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0  INTRODUCTION

The pneumatic artificial muscle (PAM), also called 
pneumatic muscle actuator (PMA) or fluidic muscle, 
is a tube-like pneumatic actuator, which consists of a 
flexible cylinder rubber surrounded by a braided mesh 
shell (see Fig. 1) [1]. 

Fig. 1.  The pneumatic artificial muscle

As a tensile actuator, the diaphragm of PAM 
extends in the circumferential direction when internal 
pressure is applied, resulting in a tensile force and 
a contraction motion in the longitudinal direction. 
The PAM has many advantages, including as simple 
structure, cleanliness, high power/weight ratio, 
low cost, etc. More importantly, the compliance [2] 

of the PAM behaves very similarly to the organic 
muscle. This characteristic makes it widely used in 
rehabilitation, medical nursing and agriculture robots 
[3] and [4]. However, high-accuracy control of a PAM 
is by no means an easy task, due to the hysteresis 
phenomenon amongst length, pressure, and force [5], 
which makes the design of the controller complicated 
for an accurate trajectory control.

To eliminate the negative effects caused by 
hysteresis, extensive studies have been witnessed in 
recent years. The hysteresis models of the PAM can 
be roughly divided into two classes [6]: operator-
based models and differential-based models. Members 
belonging to the first class use different kinds of 
mathematical operators to characterize the hysteresis 
phenomenon, including the Preisach model, Prandtl–
Ishlinskii (PI) model and Maxwell-Slip model. 
Employing the stop operators, Ito et al. [7] and [8] 
derived the hysteresis model of the PAM to realize the 
motion control of a parallel manipulator. Minh et al. 
[1] developed a lumped-parametric quasi-static model 
based on the Maxwell-slip model to capture the force-
length hysteresis, which can be easily used for the 
control of a PAM. Xie et al. [9] established the PI model 
to describe the length-pressure hysteresis of a PAM 
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Highlights
• The generalized Prandtl-Ishlinskii model is used to characterize the length-pressure hysteresis of a pneumatic artificial 

muscle. 
• The numbers of generalized play operator in the proposed model are much smaller than those in the classical Prandtl-

Ishlinskii model.
• The Levenberg-Marquardt method shows great efficiency for the identification of the parameters in the proposed model.
• The generalized Prandtl-Ishlinskii model can accurately describe the asymmetric hysteresis and has high accuracy in 

trajectory tracking of the pneumatic artificial muscle.
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and derived the inverse model for trajectory tracking 
of a PAM by using fast-switching valves. Kosaki and 
Sano [10] described the length-pressure hysteresis 
using the Preisach model for the control of a parallel 
manipulator driven by three PAMs. The second class is 
based on the differential equations to characterize the 
hysteresis, such as the Duhem model, LuGre model, 
Bouc-Wen model, etc. In a similar manner, Lin et al. 
[11] investigated the hysteresis modeling and tracking 
control methods of the PAM by using the Bouc-
Wen model, and designed different feedback control 
schemes for the compensation of hysteresis in order 
to reduce the tracking errors. Zhao et al. [12] applied 
the Duhem model to characterize the force-length 
hysteretic behaviour of the PAM, based on which a 
novel cascade position PID controller was designed 
to regulate the pressure. Zhong et al. [13] constructed 
the force-length hysteresis model in the form of the 
Bouc-Wen model, and developed a nonlinear PID 
control scheme to improve the kinematic performance 
of a manipulator actuated by PAMs. Aschemann 
and Schindele [14] adopted the generalized Bouc-
Wen model, quasi-static Maxwell-slip model, and 
Prandtl–Ishlinskii model to establish the force- 
length hysteresis, and concluded that the first model 
was the most effective one for the control of a high-
speed linear axis actuated by PAMs. Among these 
studies, the PI model is the most widely used due 
to the following advantages [11]: (1) the PI model 
contains a limited number of linear play operators; 
(2) both the PI model and the inverse PI model 
have analytical expressions. It must be pointed out 
that the conventional PI model is unable to describe 
the asymmetric characteristic of the hysteresis [15] 
and saturation [16], due to the symmetric property 
of the linear play operators. To solve this problem, 
asymmetric hysteresis modelling approaches, 
especially for smart materials, ferromagnetic materials 
and smart actuators, are intensively studied. Kuhen 
[17] proposed a modified PI model that combines 
linear play operators with dead-zone operators, which 
is capable of describing the asymmetric hysteresis of 
magnetostrictive actuators. Gu et al. [18] combined the 
conventional PI model with a nonlinear non-hysteretic 
function of the input to capture the asymmetric 
hysteresis of piezoceramic actuators. Janaideh et 
al. [19] proposed a generalized PI (GPI) model to 
characterize the saturated symmetric hysteresis loops 
of smart actuators. Zhang et al. [20] applied the 
GPI model to successfully describe the asymmetric 
hysteresis loops of Vanadium dioxide materials. 
However, few studies show the effectiveness of 
these variations of the PI model for PAMs except 

