ELEKTROTEHNISKI VESTNIK 89(3): 124-132, 2022
ORIGINAL SCIENTIFIC PAPER

Online Digital-Circuit Modeling with Data-Flow
Visualisation and Area Estimation

Andrej Trost', Manfred Ley2, Andrej Zemva'

YUniversity of Ljubljana, Faculty of Electrical Engineering,
TrZaska 25, 1000 Ljubljana, Slovenia

2 Carinthia University of Applied Sciences - Engineering 1T,
Villach, Austria

¥ E-mail: andrej.trost@fe.uni-lj.si

Abstract. Digital circuits are efficiently designed with abstract models in hardware description languages.

Digital design which requires understanding the modeling language, design-flow and tools is considered difficult

to the entry-level students. To boost learning, we propose a small hardware description language (SHDL) and
an online tool for modeling, simulation and transformation to a standard language. The paper presents the
SHDL structure and a novel tool for data-flow visualisation and circut area estimation. Early estimation of the

synthesized circuit structure helps students at their taking circuit modeling design decisions.

Keywords: digital circuit model, high-level language, data flow graph, circuit area estimation, online tool

Spletno modeliranje digitalnih vezij s prikazom
podatkovnega toka in oceno povrsine

Digitalna vezja ucinkovito nacrtujemo z abstraktnimi modeli
v strojno-opisnem jeziku. Proces zasnove vezja, ki zahteva
poznavanje novega jezika, postopkov in orodij, je za Studente
nizjih letnikov zelo zahteven. Poucevanje lahko izboljSamo s
poenostavljenim modelirnim jezikom SHDL in spletnim orod-
jem za opis, simulacijo ter pretvorbo modela v standardni jezik.
V ¢lanku predstavljamo zgradbo jezika SHDL in novo orodje
za prikaz gradnikov podatkovnega toka in oceno povrSine
vezja. Ocena zgradbe sintetiziranega vezja pomaga Studentom
pri nacrtovalskih odloc¢itvah v modelu vezja.

1 INTRODUCTION

Digital circuit modeling in a hardware description lan-
guage (HDL) is one of the main tasks in the digital
design process. Standard languages VHDL and Verilog
are used in the circuit modeling of the front-end as
well the as back-end logic synthesis tools. A VHDL
model describing circuit components operating in paral-
lel follows different semantic rules compared to a typical
computer language [1], [2].

Designing digital circuits requires knowledge of logic
and registers operation, HDL syntax and design tools.
The languages were initially developed for simulation
and only a language subset is used when describing
synthesizable models. The standard language modeling
methodology is considered difficult to unexperienced
designers.

Received 24 May 2022
Accepted 23 June 2022

The availability of computer aided tools is crucial for
a widespread adoption of the HDL design methodol-
ogy. The back-end synthesis tools are provided by pro-
grammable device vendors, since they are tightly cou-
pled with the technology implementation process. These
tools provide also front-end modeling and simulation
environment. For example, the Xilinx Vivado Design
Suite [4] accepts a register-transfer level (RTL) HDL
and higher-level circuit models, but their usage requires
a substantial training. The designer learning VHDL
first needs a free and simple-to-use circuit simulator.
GHDL [4] is a command-line simulator which needs an
additional software for viewing simulation waveforms.
Researchers develop a lightweight design environment
[5] and distributed online VHDL compiler and simulator
[6]. The EDA Playground [7] provides an online tool for
testing various digital development tools and languages.
The tools require a VHDL design as well as a test-bench
file for simulation.

Digital circuit design on a higher-level of abstraction
is aimed to boost the design efficiency, specifically for
the development of hardware algorithm accelerators.
High-level languages, such as Bluespec [8], Chisel [9],
OpenCL [10] and synthesis tools [11], address these
needs. A good understanding of the RTL circuit models
is still required to effectively use high-level tools. The
RTL languages and models provide the designer a full
control of the hardware structure and enable an efficient
gate-level technology optimization.

