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Abstract: We study the influence of random anisotropy type quenched disorder on the phase behavior of the 

system, which exhibits in undistorted case the 2
nd

 order continuous symmetry breaking phase transition. 

Invoking the central limit theorem we express the free energy of the system in terms of the order parameter   

and the characteristic length   of the gauge field . The latter exhibits the Goldstone fluctuation mode and is 

consequently extremely susceptible to the imposed disorder. In case of negligible distribution width    of the 

local transition temperatures the disorder converts the 2
nd

 order transition into a discontinuous one for  

  , where   represents the disorder strength. Above the critical disorder strength    the transition becomes 

gradual. However for the finite width    the transition becomes gradual for any   . We demonstrate that 

for large enough values of    the system behavior is dominated by the distribution of temperatures, while the 

details of the random field interaction term play a secondary role. The influence of distribution of local (quasi) 

phase transitions is in most theoretical approaches dealing with randomly perturbed systems neglected from 

the outset.  

Key words: quenched disorder; phase transition; symmetry breaking; gradual phase transition 

Povzetek: Obravnavamo vpliv naključnega nereda na fazno obnašanje sistema, ki vsebuje v nemoteni fazi 

fazni prehod drugega reda. Z uporabo izreka o »centralni limiti« izrazimo prosto energijo sistema na podlagi 

ureditvenega parametra   in karakteristične dolžine umeritvenega polja  . Slednji se podreja Goldstone-

ovimfluktuacijskim načinom in je izredno občutljiv na motnje. V primeru zanemarljive porazdelitve lokalnih 

temperatur faznega prehoda, nered pretvori fazni prehod drugega reda v nezvezni prehod za vrednosti   

  , kjer je jakost nereda. Nad kritično vrednostjo jakosti nereda    postane prehod postopen. V primeru, ko 

imamo lokalno več različnih temperatur faznega prehoda – neko porazdelitev temperatur s širino   , pa 

postane prehod postopen za vsako vrednost    . V članku pokažemo, da pri zadosti velikih vrednostih   , 

fazno obnašanje določa porazdelitev temperatur, podrobnosti interakcij naključnega polja tukaj igrajo 

sekundarno vlogo.  

Ključnebesede: naključni nered; fazni prehod; zlom simetrije; postopni prehod 

 

1. Introduction 

For some years we can observe an intensive interest in 

how various types of disorder influence the character of 

phase transformations [1, 2, 3, 4, 5]. Of particular interest 

are continuous symmetry- breaking (CSB) transitions. 

They are extremely susceptible [2] to disorder due to the 

existence of Goldstone mode in the broken symmetry 
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phase, whose amplitude diverges in the long wavelength 

limit. Thermal fluctuations of the mode can drive the 2nd 

order phase transition into the 1st order one even in a pure 

sample if the fluctuations are strongly coupled to the order 

parameter. This phenomenon is referred to as theHalperin- 

Lubensky-Ma (HLM) effect [6, 7, 8]. 

The influence of noncorrelated disorder on CSB 

transitions has been mostly studied theoretically using 

minimal universal models, e.g. Heisenberg spin systems 

[9]. The disorder was either introduced via random field 

[10] or anisotropy random field [11] terms, exhibiting one-

fold and two-fold field axis symmetry, respectively. It has 

been shown that the 1st order phase transitions become 

gradual as disorder exceeds the critical value [12, 13]. On 

the other hand, the impact of disorder on 2nd order 

transitions is still open because of contradicting claims. 

Harris [10] has shown (the so called Harris criterion) that 

the bond disorder can change the critical properties of the 

transition if    , where   stands for the critical 

coefficient describing the thermal behavior of the specific 

heat. The renormalization study of the random anisotropy 

magnetic system has shown [14] that the fixed point 

corresponding to the non-random critical behavior is 

unstable even with respect to infinitesimally weak disorder 

strength. This instability indicates either 

smoothening/broadening of the transition or transformation 

into the transition, which displays a 1st order character. 