for the investigation carried out by Liu et al. [21], in 
which a modified PI model was used to describe the 
asymmetric length-pressure hysteresis. 

Drawing on the GPI model, this paper deals with 
the length-pressure hysteresis modelling and inverse 
GPI model compensation of PAMs. The rest of this 
paper is organized as follows. First, the experimental 
setup for measuring the length-pressure hysteresis 
and trajectory tracking control of a PAM is briefly 
introduced, followed by the formulation of the 
analytical forms of the GPI model and its inversion. 
Then the parameters in the model are identified using 
the Levenberg-Marquardt method, and the validation 
of the model is testified in comparison with the 
experimental measurements. Finally, an inverse-based 
compensator for trajectory tracking control of the 
PAM is designed to demonstrate the effectiveness of 
the model before conclusions are drawn in Section 5. 

1  MEASUREMENTS OF THE LENGTH-PRESSURE 
HYSTERESIS OF A PAM

The experimental setup is shown in Fig. 2, and the 
components are listed in Table 1. 

Fig. 2.  Experimental setup

A PAM (FESTO DMSP-20-500) from FESTO is 
used for testing, of which one extremity is connected 
with the base and the other moves freely. The length 
and the internal pressure of the PAM are measured 
using a displacement sensor (Novetechnik TEX-
0150) and a pressure transducer (FESTO SDE1-D10), 
respectively. A proportional pressure regulator (Festo 
VPPM-6L-L-1-G18-0L10H) is equipped to regulate 
the required pressure for the PAM. Fig. 3 shows the 
schematic diagram of the experimental setup.

The experimental process is given as follows. 
Initially, the PAM is at its full length, and the internal 
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pressure is zero. The reference pressure signal is 
designed in the form of triangle-wave with a frequency 
of 0.2 Hz (see Fig. 4). Its amplitude decreases from 
0.6 MPa to 0.1 MPa with an equal interval of 0.1 
MPa. During the experiment, the contraction and 
internal pressure of the PAM are recorded. Fig. 5 
shows the corresponding length-pressure hysteresis 
curve of the PAM, from which it can be seen that the 

major hysteresis loop varies from 0 MPa to 0.6 MPa, 
and five minor hysteresis loops vary from 0 MPa to 
0.5 MPa, 0.4 MPa, 0.3 MPa, 0.2 MPa, and 0.1 MPa, 
respectively. Obviously, given the same internal 
pressure, the contraction ratios of the PAM are 
different in the process of stretching and contraction. 
The measured data of the major hysteresis loop (see 
Fig. 5, red line) are used to identify the parameters in 

Table 1.  Components of the system

Component Type Parameters Company

PAM DMSP-20-500N
Length 500 mm, Diameter 20 mm
Maximal permissible contraction 25 % Maximal additional load 80 kg

Festo

Proportional pressure 
regulator

VPPM-6L-L-1-G18-0L10H
Regulator range: 0 to 10 bar, Full scale linearity error ±0.5 %
Full scale repetition accuracy 0.5 %

Festo

Pressure sensor SDE1-D10-G2-WQ4-L-PU Max pressure 10 bar, Full scale accuracy ±2 % Festo
Displacement sensor TEX-0150-415-002-205 Measurement range 150 mm, Repeat accuracy ± 0.01 mm Novetechnik
Data acquisition card PCI-6230 8 analogue input, 8 analogue output NI

Fig. 3.  Configuration of the experimental testing system

Fig. 4.  The referenced input signal of pressure Fig. 5.  Length/Pressure hysteresis of PAM
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the GPI model that will be derived in the following 
section. 