Simplified hardware description languages and associ-
ated tools have been proposed to help learning the HDL
design methodology. A plain simple HDL with a web

ONLINE DIGITAL-CIRCUIT MODELING WITH DATA-FLOW VISUALISATION AND AREA ESTIMATION 125

m Setup L0ad.. sayex Help !

entity satadd8x2

a,b: in ug;
sum: U9,
carry: ul;
s: out uB;
begin
sum <= a + b; carry = sum(8)
if carry then
s = 255
else
s = sum
end
end -
Parsed satadd8x2.
Generate VHDL.

Visit Resources DFG

Summary

) I/0 pins : 24
- Flip-flops: 9
Log gates: 0
Co Arith op.: 1
o Comp op.: 1

A Mux: 1

o — _As ASIC area est
’ Comb: 41
Seq: 48

Figure 1. Online SHDL tool with an example SHDL model, dataflow graph and resource estimation summary.

tool [12] introduces hardware modeling in the C-like
syntax to help students with an unfamiliar HDL syntax
and programming paradigm. A Finite State Machine
modeling language and tools [13] enable fast prototyp-
ing for a specific type of digital circuits. CompactHDL
[14] introduces a simplified version of VHDL and Java
tools for an automatic translation to VHDL.

We present a Small Hardware Description Language
(SHDL) and an associated online tool to be used in
digital design education [15]. The tool includes a circuit
simulator and outputs a nicely formatted VHDL code
which enables the designer to learn and adopt a proper
VHDL modeling practice. Recently, the tool was up-
graded with a circuit area estimation from the high-level
SHDL model [18]. The estimated circuit area calculation
provides a quick feedback to the designer without using
an external synthesis tool. Figure 1 depicts our online
SHDL tool with a code editor, circuit graph and resource
estimator.

Chapter 2 describes the used high-level circuit de-
scription language and its connection to the standard
VHDL. Chapter 3 describes our SHDL model parsing
and resource estimation methodology. Chapter 4 dis-
cusses the use of SHDL in education and plans for our
future work.

2 HIGH-LEVEL CIRCUIT DESCRIPTION

Hardware description languages model digital circuits
on structural, data-flow and behavioral abstraction levels.
Structural models describe circuit schematics with signal
declarations and component connections (instantiation).
High-level HDL models define combinational logic with
operators in concurrent assignment statements instead
of logic components and gates. The statements order is
not important, because the circuit structure is derived

from the flow of the data signals between expression
operators and assignments. Synthesis constraints are
applied to the signal data type and operator support.
Binary vectors representing signed or unsigned integers
and basic operators are extensively supported, but real
numbers should be avoided in a synthesizable model.
Behavioral modeling in HDL is used to describe
the circuit operation in terms of an algorithm. The
basic language constructs for an algorithm specification
are: assignments, conditional statements and loops. A
process block with a sequence of statements is used in
VHDL for a behavioral model. The process is executed
in an infinite loop presenting an iterative circuit behav-
ior, e.g. counters or finite-state machines. The models are
synthesizable considering several restrictions: specific
usage of loops and describing the synchronous logic.

2.1 Small Hardware Description Language

Hardware description languages contain data types
and structures to describe circuit models. Synthesizable
models use only a subset of a standard hardware de-
scription language. We propose to further simplify the
modeling language to boost learning the HDL design
[16]. Figure 2 presents the proposed SHDL structures
and composition of a circuit model.

Circuit

Signals_[}

Circuit

Statement [{---..

IF - else
; N

Iiiiiil |i|iiii|

Figure 2. SHDL constructs for building a digital circuit model.

Statement
Statement

126

A digital circuit model contains a set of signal declara-
tions and a function specification block with a sequence
of statements. The basic concepts of the structural,
data-flow and behavioral models are described with the
following three statement types:

e instance — a component instantiation,

« assignment — describes the combinational data-flow
as well as synchronous data storage components,

« conditional (if-else) statement for the algorithmic
behavioral specification.

The SHDL syntax is similar to the VHDL. The
proposed language syntax rules can be expressed in the
Backus-Naur Form (BNF):

circuit :== [’entity’ name] {declaration}
["begin’] block ['end’]

declaration :== name_list ’':’ ['in’ | ’'out’] type

name_list == identifier {, identifier}

block == statement {[;] statement}

statement == assign | instance | if_statement

assign == identifier assign_op expression

assign_op == = | <=’

instance == identifier ' (’ name_list ')’

if_statement:== 'if’ (condition) ’‘then’ block
{"elsif’ block} [’'else’ block] ’'end’

A circuit model contains an entity name, declaration
of ports and internal signals, and statement blocks. The
basic data types are an one-bit signal and multi-bit vector
presenting a bus. The data values on the bus can be
treated as signed or unsigned integers.