The latter arises due to the static disorder affecting the 

Goldstone (also called gauge) type continuum field in a 

reminiscent way [5] as the thermal fluctuations of this field 

trigger the HLM effect [6, 7]. Note that the static disorder 

is much more efficient in comparison to the thermal one. It 

was shown that random field fluctuations behave like 

thermal fluctuations with the lower marginal 

dimensionality increased by two [2]. Further, the 

renormalization study of Radzihovsky and Toner [15] on a 

similar model suggests that for a weak enough disorder a 

sharp transition into a Bragg-glass type phase could take 

place. However, the starting point of renormalization 

studies [16] assumes a translationally invariant effective 

Hamiltonian of the system, i.e. inhomogeneities are 

discarded at the starting point. 

Regarding the structure of the disordered phase some 

studies predict that the broken phase exhibits a domain 

type structure characterized by a single characteristic 

length scale    [2, 9, 13, 5]. In that case the disordered 

phase exhibits a short range order (SRO). However, there 

exist several studies that predict for random anisotropy 

models and weak enough disorder strength the algebraic 

decay of correlations [3, 4], the hallmark of quasi long 

range order (QLRO). Note that even in this case a 

characteristic length    can exist indicating the distance 

above which the correlations decay rather weakly [3]. The 

numerical simulations also yield controversial results, 

supporting either QLRO [17, 18] or SRO [19]. 

Theoretical studies on randomly perturbed systems 

were initially motivated to understand random magnets [9, 

20]. However, in the last decades various liquid crystal 

(LC) phases appeared as particularly adequate 

experimental systems to study universal phenomena in 

such systems. This is due to experimental accessibility of 

LC phases owing to their fluidity, softness and optical 

anisotropy [21]. In such systems the disorder is commonly 

introduced either by random confinement of LCs to various 

inert porous matrices or by adding aerosil nanoparticles to 

a LC host phase [22]. In the lattercase three qualitatively 

different random regimes are encountered by changing the 

concentration of aerosils [23]. 

In this contribution we study the influence of 

noncorrelated random anisotropy field disorder on a 

second order CSB phase transition. For illustrative purpose 

we consider the impact of disorder on a second order 

nematic-smectic A (N-SmA) phase transition. We show 

that an arbitrary weak disorder can convert the continuous 

transition into discontinuous one. However, due to spatial 

variations of the local phase changes the transition appears 

gradual on the macroscopic scale. This behavior is rather 

robust and for strong enough smearing independent on 

random field interaction details. The plan of the paper is as 

follows. In Sec. II we present the model. We express the 

effective free energy of the system, averaged over the 

uncorrelated RA disorder. In Sec. III the results are 

presented and in the last section we summarize our results. 

2. Model 

In this section we derive the effective free energy of a 

disordered system, where the disorder free energy term 

exhibits the two fold random anisotropy symmetry. The 

free energy is expressed in terms of the order parameter 

field   and the gauge field . The order parameter field 

distinguishes between the high and low temperature phase 

of the pure thermotropic system, separated by the 

continuous phase transition. If a local perturbation 

distorts , it recovers its equilibrium value roughly over the 

distance given by the order parameter correlation length 

  . The gauge field  describes the symmetry- breaking 

structure of the low temperature phase. In a pure 

system typically responses to a local perturbation on a 

scale given by geometrical constraints within the system. 

For example, in LC phases the pair ( ; ) corresponds i) in 

the uniaxial nematic phase to the uniaxial order parameter 

and nematic director field, ii) in the smectic A phase to the 

smectic translational order parameter and the smectic 

phase factor, iii) in the smectic C phase to the zenithal and 

azimuthal cone angle, respectively. Note that the isotropic-
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nematic (I-N) transition is weakly first order, while the 

nematic-smectic A (N-SmA) and nematic-smectic C (N-

SmC) are in general of second order. 

In the following we express a typical effective free 

energy expression for a randomly perturbed system, 

described with continuum fields  and  . For illustrative 

reasons we consider the case of the 2nd order N-SmA 

phase transition. 

2.1. Effective free energy 

We focus on LC exhibiting a continuous N-SmA phase 

transition in the pure (i.e. nonperturbed) case. We express 

the free energy in terms of the complex smectic order 

parameter         and the nematic director field  ⃗ . 

