stable 
isotopic compositions of Recent freshwater cyanobacter-
ial carbonates from the British Isles: local and regional 
environmental controls. Sedimentology 40(2): 303–314. 

Balasse M., Tresset A., Dobney K. and Ambrose S. H. 2005. 
The use of isotope ratios to test for seaweed eating in 
sheep. Journal of Zoology 266(3): 283–291. 

Björk S., Wohlfarth B. 2001. 14C chronostratigraphic 
techniques in paleolimnology. In W. M. Last, J. P. Smol 
(eds.), Tracking Environmental Change Using Lake Se-
diments. Volume 1: Basin Analysis, Coring, and Chrono-
logical Techniques. Kluwer Academic Publishers. Dord-
recht: 205–245. 

Boaretto E., Thorling L., Sveinbjörnsdottir Á. E., Yechieli 
Y. and Heinemeier J. 1998. Study of the effect of fossil 
organic carbon on 14C in groundwater from Hvinningdal, 
Denmark. Radiocarbon 40(2): 915–920. 

Boudin M., Strydonck M. V. and Crombé P. 2009. Radio-
carbon Dating of Pottery Food Crusts: Reservoir Effect or 
Not? The Case of Swifterbant Pottery from Doel Deur-
ganckdok (Belgium). In P. Crombé, M. V. Trydonck, J. Ser-
gant, M. Boudin and M. Bats (eds.), Chronology and Evo-
lution in the Mesolithic of North-West Europe. Proce-
edings of an international meeting, Brussels, May 30-June 
1st 2007. Cambridge Scholars Publishing. Newcastle upon 
Tyne: 753–772. 

Bronk Ramsey C. 2009. Bayesian analysis of radiocarbon 
dates. Radiocarbon 51(1): 337–360. 

Cook G. T., Bonsall C., Hedges R. E. M., McSweeney K., Bo-
roneant V. and Pettitt B. P. 2001. A Freshwater Diet-De-

rived 14C Reservoir Effect at the Stone Age Sites in the 
Iron Gates Gorge. Radiocarbon 43(2A): 453–460. 

Copley M. S., Berstan R., Dudd S. N., Aillaud S., Mukherjee 
A. J., Straker V., Payne S. and Evershed R. P. 2005. Pro-
cessing of milk products in pottery vessels through British 
prehistory. Antiquity 79(306): 895–908. 

Copley M. S., Hansel F. A., Sadr K. and Evershed R. P. 
2004. Organic residue evidence for the processing of 
marine animal products in pottery vessels from the pre-
colonial archaeological site of Kasteelberg D east, South 
Africa. South African Journal of Science 100: 279–283. 

Craig O. E., Forster M., Andersen S. H., Koch E., Crombé 
P., Milner N., Stern B., Bailey G. N. and Heron C. 2007. 
Molecular and Isotopic Demonstration of the Processing 
of Aquatic Products in Northern European Prehistoric Pot-
tery. Archaeometry 49(1): 135–152. 

Craig O. E., Steele V. J., Fischer A., Hartz S., Andersen S. 
H., Donohoe P., Glykou A., Saul H., Jones D. M., Koch E. 
and Heron C. P. 2011. Ancient lipids reveal continuity in 
culinary practices across the transition to agriculture in 
Northern Europe. Proceedings of the National Academy 
of Sciences of the United States of America 108(44): 
17910–17915. 

Dacey J. W. H. 1980. Internal Winds in Water Lilies: An 
Adaptation for Life in Anaerobic Sediments. Science 210 
(4473): 1017–1019. 

Deevey E. S., Gross M. S., Hutchinson G. E. and Kraybill H. 
L. 1954. The Natural C14 Contents of Materials from Hard-
Water Lakes. Proceedings of the National Academy of 
Sciences of the United States of America 40: 285–288. 

168 



Hard water and old food. The freshwater reservoir effect in radiocarbon dating of food residues on pottery 

Emrich K., Ehhalt D. H. and Vogel J. C. 1970. Carbon iso-
tope fractionation during the precipitation of calcium car-
bonate. Earth Planetary Science Letters 8: 363–371. 

Evershed R. P. 2007. Exploiting molecular and isotopic 
signals at the Mesolithic-Neolithic transition. In A. Whit-
tle, V. Cummings (eds.), Going Over. The Mesolithic-Neo-
lithic Transition in North-West Europe. Oxford Univer-
sity Press. Oxford: 141–164. 