Signals and constant literals are combined with the
Boolean logic, vector shift and basic arithmetic operators
in the SHDL assignment expressions. The expressions
of the BNF syntax rules are recursively defined as:

expression :== bool { or | xor | xnor bool}
bool == relation { and relation }
relation == shift {relation_operator} shift
shift == simpleExp {sll, srl literal}
simpleExp :== term {+ |- | & term}

term == factor {x factor}

factor == primary |- primary |not primary
primary == name | literal | (expression)

2.2 SHDL circuit examples

An example of an 8-bit adder model with a carry
input in the proposed SHDL:

entity add8
a,b: in u8
ci: in ul

s: out u9
begin

s =a+b + ci
end

The SHDL basic data types are: ul for one-bit
signals, uN for N-bit unsigned and sN for N-bit signed
vectors. The language keywords are similar to those of
a standard VHDL, but the description is less verbose

TROST, LEY, ZEMVA

without libraries and architecture section. VHDL
requires a perfect data-type match in assignments
obtained by resizing and type conversion functions. A
model of the same adder in VHDL.:

library I|EEE;
use |IEEE.std_logic_1164.all;
use IEEE.numeric_std. all;

entity add8 is

port (

a,b: in unsigned(7 downto 0);

ci in std_logic;

s @ out unsigned(8 downto 0));
end add8;

architecture

begin

s <= (resize(a,9) + resize(b,9)) +
unsigned’(”” & ci);

end logic;

logic of add8 is

Our functional circuit model is composed of con-
current assignment statements between keywords begin
and end. SHDL supports similar basic arithmetic and
logic operations on signals as VHDL: vector addition,
subtraction, multiplication and Boolean operations. The
hardware specific vector operations are concatenation
(&) and slicing.

Constant vector slicing describes a combinational
truth table or decoder in case of a vector array. A
7-segment decoder example declares the rom array with
ten 7-bit unsigned binary values (data type 10u7):

entity decod

bcd: in u4
led: out u7
rom: 10u7= ”0111111”,70000110”,71011011”,

1001111~ ,71100110”,”1101101” ,”1111101 ",
”0000111”,71111111” 11011117 ;
begin
led =
end

rom (bcd)

If the vector is not constant, indexing with another
vector describes the multiplexer. Example of a 16-to-1
multiplexer:

entity mux

d: in ul6;
sel: in u4;
y: out ul;
begin

y = d(sel)
end

A two-input multiplexer is described with a condi-
tional assignment (when-else) statement. The condition-
ally selected expressions describe the data-flow logic
with various combinational components. For example:

y = a+b when b>0 else a-b

ONLINE DIGITAL-CIRCUIT MODELING WITH DATA-FLOW VISUALISATION AND AREA ESTIMATION 127

describes the circuit with an adder, subtractor, compara-
tor and two-input multiplexer (see Figure 3).

Figure 3. Combinational data flow graph.

The assignment operator <= describes in the SHDL
sequential logic, where the assignments are executed
at the rising edge of the system clock. The sequential
circuit models are constrained to a synchronous logic
with a single clock, which is sufficient for small
educational components. An accumulator with reset
and clock enable signals in the SHDL:

if reset then

a<=20

elsif en=1 then
a<=a+d
end

The same circuit in VHDL requires a process with
a rising clock condition. In SHDL, a signal condition
is either a signal value (0 is false) or expressed with
a logic relation (e.g. en=1). The constant values are
specified as integer numbers as opposed to VHDL
where a binary notation or integer conversion functions
should be applied:

process(clk)
begin
if rising_edge(clk) then
if reset = '1’ then
a <= to_unsigned (0, 8);
elsif en = '1’ then
a<=a+ d;
end if;
end if;
end process;

3 PARSING AND RESOURCE ESTIMATION

Our SHDL parser is implemented as an open-source tool
for a web browser. The SHDL web page is designed in
HTMLS for a responsive, user-friendly utilization and it

uses a set of the JavaScript library files for the model
parsing, simulation, conversion to VHDL and resource
estimation. The web page is divided into three sections:
SHDL editor with a parser log on the left side, model
settings and outputs on the right side (see Figure 1) and
interactive simulator at the bottom.