These fields determine the local degree of translational 

ordering and the average orientation of the uniaxial 

ordering of the system, respectively. Using the Landau-

Ginzburg type approach we write the free energy      

  of the pure LC system as the sum of the condensation 

(  ) and elastic (  ) term. Using the standard Landau 

expansion they are expressed as [24, 25] 

 
         (    )| |  

 

 
| |  

 

 
| |  (1a) 

       |( ⃗       ) |    | ⃗    |   (1b) 

Here positive quantities   ,b, c stand for the 

phenomenological coefficients of the Landau expansion, 

   stands for the N-SmA phase transition of elastically 

non-distorted LC,         is the smectic wave vector 

amplitude, corresponding to the average smectic layer 

thickness   . The elasticity of the system is given in terms 

of positive compressibility (   ) and smectic bend (  ) 

elastic constant. We henceforth neglect the elastic 

anisotropy of the system and set         . 

We further assume that at random sites the smectic 

translational ordering is perturbed due to the presence of 

phase pinning centers. The corresponding free energy 

density    is given by 

 
    (        )             (2) 

where      
     . The positive real constant    

determines the translational anchoring strength, favoring 

the phase    . 

We focus on the influence of disorder on translational 

degrees of freedom. Therefore we locally express the 

continuum fields describing the ordering of the LC system 

as  ⃗     ⃗⃗ ⃗⃗  ,      
    where the unit vector points 

along the local  -coordinate parallel to the smectic layer 

normal and   measures the departures from the uniform 

stack of layers along the   -axis. With this in mind it 

follows 

 
    (  |  |  |  | )   (3) 

In the following we express the effective free energy 

density of the system. For this purpose we set that the 

disorder breaks the system into a domain type pattern 

characterized by a single characteristic length   . This 

length estimates a typical scale on which the field   

changes. Therefore, on average it roughly holds 

|  |     
 ⁄ . We express the smectic ordering as 

     ̅ , where the over-bar stands for the spatial 

averaging, and  ̅  . 

The average contribution of layer pinning centers is 

given by 

   ̅    ̅     (    )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅   

  
   (4) 

where   describes the average surface area of the LC-

perturber interface within theaverage domain 

volum     
 
e. The effectiveness of the averaging within 

   is estimated using the central limit theorem. For this 

purpose we set that the phase factor, on average, exhibits 

an apparent non-correlated change at a distance      . 

Thus,   (    )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  
 

  
 (

  

  
)
 

 ⁄

, where    estimates the 

number of pinning centers within   . With this in mind we 

express  ̅as 

 
  ̅  (    

(   )) ̅  
 

 
 ̅  

 

 
 ̅   

 ̅ 

  
     ̅

  

  

(
  

  

)

 
 ⁄

 (5) 

Here 

   
(   )      

|  |

  

 
(6) 

stands for the effective phase transition temperature. Note 

that the value of    exhibits spatial variations within the 

system. Consequently one expects a finite distribution of 

the transition temperatures. 

To avoid singularities for     , we introduce the 

dimensionless length   defined as      (    ⁄ )
 

. 

Thus, the distances are measured in units of   . We 

express  ̅ in the dimensionless form as
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where 

    
    

(   )
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(8) 

is the effective reduced temperature,  ̃  
 ̅

  
,        

 , 

  
(   )  

    
 

  
,   

 

     
 ,   

 

   
   

  ,   
    

   
   

. We 

henceforth skip the tildes.  

2.2. Specific heat 

The specific heat at constant pressure is defined 

as      (
   

   )
 

, where   is pressure. In the 

dimensionless form we express it as   ̃    
  

(   )

  
. In the 

following we skip the tilde over   . In the appendix we 

express an alternative form for   : 

    (   )
(

    
    

⁄

)

 

 

(

 
    

   ⁄

)

 
 

 (9) 

This form enables us to express    analytically in terms of 

 . 

We assume further, that   
(   )

 i.e. the reduced 

temperature   exhibits some spatial variations within the 

system. In the model we take this into account via an 

ensemble of perturbed systems, in which each of them 

exhibits the 2
nd

 order transition at spatially independent 

temperature   
(   )

 in case that the perturbation is absent. 

The values of the critical transition temperatures obey the 

Gaussian distribution 

  (  
(   ))  

 

  √ 
   ( 

(  
(   )

   )
 

  
) (10) 

   
  

    
 (11) 

Here    describes the half height width of the distribution 

   〈  
(   )〉 and 〈 〉 stands for the ensemble average. 