Evershed R. P., Dudd S. N., Lockheart M. J. and Jim S. 
2001. Lipids in archaeology. In D. R Brothwell, A. M. Pol-
lard (eds.), Handbook of Archaeological Science. John 
Wiley & Son Ltd. Chichester: 331–349. 

Fernandes R., Meadows J., Dreves A., Nadeau M.-J. and 
Grootes P. M. 2014. A preliminary study on the influence 
of cooking on the C and N isotopic composition of multi-
ple organic fractions of fish (mackerel and haddock). 
Journal of Archaeological Science 50(10): 153–159. 

Fischer A., Heinemeier J. 2003. Freshwater Reservoir Ef-
fect in 14C Dates of Food Residue on Pottery. Radiocar-
bon 45(3): 449–466. 

Galimov E. M. 1966. Carbon isotopes in soil CO2. Geoche-
mistry International 3: 889–898. 

Glykou A. 2012. Pointed-based pottery: An experimental 
approach to the manufacturing of the pottery of the Late 
Mesolithic in Northern Germany. The Old Potter’s Alma-
nack 17(1): 10–15. 

Godwin H. 1951. Comments on radiocarbon dating sam-
ples from the British Isles. American Journal of Scien-
ce 249: 301–307. 

Håkansson S. 1976. Radiocarbon activity in submerged 
plants from various South Swedish lakes. In R. Berger and 
H. E. Suess (eds.), Radiocarbon Dating. Proceedings of 
the Ninth International Conference, Los Angeles and La 
Jolla. University of California Press. Berkely and Los An-
geles: 433–446. 

Hartz S. 1993. Inland-Ertebølle in Schleswig-Holstein. Die 
Fundstelle Schlamersdorf LA5, Kr. Stormarn. In D. Meier 
(ed.), Archäologie in Schleswig 1/1991 [Symposium 
Wohlde]. Christian-Albrechts-Universität. Kiel: 33–38. 

Heron C., Craig O. E. 2011. Pottery use among late for-
agers and early farmers in the Baltic: New molecular and 
isotopic investigations. In S. Hartz, F. Lüth and T. Terber-
ger (eds.), Early Pottery in the Baltic – Dating, Origin 
and Social Context. International Workshop at Schleswig 
from 20th to 21st October 2006. Bericht der Römisch-Ger-
manischen Kommission, Band 89. 2008. Philipp von Za-
bern. Darmstadt/Mainz: 11–25. 

Keaveney E. M., Reimer P. J. 2012. Understanding the va-
riability in freshwater radiocarbon reservoir offsets: a cau-
tionary tale. Journal of Archaeological Science 39(5): 
1306–1316. 

Konnerup D., B. K. Sorrell and H. Brix 2011. Do tropical 
wetland plants possess convective gas flow mechanisms? 
New Phytologist 190(2): 379–386. 

Kueppers L. M., Southon J., Baer P. and Harte J. 2004. 
Dead wood biomass and turnover time, measured by ra-
diocarbon, along a subalpine elevation gradient. Oecolo-
gia 141(4): 641–651. 

Lanting J. N., van der Plicht J. 1995/1996. Wat hebben 
Floris V, skelet swifterbant S2 en visotters gemeen? Palaeo-
historia 37/38: 491–519. 

Oana S., Deevey E. S. 1960. Carbon 13 in Lake Waters and 
its Possible Bearing on Paleolimnology. American Jour-
nal of Science 258(A): 253–272. 

Olsen J., Heinemeier J., Lübke H., Lüth F. and Terberger T. 
2010. Dietary habits and freshwater reservoir effects in 
bones from a Neolithic Northern German cemetery. Ra-
diocarbon 52(2–3): 635–644. 

Osmond C. B., Valaane N., Haslam S. M., Uotila P. and Rok-
sandi≤ Z. 1981. Comparisons of δ13C values in leaves of 
aquatic macrophytes from different habitats in Britain and 
Finland; some implications for photosynthetic processes 
in aquatic plants. Oecologia 50(1): 117–124. 