3.1 Editor and parser

The editor is based on an open source project
CodeMirror [19] which offers VHDL syntax coloring.
The SHDL modeling structures are implemented in a
library model.js with the JavaScript function closure
objects:

o NumConst: numeric constants,

o Var and Slice: signal variables and bit slices,
o Op: recursive binary expressions,

« Statement: assignment statements,

« IfStatemet: conditional statement blocks,

« Instance: model instances and

e Block: SHDL statements block.

The objects define a set of methods used for accessing
the internal data, visiting and analyzing the model,
evaluating the circuit model for the simulation purpose
and producing a standard HDL output. A library named
vector,js is used for numeric calculations with up to 64-
bit signed or unsigned values.

A parsesim.js library is used to translate the SHDL
code to the modeling structures. The input code is first
processed by a lexical analyzer (lexer.js) producing basic
language tokens. The parser reads the tokens and builds
the circuit model according to the syntax rules. The
parsing process stops in case of a rule violation and
outputs an error log. During expression parsing for the
assignment and conditional statements, a data type of
every operation object is recursively calculated by the
operator and operands data type.

For every assignment statement in a code block, the
assignment target variable name is stored in a list of
targets to alert the user in case of multiple assignments
to the same variable in a code block.

3.2 VHDL output and interactive simulation

Figure 4 presents our SHDL model of a sequential
circuit converted into the VHDL model. Entity section
of the VHDL model contains a port signal declaration
and inferred clock. The internal signals are declared in
the architecture section. The signals which are an output
of the sequential logic are initialized to zero unless there
is a specific value assigned in SHDL.

Sequential assigments in SHDL are transformed to
a VHDL clocked process. Conditional statements with
combinational assignments are converted into a combi-
national process. A sequence of conditional statements
where a signal is compared to a set of constants can be
transformed to a case statement in VHDL.

128

entity runlight is
port {

entity runlight

pos: in ul; —
st:ou2; k: oud o HHJQEEIQ_“_ clk : in std_logic;
led: out ud; "-_ 0 e pos : im std_logic;
o, . -
.Q{%Q/ led : out unsigned(3 downto @));

end runlight;
™ architecture RTL of runlight is

((if st=8 then k="
elsif st=1 then k

a4 5ignal st : unsigned(l downto @):= "@@

elsif st=2 then k="2811 signal k : unsigned(3 downto @);
\else k="8882" end) begin
///' led <= k when pos = "1" else not k;

" process(st) A

led=k when pos else not k;
end begin
case st is
when "@a" =»
k <= "1llaa"
when "@1" =»
k <= "@lla"
when "18" =3»
k <= "@a11";
when others =»
k <= "@@aar;
end case;

_end process;

begin

if rising_edge(clk) then
st <= st + 1;

end if;

. end process;

Figure 4. Conversion from SHDL to VHDL.

The online tool includes an interactive model simula-
tor utilizing computation library vector.js and waveform
display library wave.js. The simulator reads the input
signal values set by the user and preforms a repeated
model evaluation and waveform updating. The simula-
tion setup is used to generate a VHDL test-bench for
connection with external tools.

A discrete event simulation is executed by visiting and
evaluating the model in a sequence of delta simulation
cycles. At each cycle, the simulator computes events
for the assignment target signals and updates the signal
values at the end of the cycle. The simulation result is
displayed on the waveform presented in Figure 5.

Cycles:

pos | L

st 3 o1 fz2)z)of1]z2]z)0o]1:

Run + 100% - @ 0

k o f1u2fse | z)ofwn2]s]|z]0]122]s

led 1111fooiifio001fi100)1111f1100 01100011 0000]f1100]1001

t=0 0 1 2 3 4 5 [7 8 9 10

Figure 5. Interactive SHDL simulator.