The corresponding average global order parameter and 

specific heat of the system are given by 

 〈 〉  ∫ (  
(   )

)      
(   )

 (12) 

 〈  〉  ∫  (  
(   )

)       
(   )

 (13) 

3. Phase behavior  

We proceed by analyzing the phase behavior of the 

system. Note that the case      has already been studied 

for the expansion in the order parameter up to the quartic 

term in    and     (see ref. [5]).  

We first consider the case with the negligible 

dispersion of transition temperatures, i.e.     . 

Afterward we study the influence of a finite value of    on 

the order parameter and specific heat temperature behavior. 

Finally we compare the model predictions and the 

available experimental results.  

The obtained results give useful information about any 

randomly perturbed system exhibiting the 2
nd

 order 

continuous symmetry breaking phase transition in the pure 

(i.e. non-perturbed) case. The necessary conditions are that 

(i) the low temperature structure is well described by the 

order parameter and Goldstone field (  and  , 

respectively), and that (ii) in the elastic part of the free 

energy a term of the form   |  |  plays the dominant role. 

To stress this generally we refer to the high and low 

temperature phase for     as the disordered and ordered 

phase, respectively. For     and      we refer to the 

high temperature phase as the paraordered phase because 

of the finite value of the order parameter. The low 

temperature phase is referred to as the speroordered phase 

due to its domain-type structure characterized by    . 

3.1. Non-dispersed system 

For a given value   
(   )

 and in the limit     one 

reproduces the undistorted bulk free energy density, 

corresponding to    . By minimizing the bulk 

contribution one obtains  (   )   and  (   )  

(√
  

 
   

 

 
)

 

. In perturbed samples, i.e.,   , a finite 

value of   appears in the speroordered phase. It reflects the 

competition between the elastic term (favoring    ) and 

the surface field term (favoring    ). Minimizing 

 (   ) with respect to   yields 

   {
          

[(
 

  
)
 

  ]           
 , (14) 
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where 

    
  

  
 (15) 

stands for the crossover value of the order parameter. 

Therefore, the free energy density can be expressed solely 

in terms of   as 

   

{
 

     
 

 
   

 

 
                 

    
 

 
   

 

 
   

 

 
(
  

  
)
 

           

 (16) 

Using (9) we can now calculate also the specific heat. It 

follows 

    
 (   )  

                

        

   (17) 

By minimizing   with respect to   we obtain the 

equation determining the order parameter. In Fig. 1a, Fig. 

1b, and Fig. 1c we plot  ,   and corresponding specific 

heat temperature dependence as the other parameters are 

varied. One finds that even an infinitesimal strength of the 

RA field converts the 2
nd

 order transition into a 1
st
 order 

one [5]. 

 

 

 
 

Figure 1. Temperature dependences of (a)  ( ), (b) ( ) and (c)  ( ) as   or   are varied. A finite, but 

small enough value of   triggers the 1
st
 order transition. Above the critical value of the disorder strength 

    the transition becomes gradual.      for (a) and (b);         

A finite value of   gives rise to the finite value of   

above the transition characterizing the speroordered phase. 

The behavior of the order parameter jump    at the 

transition is shown in Fig’s. 2a and 3a. In general 

(observed for    ), with increasing   the jump    first 

increases and afterward decreases (see Fig. 2a). At the 

critical value      the transition is smeared out and    

drops to zero. In Fig. 2a we can infer also that if the 

parameter   gets smaller the critical value of   increases. 

On the other hand when, the elastic constant   is reduced, 

the transition ceases to exist at lower   . If we increase the 

elastic constant above the value 1.2, the system cannot get 

rid of the order parameter jump at the phase transition (see 

Fig. 3a). As we can see on the Fig. 3b the phase transition 

temperature would reach 0K (     ) before    would 

drop to zero. 
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Figure 2. (a) Temperature driven jump of the order parameter and (b) phase diagram in the (   ) free 

energy parameter space for    . The critical points    are marked with circles. 

 

The corresponding phase diagram in the (    ) free 

energy parameter space is shown in Figs. 3a and 3b. 

 

 
 

Figure 3. (a) Temperature driven jump of the order parameter and (b) phase diagram in the (   ) free 

energy parameter space for    . The critical point    is marked with a circle. 