Philippsen B. 2010. Terminal Mesolithic Diet and Radio-
carbon Dating at Inland Sites in Schleswig-Holstein. In Kiel 
Graduate School “Human Development in Landscapes” 
(ed.), Landscapes and Human Development: The Contri-
bution of European Archaeology. Proceedings of the In-
ternational Workshop Socio-Environmental Dynamics 
over the Last 12,000 Years: The Creation of Landscapes 
(1st–4th April 2009). Universitätsforschungenzur prähis-
torischen Archäologie, Band 191. Dr. Rudolf Habelt GmbH. 
Bonn: 21–36. 

2012. Variability of freshwater reservoir effects: Im-
plications for radiocarbon dating of prehistoric pot-
tery and organisms from estuarine environments. 
Unpublished PhD thesis. Aarhus University. Aarhus. 

2013. The freshwater reservoir effect in radiocarbon 
dating. Heritage Science 1: 24. 

2015. Radiocarbon dating of elk (Alces alces), an eco-
nomic and symbolic resource in prehistory. In Neoli-
thic cultures of Eastern Europe: chronology, paleoeco-
logy and cultural traditions. Materials of the Interna-
tional Conference, dedicated to the 75th anniversary 

169 



Bente Philippsen 

of Victor Petrovich Tretyakov, May, 12–16, 2015, St. Pe-
tersburg. Russian Academy of Sciences, Institute of the 
History of Material Culture. St. Petersburg: 290–294. 

Philippsen B., Glykou A. and Paulsen H. 2012. Kochver-
suche mit spitzbodigen Gefäßen der Ertebøllekultur und 
der Hartwassereffekt. In U. Weller, T. Lessig-Weller, E. Han-
ning and B. Strugalla-Voltz (eds.), Experimentelle Archä-
ologie in Europa – Bilanz. Unteruhldingen, Europäische 
Vereinigung zur Förderung der Experimentellen Archäo-
logie e.V./ European Association for the advancement of 
archaeology by experiment. European Association for the 
advancement of archaeology by experiment 13: 33– 48. 

Philippsen B., Heinemeier J. 2013. Freshwater reservoir 
effect variability in Northern Germany. Radiocarbon 55 
(2–3): 1085–1101. 

Philippsen B., Kjeldsen H., Hartz S., Paulsen H., Clausen I. 
and Heinemeier J. 2010. The hardwater effect in AMS 14C 
dating of food crusts on pottery. Nuclear Instruments 
and Methods in Physics Research Section B: Beam Inter-
actions with Materials and Atoms 268(7–8): 995–998. 

Philippsen B., Olsen J., Lewis J. P., Rasmussen P., Ryves D. 
B. and Knudsen K. L. 2013. Mid- to late-Holocene reservoir 
age variability and isotope-based palaeoenvironmental 
reconstruction in the Limfjord, Denmark. The Holocene 
23(7): 1015–1025. 

Reimer P. J. and 28 coauthors 2009. IntCal09 and Ma-
rine09 Radiocarbon Age Calibration Curves, 0–50,000 
Years cal BP. Radiocarbon 51(4): 1111–1150. 

Romanek C. S., Grossman E. L. and Morse J. W. 1992. 
Carbon isotope fractionation in synthetic aragonite and 
calcite: effects of temperature and precipitation rate. Geo-
chimica et Cosmochimica Acta 56: 419–430. 

Shishlina N. I., van der Plicht J., Hedges R. E. M., Zazov-
skaya E. P., Sevastyanov V. S. and Chichagova O. A. 2007. 
The catacomb cultures of the north-west Caspian steppe: 
14C chronology, reservoir effect, and paleodiet. Radiocar-
bon 49(2): 713–726. 

Shishlina N. I., Zazovskaya E., van der Plicht J. and Seva-
styanov V. 2012. Isotopes, Plants, and Reservoir Effects: 
Case Study from the Caspian Steppe Bronze Age. Radio-
carbon 54(3–4): 749–760. 

Smits L., van der Plicht J. 2009. Mesolithic and Neolithic 
human remains in the Netherlands: physical anthropolo-
gical and stable isotope investigations. Journal of Archa-
eology in the Low Countries 1(1): 55–85. 

Sveinbjörnsdottir Á. E., Heinemeier J., Rud N. and Johnsen 
S. J. 1992. 14C anomalies observed for plants growing in 
Icelandic geothermal waters. Radiocarbon 34(3): 696– 
703. 

170 


	Text1: back to contents