3.3 Circuit area estimation

A high-level SHDL model is decomposed into basic
combinational and sequential digital circuit building
blocks to evaluate the circuit in terms of the occupied
silicon area. The actual circuit area is obtained after

TROST, LEY, ZEMVA

synthesis of the circuit model targeting the selected
technology. The CMOS synthesis tools are expensive
and not easily accessible to students learning the digital
design, so an estimation of the circuit area is included
in our online SHDL tool.

The area estimation is based on characterisation
of the sample circuit models in a selected CMOS
technology. Digital building blocks described with the
SHDL operators and modeling constructs are identified
from the high-level model. The circuit area estimation
process is described on an example of a pulse width
modulator (PWM) circuit. The circuit has an 8-bit
signed input data and one bit output pwm. PWM
is composed of a counter and comparator. The 8-bit
counter is described by signal ¢ counting from 0 to 254.
When the counter is reset, the input data is transformed
to the unsigned by adding offset 128 and then saved to
internal register d. The register is finally compared to
internal counter ¢ to obtain a one-bit pulse output:

entity pwm8

data: in s8

pwm: out ul

c, d: u8
begin

if c=254 then

c <= 0; d <= data+128
else

c <= c+1

end

pwm = 1 when c<d else 0
end

The SHDL model parser transforms the behavioral
model of the sequential circuit into the RTL model,
where all flip-flops and registers are separated
from expressions and conditional statements. The
transformation requires creating new internal signals
(c_next, d_next) for the detected sequential signals.
The new signals are part of the combinational logic
description which begins by assigning the default signal
values:

d_next = d; c_next = ¢
if ¢ = 254 then

c_next = 0; d_next = (data + 128)
else

c_next = (¢ + 1)

end

if ¢ <d then

pwm = 1

else

pvm = 0

end

—— separated registers

c <= c_next; d <= d_next

ONLINE DIGITAL-CIRCUIT MODELING WITH DATA-FLOW VISUALISATION AND AREA ESTIMATION 129

e P
'\,!E%/' | 1]

'

Figure 6. PWM data-flow graph.

A high-level description of the combinational logic
is used to construct a data-flow graph (DFG) visiting
the parsed SHDL model. The data-flow expressions are
recursively visited to produce DFG nodes and edges.
The DFG nodes represent expression operators, their
inputs and assigned signals.

Figure 6 shows DFG for the combinational logic
of the PWM circuit example. A behavioral code with
conditional statements produces multiplexer nodes with
more than two inputs. The control multiplexer input
from the conditional expression is denoted in DFG by
a red line. The constructed DFG visualization based on
the vis-network [20] is added to the SHDL web tool for
the debugging purpose.

The DFG nodes are tagged with the information
required by the area estimation, for example the size and
type of the input and output edges. The estimation algo-
rithm finally traverses the DFG calling area estimation
functions based on node tags. These functions calculate
estimated circuit area for a specified building block.

Combinational building blocks for the PWM example
are listed in Figure 7: 8-bit multiplexers mux8 for
c_next and d_next, 8-bit comparator cmpS8, two 8-
bit adders add8 and one 8-bit magnitude comparator
cmpm8. The blok names include tags to give an ad-
ditional information for the area estimation: e.g. the
muxz8_2(d_next) is an 8-bit 2-input multipexer and
muz8_1(c_next) is an 8-bit multiplexer with one vector
data input and one constant input (c_next = 0).

The estimated combinational logic area is a sum of

--- Combinational resources --- Summary
mux8_2(d_next) = 960 I/0 pins : 9
mux8_1(c_next) = 728 Flip-flops: 16
cmp8(c,254) = 203 Log gates: O
add8(data,128) = @ Arith op.: 2
add8{c,1) = 1853 Comp op.: 2
cmpm8(c,d) = 179@ Mux: 3
ASIC area est

Area = 4731 Comb: 108

Figure 7. PWM resource usage estimation.

the estimated block areas. The non-combinational circuit
area is calculated by counting the number of flip-flops
multiplied by the sythesized flip-flop size.