The phase transition temperature    monotonically 

decreases as the disorder strength is increased until   

  . To obtain the analytic expression for    we focus on 

the transition line. At      it holds    ,      and 

consequently     . Taking into account 
  

  
(  )  

   

   
(  )    we obtain 

    
  

 
[√   

  

 
   ]

 
 ⁄

 (18) 

3.2. Dispersed system 

We next consider the influence of    on the order 

parameter and specific heat temperature evolution, which 

is depicted on Figs. 4a and 4b. A finite distribution width 

  washes out discontinuities that each member of the 

ensemble displays for     . The specific heat peak 

progressively broadens and decreases in height with 

increasing   . Therefore, a finite distribution width 

destroys the global phase transition for any positive value 

of  . 
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Figure 4. The (a) order parameter and (b) specific heat temperature evolution as    is varied. A finite value 

of    washes out the singularities anticipated for       . 

We next show that this behavior is robust. For this 

purpose we consider published experimental results for 

aerosil-LC mixtures. In such systems essentially randomly 

distributed aggregates of aerosil particles introduce a kind 

of random disorder to the enclosing LC phase. The results 

[26] suggest that the disorder strength is linearly 

proportional to the density of aerosil particles   . There are 

several publications reporting high resolution calorimetric 

measurements at the N-SmA and SmA-SmC phase 

transitions that exhibit the 2
nd

 order transitions in pure 

samples. It was shown [27,28] that in the N-SmA case the 

specific heat is dominated by finite- size effects. The finite- 

size scaling is well obeyed if the characteristic finite-size 

length is set to be equal to the mean separation between 

aerosil particles        ⁄ . Here       m
2
/g stands for 

the average surface per gram area of the aerosils. On the 

other hand, this scaling is not observed (i.e. does not 

dominate the behavior) at the SmA-SmC phase transition 

[29], suggesting that the disorder might play the dominant 

role. In addition, this transition can be well described with 

the mean- field type model [30]. 

In Figs. 5a and 5b we plot the height of   at the SmA-

SmC transition. Both, the experimental and theoretical 

results are superimposed. In Fig. 5a the elastic constant is 

varied and the distribution of phase transition temperatures 

within the ensemble is constant. In the case of Fig. 5b at 

the fixed elastic constant the distribution    is altered. In 

both cases the theoretical and experimental results are very 

similar.

 

  

Figure 5. The excess specific heat height    at the paraorder - speroorder transition. Theoretical and 

experimental measurements are compared. In the experimental case we consider the influence of aerosil 

particles on the 2
nd

 order SmA – SmC transition which is encountered in the pure LC sample. In (a) we alter 

the elastic constant  , in (b) the dispersion of transition temperatures    is altered. 

 

 

4. Conclusions  
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We study the influence of the random anisotropy (RA) 

type disorder on the 2
nd

 order phase transition in which a 

continuous symmetry is broken. For illustrative purposes 

we consider thermotropic LC phases in which the 

symmetry broken phase is characterized by an order 

parameter   and a gauge field   exhibiting a Goldstone 

fluctuation mode. Due to the disorder the gauge field 

experiences spatially random variations that result in the 

characteristic length  . Therefore, the variational 

parameters of our approach are  and  . The disorder also 

gives rise to spatial variations of local quasi- phase 

transitions. We take this into account via an ensemble of 

systems with the Gaussian distribution of phase transition 

temperatures. In our model the disorder is introduced via 

the dimensionless strength   and also by the spreading    

of phase transition temperatures.  

Appendix. Specific heat 

We start with the thermodynamic definition of the 

specific heat density at constant pressure  : 

      (
   

   
)

 

   
(A1) 

where   is the Gibbs free energy density. We consider the 

case where    (     )  and assume a homogeneous 

order parameter   spatial profile. Therefore    

(  

  
)
   

   (  

  
)

   
   (  

  
)
   

  and (  

  
)
 

 (  

  
)
   

 

(  

  
)

   
(  

  
). After partial derivation with respect to   and 

assuming an equilibrium state, we get 

    

    
 

   

   

  

  
     

(A2) 

and it follows 

 
(
   

   
)

 

 (
   

   
)

   

 (
   

    
)

 

  

  
 

(A3) 

From Eq. (A2) we can infer that  

   

  
  

   
    

   
   

   
(A4) 

With this in mind we obtain the specific heat as 

 
    

(
   
    

)

 

   
   

    
(A5) 
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