2  LENGTH-PRESSURE HYSTERESIS MODELLING

The analytical formulations of the GPI model and 
its inverse model are presented in this section. The 
former is used to characterize the length-pressure 
hysteresis, while the latter is applied as a feedforward 
compensator for trajectory tracking control. 

2.1  The Classical PI Model

The classical PI model is a linearly weighted 
superposition of elementary play operators with 
different thresholds and weighting values. The 
input-output relationship of a linear play operator 
is illustrated in Fig. 6. Its envelop function is a 
straight line with a slope of one. Fig. 7 shows the 
superposition of a finite number of linear play 
operators to characterize the hysteresis in the discrete 
space. The expression of the ith linear play operator 
can be formulated as [22]:

  y k x k r x k r y ki i i i( ) max ( ) ,min ( ) , ( ) ,= − + −{ }{ }1  (1)

while the initial condition is:

 y x r x r yi i i i( ) max ( ) ,min ( ) , .0 0 0 0= − +{ }{ }  (2)

Fig. 6.  The linear play operator

The output of the PI model can be written as:

 y k y k x kp i i
i

n
T

r( ) ( ) [ ( ), ]= =
=
∑ω
1

0ωω H y  (3)

where Hr denotes the linear play operator; 
ω = [ω1, ..., ωn]T is the weighting vector; r = [r1, ..., rn]T  

is the threshold vector; x and y are the input and output 
of the operator, respectively; y0 is the initial state; n 
is the number of play operators. It has been shown 
that the conventional PI model cannot characterize 
asymmetric hysteresis loops of the PAM [21]. 

Fig. 7.  The PI model

2.2  The Generalized PI Model

Due to the limitations of the conventional PI model, 
the GPI model [23] is employed to describe the 
length-pressure hysteresis behaviour of a PAM. The 
GPI model is expressed as a weighted superposition 
of generalized play operators. The input-output 
relationship of a generalized play operator is shown 
in Fig. 8. The ith generalized play operator can be 
mathematically expressed as:

y k x k r x k r y ki i i i( ) max [ ( )] ,min [ ( )] , ( ) ,= − + −{ }{ }γ γ 1  (4)

where γ[x(k)] is the envelop function of the generalized 
play operator. In this paper, the hyperbolic-tangent 
function is chosen to describe the output saturation 
under certain input, such that the envelop function can 
be given by:

 γ = + +c c x k c c0 1 2 3tanh[ ( ) ] ,  (5)

where c0 > 0, c1 > 0, c2, c3 are constants to be identified. 
Thus, the GPI model can be formulated as:

 y k q x k p r y kP i i
i

n

( ) [ ( )] ( ) ( ),= +
=
∑γ
1

 (6)

where q is a positive constant. According to [23], the 
threshold value ri and the weight of the ith operator 
p(ri) are given as:

 r ii =α ,  (7)
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 p r ei
ri( ) ,= −ρ τ  (8)

where α, ρ and τ are positive constants that need to be 
identified from experimental data. 

Moreover, the inverse of the GPI model can be 
analytically expressed as:

 x k q y k p x kP i i
i

n

( ) ( ) ( ) ,= ′ + ′









−

=
∑γ 1

1

 (9)

where the parameters in this model can be obtained 
following the conventional PI model and given as 

   x k y k r y k r x ki i i i( ) max ( ) ,min ( ) , ( ) ,= − ′ + ′ −{ }{ }1  (10)
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, (11)

where xi(k) is the ith inverse generalized linear play 
operator; ′ri  and ′pi  represent the ith threshold and 
weight, respectively. 

Fig. 8.  The generalized play operator

3  PARAMETER IDENTIFICATION

In this section, the Levenberg-Marquardt (L-M) 
method is used to identify the parameters in the GPI 
model. Then the identified model is validated by 
comparing the simulation result and measured data.