3.4 Area estimation functions

The circuit area for combinational blocks is estimated
as a function of the input size and tags. The circuit area
analysis is performed on several sets of combinational
circuits generated by the SHDL models. The circuits
are synthesized by Synopsys ASIC DesignCompiler
using an adapted 0.35um CMOS technology library. The
adapted library contains basic logic gates with a maxi-
mum of four inputs. The only complex structures are full
(FA) and half adders (HA). By disabling complex gates
and using default area optimization, the synthesized
circuit structure is assumed to be similar to lecture book
circuits, where the building blocks size is estimated with
linear functions of the inputs size.

Figure 8 presents an example of the iterative circuit
structure for ripple-carry adders (RCA) with the same
sized inputs, different sized inputs and adders with a
constant input. The circuits are composed of standard
adders (HA, FA) and some optimized (HA1, HA2, HA3)
due to constant inputs and no carry output (FAL).

PL 10 b1 1

| FAL |—-— —| FA |«—| FA |«—| HA |

!n slz sll s]O

[S I N
[Haz]|— — wa |~ m |~ ma | na |

!n 513 s!2 s'l SIO
I I S B T
[HA3 |— — HaL | HA | mv |

sl,n sla sl3 512 s1 s0

Figure 8. Ripple-carry adders: an + bn, am + bn, an + const

130

The n-bit RCA circuit area is a sum of one HA,
one FA1l and n — 2 FA circuit areas. When one of
the operands is smaller vector, the area equation should
consider both vector sizes. When one the inputs is
constant, the circuit structure depends on a constant
value. If the least significant portion of the constant is
zero, the optimizer completely removes the logic gates
for this part of the adder (see Figure 8).

To verify the assumption of the linear scaling of the
arithmetic circuit size, a set of vector adders and sub-
tractors is generated and synthesized. Figure 9 shows la
inear dependency of the synthesized adder and subtractor
circuit area on the input vector size ranging from 2 to
64 bits.

25000
pm?
20000

add

sub

15000
10000

5000

U

0 10 20 30 40 50 60

Figure 9. Synthesized adder (solid) and subtractor (dotted)
logic area for 2- to 64-bit vectors.

The reported synthesis areas are used to write an
overdetermined system of linear equations. The solu-
tions are linear area estimation functions which produces
a maximum of a 0.5% error in the approximated size for
the adder and 5.3% for the subtractor circuits [18].

The similar methodology is used for multiplication,
which scales with a square of the input size and op-
erations on input vectors. Table 1 presents the area
estimation functions for the basic logic and arithmetic
operators.

Table 1. Area estimation for the arithmetic and logic operators.

Operator | Estimated area [pm?]
and, or Ay =~ 58n
XOI, Xnor A, ~8Tn
add Agaa =~ 233n — 148
subtract Agup ~ 350n — 303
multiply | A, ~ 254n% — 691

Combinational circuits for relational operators can be
divided into smaller equality comparators and larger
magnitude comparators (see Figure 10). The vector
equality or non-equality comparator circuits have an
almost identical area which is scaled linearly with the
vector size. Similarly, this applies to the magnitude

TROST, LEY, ZEMVA

comparators, where the circuit area scales with the input
vector size and can be estimated independently of the
operator type.

Our analysis of the synthesized area reveals that the
scaling is slightly different for smaller magnitude com-
parators. Better area estimation results are obtained by
dividing the linear scaling function into two segments.
For example, the segments of comparator a < b, are:
250n — 210, < 8 and 263n — 685.

18000 um?
a==b
16000 y=256,68x-391,1
14000
§=257,81x - 42317
12000 a<b
10000
8000 al=b

y=11153x - 14,1
6000

4000
2000

0
0 10 20 30 40 50 60 70

Figure 10. Synthesized magnitude comparators area.

The SHDL expressions can have also constant values
and different vector sizes producing smaller circuits due
to logic optimizations, as described in the case of the
ripple-carry adders. To get better estimation functions
for these cases, several sets of combinational circuits
are synthesized and multi-parameter area estimation
functions are calculated. For example, the area of an
n-bit adder with the m-bit input (m<n) is: Aggam ~
140m + 93n — 142 and with a constant input: A, gqc =
161n — 157t — 235, where ¢ is a number of trailing zero
bits in the constant.

Figure 11 presents the circuit area of 12-bit compara-
tors with eight different input constants. The comparator
area ranges from 220 pm to 740 pm and can not be pre-
dicted with a linear estimation due to optimization of the
logic included in the synthesis tool. Our area estimation
predicts only the upper bound of the circuit area which
is 792 pm for the 12-bit input. The prediction assumes
an iterative comparator circuit structure composed of a
series of nand/nor logic gates and inverters.

Multiplexers are extracted from multiple assignments
to the same signal. The multiplexer area depends on the
number (n) and width (d) of the data inputs: A, ~
(96n — 26) - d.

Sequential circuits in the SHDL models are composed
of synchronous flip-flops. The non-combinational circuit
area is estimated by counting the number of D the flip-
flops multiplied by an average flip-flop area.

The total estimated circuit area is a sum of combi-
national and sequential logic areas. The numbers are
normalized to a standard 2-input nand gate size and
available in the resource summary (Figure 7).

ONLINE DIGITAL-CIRCUIT MODELING WITH DATA-FLOW VISUALISATION AND AREA ESTIMATION 131

800
pm
700

600

o

Figure 11. Area of 12-bit constant magnitude comparators.

4 DISCUSSION AND CONCLUSIONS

We presente an online open source SHDL design tool
with model analysis and automatic conversion to stan-
dard VHDL. The SHDL modeling language is used to
lead unexperienced digital designers in the first steps
of the digital circuit data-flow and behavioral modeling.
The proposed language syntax is a trade-off between
standard HDL, which covers a lot of digital modeling
aspects, and modeling complexity. Our goal is to make
a common case simple, for example describing a syn-
chronous counter in one line of the code. The SHDL
tool outputs a clearly formatted VHDL code suitable for
back-end programmable devices implementation tools.

The online tool enables students to practice the digital
design in laboratory and at home on any computer
platform. It is used in entry-level digital design courses
laboratory practice for modeling smaller combinational
and sequential circuits: counters, digital modulators,
numerical oscillators, interfaces, display controllers and
even small CPU models. Most of the example educa-
tional circuits previously developed in VHDL are now
for the first time designed with SHDL. Learning digital
modeling in SHDL uses the generic HDL semantics:

« concurrent description of the combinational circuits

data-flow,

« digital operator behaviour (sign, overflow),

« covering all cases in combinational circuits,

« modeling storage elements and

« sequential logic with a feedback loop.

The simplified syntax enables students to carry out
more exercises and improve their digital design knowl-
edge. The paper presents our SHDL tool upgraded with
data-flow visualisation and circuit area estimation. The
circuit area is associated with the cost of the imple-
mented circuit. The exact numbers are obtained after

2
500 "
400
300
200
100
0.0 02 04 06 07 10 12 14 16 17

s
CES
W=

==

the model synthesizing and optimizing for the target
technology, but an early estimation of the area supports
designers to make proper model description decisions.
We plan to further improve the circuit model perfor-
mance estimation and to support other HDL modeling
and verification structures. The SHDL tool has a poten-
tial of being upgraded to an intellectual property circuit
generator tool. We are also considering simplified Ver-
ilog as an optional SHDL design and output language.

ACKNOWLEDGEMENT

This work was supported by the Slovenian Research
Agency (research program grant numbers P2-0197 and
P2-0415).

REFERENCES

[1] M. M. R. Mano, M. D. Ciletti, “Digital Design, Global Edition”,
Pearson Education Limited, Harlow, UK, 2018.

[2] W.]J. Dally, R. C. Harting, T. M. Aamodt, “Digital Design Using
VHDL”, Cambridge University Press, Cambridge, 2016

[3] Xilinx Inc., “Vivado Design Suite — HLx Editions”,
Available from: https://www.xilinx.com/ /products/design-
tools/vivado.html

[4] T. Gingold, GHDL, 2017, Available from: http://ghdl.free.ft/

[5] A. Kumar, R. C. Panicker and A. Kassim, "Enhancing VHDL
learning through a light-weight integrated environment for de-
velopment and automated checking,” Proceedings of 2013 IEEE
International Conference on Teaching, Assessment and Learning
for Engineering (TALE), Bali, 2013, pp. 570-575.