3.1  The Levenberg-Marquardt Method

The nonlinear least-squares algorithm is a widely used 
technique in parameter estimation, which can be used 
to find the coefficients by minimizing a weighted cost 
function of the measured data. For this specific case, 
the following quadratic cost function is formulated:

 F E E= = −( )
=
∑T ( ) ( ) ( ) ( , ) ,ΘΘ ΘΘ ΘΘy k y kt p
k

N
2

1

 (12)

subject to

         
y k q x k p r y k

c c

p t i i
i

n

( , ) [ ( )] ( ) ( )

, , ,

,
ΘΘ = +

> > > >







=
∑γ

ρ τ
1

0 10 0 0 0

 (13)

where ΘΘ = [ , , , , , , , ]c c c c q0 1 2 3 ρ τ α T  is a set of identified 
parameters in the GPI model; E(Θ) is the error vector; 
xt and yt are input and output data obtained from the 
experiment; N is the number of xt; yp is the output of 
the GPI model. The identification process can be 
expressed as [24]:

 ΘΘ ΘΘk k k k k+
−= −1

1H J ET ,  (14)

where Hk is the Hessian matrix, which is a square 
matrix of second-order partial derivatives of the error 
vector E with respect to the parameter vector Θ; Jk is 
the Jacobian matrix that can be presented as:

 Jk

n
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,

 Ek t p ny k y k E E E= − =( ) ( , ) [ , , ] ,ΘΘ 1 2
T

where Ei is the error between the ith output of the 
GPI model and the output data obtained from the 
experiment; Θi is the ith parameter of vector Θ; and 
n = 1 for this particular case. 

In order to improve the convergence of the 
solution, the Hessian matrix in Eq. (14) is expressed 
by:

 H J J Ik k k= +T µ ,  (15)

where μ is called the combination coefficient, which 
is a damping parameter to approximate the Hessian 
matrix; I is the identity matrix, which is applied to 
guarantee the approximated Hessian matrix to be 
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invertible all the time. Then, substituting Eq. (15) into 
Eq. (14) yields [25]:

 ΘΘ ΘΘk k k k k k+

−
= − +( )1

1

J J I J ET Tµ ,  (16)

which represents the parameter vector updating rule in 
each iteration. By using this method, the problem will 
converge to the optimal solution [24].

Table 2 lists the identified parameters of the GPI 
model (Eq. (6)) with ten generalized play operators 
(n = 10). Fig. 9 shows the comparison of the outputs 
of the identified GPI model with the measured 
data. It can be seen that the GPI model is effective 
in characterizing the asymmetric length-pressure 
hysteresis loops of the PAM. 

Fig. 9.  Model validation result of the GPI model

Table 2.  Identified parameters

c0 c1 c2 c3
1.428 0.418 -0.604 0.637

q ρ τ α
0.047 0.042 5.001 0.08

4  INVERSE GPI MODEL FOR COMPENSATION  
IN POSITION CONTROL OF PAM

To compensate the length-pressure hysteresis, a 
feedforward/feedback combined control strategy is 

developed to realize highly accurate trajectory tracking 
control of the PAM. The feedforward compensator is 
designed based on the inverse GPI model in order to 
reduce the influence of length-pressure hysteresis, 
while the feedback controller is used to overcome the 
tracking error caused by creep and vibrations.

4.1  Control Scheme 

Given the identified parameters of the GPI model, the 
inverse GPI model can be obtained using Eqs. (9) to 
(11), which is then cascaded with the control system 
as a feedforward hysteresis compensator. The inverse 
GPI model maps the desired trajectory yd into a desired 
control input signal Pd applied to the proportional 
pressure regulator. Hence, the relationship between 
the desired trajectory yd and actual length yr can be 
linearized. Note that the accuracy of the hysteresis 
model affects the performance of the feedforward 
controller. Therefore, a feedback loop must be added 
to form a feedforward/feedback combined controller. 
The control scheme is illustrated in Fig. 10. In this 
paper, a conventional PID controller is included in the 
feedback loop, which has the following form:

 ∆ = + +∫P K e t K e d K de t
dtp i

t

d( ) ( )
( )
,τ τ

0
 (17)

where e(t) is the tracking error signal; ΔP is the output 
of PID controller; Kp, Ki, and Kd are proportional, 
integral, and derivative gains, respectively, which are 
given in Table 3.

Table 3.  Parameters of PID controller

Kp Ki Kd
0.05 0.01 0

4.2  Experimental Results

To testify regarding the performance of the proposed 
control scheme, an experiment on trajectory tracking 

Fig. 10.  Feedforward/feedback combined control scheme for pneumatic artificail muscle
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control of the PAM is implemented. The desired 
sinusoidal tracking signal is designed as:

 y t A ft Ld ( ) sin ,= +( ) +2π ϕ  (18)

where yd(t) is the desired trajectory signal output; 
A is the amplitude and φ is the initial phase; f and 
L are the frequency and offset of the desired signal, 
respectively. Table 4 gives the parameters in Eq. (18).