[6] M. Dasygenis, ”A distributed VHDL compiler and simulator
accessible from the web,” 2014 24th International Workshop
on Power and Timing Modeling, Optimization and Simulation
(PATMOS), Palma de Mallorca, 2014, pp. 1-7

[7] Doulos, EDA Playground Documentation, July 2018, Available
from: http://www.edaplayground.com/

[8] M. Arvind, Bluespec: “A Language for hardware design, sim-
ulation, synthesis and verification”, Extended Abstract, In Pro-
ceedings of MEMOCODEI1, ACM, June 2003

132

[9]

(10]

(11]

[12]

(13]

[14]

[15]

[16]

(17]

(18]

[19]

(20]

J. Bachrach et al., “Chisel: Constructing hardware in a Scala em-
bedded language”, DAC Design Automation Conference 2012,
San Francisco, CA, 2012, pp. 1212-1221.
Khronos OpenCL Overview,
https://www.khronos.org /opencl/

W. Meeus, K. Van Beeck, T. Goedeme, J. Meel, D. Stroobandt,
“An overview of today’s high-level synthesis tools”, Design
Automation for Embedded Systems, 16(3), 2012, pp. 31 — 51
K. Becker, “A web based tool for teaching hardware design based
on the plain simple hardware description language”, EDUCON,
Istanbul, 2014, pp. 88-93

B. Vandeportaele, A Finite State Machine modeling language
and the associated tools allowing fast prototyping for FPGA
devices,” 2017 IEEE International Workshop of Electronics, Con-
trol, Measurement, Signals and their Application to Mechatronics
(ECMSM), Donostia-San Sebastian, 2017, pp. 1-6.

F. M. Birleanu, "CHDLI1: Implementing a simplified version
of the CompactHDL hardware description language”, Journal
of Electrical Engineering, Electronics, Control and Computer
Science — JEEECCS, Volume 4, Issue 14, pages 17-22, 2018.
A. Trost and A. Zemva, ”Online VHDL Generator and Anal-
ysis Tool,” 2019 8th Mediterranean Conference on Embedded
Computing (MECO), Budva, Montenegro, 2019, pp. 1-4.
High-level logic modeling JavaScript sources, 2019, Available
from: https://github.com/andrejtrost/dig-model-sim

A. Trost and A. Zemva, "A web-based tool for learning digital
circuit high-level modeling”, International journal of engineering
education, 2019, vol. 35, no. 4, pp. 1224-1237

A. Trost, M. Ley, “High-level circuit model area estimation”,
56th International Conference on Microelectronics, Devices and
Materials the Workshop on Personal Sensor for Remote Health
Care Monitoring, 2021, Ljubljana, Slovenia, pp. 128-133
CodeMirror User manual and reference guide, 2022, Available
from: https://codemirror.net/

Almende B.V. and Contributors, vis-network
2018), GitHub repository, accessed July
https://github.com/visjs/vis-network

Available from:

(2010-
2021,

TROST, LEY, ZEMVA

Andrej Trost received his Ph.D. degree in 2000 from the Faculty of
Electrical Engineering, University of Ljubljana. Currently he works at
the same faculty as an associate professor teaching high-level design
techniques on several graduate and post-graduate study levels. His
research interests include the FPGA technology and digital-system
design for academic and industrial applications.

Manfred Ley received his Dipl.-Ing. degree in 1983 from the Faculty
of Electrical Engineering, Technical University Graz. After working as
a design and project engineer for several electronics and semiconductor
companies he joined Carinthia University of Applied Sciences in 1998
to set-up a microelectronics laboratory. Since then he has been teaching
electronics, CAD-tools and integrated circuit design on all study levels
and has been involved in many research projects in the field of mixed-
signal and digital integrated circuit design.

Andrej Zemva received his B.Sc., M.Sc. and Ph.D. degrees in
electrical engineering from the University of Ljubljana (UL) in 1989,
1993 and 1996, respectively. He is Professor at the Faculty of Elec-
trical Engineering, UL, teaching courses on Digital integrated circuits
design, Electronic circuit testing and Linear electronics. His current
research interests include digital systems design, logic synthesis and
optimization, test pattern generation and fault simulation, electronic
system-level verification and real-time image processing