Table 4.  Parameters of sinusoidal signal

A [mm] f [Hz] φ [rad] L [mm]
45 0.2 π/2 450

Table 5.  The tracking error of sinusoid trajectory

Maximum error  
[mm]

Mean absolute error 
[mm]

RMS error  
[mm]

2.659 0.7358 0.8701

Fig. 11.  Trajectory tracking responses

Fig. 12.  Trajectory tracking errors

The tracking responses and errors of the 
proposed control scheme are shown in Figs. 11 and 
12, respectively. Table 5 lists the statistics of the 

trajectory tracking error. Numerical results show that 
the maximal error is 2.659 mm, and the mean absolute 
error is only 0.7358 mm. From the experimental 
results, it can be concluded that the inverse GPI model 
is very effective to compensate the effects of length-
pressure hysteresis in real-time application. This 
conclusion can also be drawn from the nearly linear 
relationship between the desired and the actual lengths 
of the PAM after compensation (see Fig. 13). 

Fig. 13.  Relationship between the desired length and the actual 
length after compensation

5  CONCLUSIONS

To capture the asymmetric length-pressure hysteresis 
of the PAM, a generalized Prandtl-Ishlinskii (GPI) 
model and its inverse model are presented in this 
paper. Compared to the classical Prandtl-Ishlinskii 
(CPI) model, the proposed GPI model utilizes the 
hyperbolic-tangent function as the envelope function 
of generalized play operators to characterize the 
asymmetric hysteresis loops. The parameters in the 
GPI model are identified by using the Levenberg-
Marquardt method, making the process of 
identification convenient and efficient. Based on the 
inverse GPI model, a feedforward/feedback combined 
control scheme is developed to compensate the 
length-pressure hysteresis nonlinearity and realize 
high accurate trajectory tracking control of the PAM. 
The experimental results show that the proposed GPI 
model and its inversion are effective for describing 
the asymmetric length-pressure hysteresis of the PAM 
in terms of both major and minor hysteresis loops. 
However, since the symmetric envelop function is 
used in the generalized play operator, the capability of 
this model in characterizing the asymmetric hysteresis 
loops is limited. Therefore, the feedback controller 
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combined with the asymmetric GPI model-based 
feedforward compensator will be investigated in 
future work to further improve the trajectory tracking 
performance.
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7  NOMENCLATURE

x the input of the linear play operator or generalize 
play operator, [mm]

y the output of the linear play operator or generalize 
play operator, [%]

n the number of the linear play operator or 
generalize play operator

yi the ith linear play operator or generalize play 
operator, [%]

yp the output of PI or GPI model, [%]
ω the weighting vector of PI model
r the threshold vector of PI model
y0 the initial state of the linear play operator or 

generalize play operator
xp the output of inverse GPI model, [MPa]
xi the ith inverse generalize play operator
′ri  the ith threshold of the inverse GPI model
′pi  the ith weight of the inverse GPI model

γ the envelope function of the generalize play 
operator

c0 the constants of envelop function in GPI model
c1 the constants of envelop function in GPI model
c2 the constants of envelop function in GPI model
c3 the constants of envelop function in GPI model
q a positive constant of GPI model
ri the threshold value of the ith generalize play 

operator
p(ri) the weight of the ith generalize play operator
α the positive constant of ri
ρ the positive constant of p(ri)
τ the positive constant of p(ri)
F the quadratic cost function
Θ identified parameter vector in GPI model
E the error vector
xt the input data obtained from experiment, [mm]
yt the output data obtained from experiment, [%]
N the number of xt
Hk the Hessian matrix, second-order partial 

derivatives of the error vector E with respect to 
the parameter vector Θ

Jk the Jacobian matrix of the error vector E with 
respect to the parameter vector Θ

μ the combination coefficient
I the identity matrix
e(t) the tracking error signal, [mm]
ΔP the output of PID controller, [V]
Kp the proportional gain
Ki the integral gain
Kd the derivative gain
yr the actual trajectory, [mm]
Pd the desired control input signal, [V]
yd the desired trajectory signal, [mm]
A the amplitude of yd, [mm]
f the frequency of yd, [Hz]
φ the initial phase of yd, [rad]
L the offset of yd, [mm]
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