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Abstract

The recently introduced total domination game is studied. This game is
played on a graph G by two players, named Dominator and Staller. They al-
ternately take turns choosing vertices of G such that each chosen vertex totally
dominates at least one vertex not totally dominated by the vertices previously
chosen. Dominator’s goal is to totally dominate the graph as fast as possible,
and Staller wishes to delay the process as much as possible. The game total
domination number, 7;4(G), of G is the number of vertices chosen when Domi-
nator starts the game and both players play optimally. The Staller-start game
total domination number, v;,(G), of G is the number of vertices chosen when
Staller starts the game and both players play optimally. In this paper it is
proved that if F' is a forest on n vertices in which every component contains
at least three vertices, then 7, (F) < 4n/5 and v, (F) < (4n +2)/5. As a
consequence of this result, we obtain upper bounds for both games played on
any forest that has no isolated vertices.
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1 Introduction

The domination game in graphs was introduced in [2] and extensively studied after-
wards in [1, 2, 3, 5, 10, 11, 12, 13] and elsewhere. A vertex u in a graph G dominates
a vertex v if u = v or u is adjacent to v in G. A dominating set of GG is a set S of
vertices of G such that every vertex in G is dominated by a vertex in S. The game
played on a graph G consists of two players, Dominator and Staller, who take turns
choosing a vertex from G. FEach vertex chosen must dominate at least one vertex
not dominated by the vertices previously chosen. The game ends when the set of
vertices chosen becomes a dominating set in G. Dominator wishes to dominate the
graph as fast as possible, and Staller wishes to delay the process as much as possible.
The game domination number (resp. Staller-start game domination number), v4(G)
(resp. 7,(G)), of G is the number of vertices chosen when Dominator (resp. Staller)
starts the game and both players play optimally.

Recently, the total version of the domination game was investigated in [8], where
in particular it was demonstrated that these two versions differ significantly. A
vertex u in a graph G totally dominates a vertex v if u is adjacent to v in G. A
total dominating set of G is a set S of vertices of G such that every vertex of G is
totally dominated by a vertex in S. The total domination game, played on a graph G
again consists of two players called Dominator and Staller who take turns choosing a
vertex from G. In this version of the game, each vertex chosen must totally dominate
at least one vertex not totally dominated by the set of vertices previously chosen.
At any particular point in the game some subset C' of vertices has been chosen by
the players, and it is the turn of one of the two players. We say that a vertex v of
G is playable if v has a neighbor that is not totally dominated by C. If the player
chooses v, then we say the player played v and we refer to this choice as the mowve
of that player. For emphasis we may also say it was a legal move. The game ends
when the set of vertices chosen is a total dominating set in G, or equivalently when
G has no playable vertices. Dominator wishes to totally dominate the graph as fast
as possible, and Staller wishes to delay the process as much as possible.

The game total domination number, ~;4(G), of G is the number of vertices chosen
when Dominator starts the game and both players play optimally. The Staller-start
game total domination number, v;,(G), of G is the number of vertices chosen when
Staller starts the game and both players play optimally. For simplicity, we shall refer
to the Dominator-start total domination game and the Staller-start total domination
game as Game 1 and Game 2, respectively.

A partially total dominated graph is a graph together with a declaration that some
vertices are already totally dominated; that is, they need not be totally dominated
in the rest of the game. In [8], the authors present a key lemma, named the Total
Continuation Principle, which in particular implies that the number of moves in
Game 1 and Game 2 when played optimally can differ by at most 1.



For notation and graph theory terminology not defined herein, we in general
follow [7]. We denote the degree of a vertex v in a graph G by dg(v), or simply
by d(v) if the graph G is clear from the context. A leaf in a forest is a vertex of
degree 1 in the forest. If X and Y are subsets of vertices in a graph G, then the
set X totally dominates the set Y in G if every vertex of Y is adjacent to at least
one vertex of X. In particular, if X totally dominates the vertex set V(G) of G,
then X is a total dominating set in G. For more information on total domination in
graphs see the recent book [9]. Since an isolated vertex in a graph cannot be totally
dominated by definition, all graphs considered will be without isolated vertices.

Our aim in this paper is to establish upper bounds on the Dominator-start total
domination game and the Staller-start total domination game played in a forest.
More precisely, we shall prove the following result.

Theorem 1 Let F' be a forest on n vertices in which every component contains at
least three vertices. Then,
4n / 4dn + 2

and 7, (F) < 5

Our proof strategy is to modify an ingenious approach adopted by Csilla Bujtas [5]
who proved the 3/5-conjecture for the ordinary game domination number for the
class of forests in which no two leaves are at distance 4 apart. Her approach is
to color the vertices of a forest with three colors that reflect three different types
of vertices and to associate a weight with each vertex. In the total version of the
domination game, we modify Bujtas’s approach by coloring the vertices of a forest
with four colors that reflect four different types of vertices. In the next section
we introduce this coloring and deduce its basic properties. In Section 3 we assign
weights to colored vertices and study the decrease of total weight of the forest as a
consequence of playing vertices in the course of the game. In the subsequent section
we define and study three phases of the game, while in Section 5 we describe and
analyze a strategy of Dominator based on the three phases. The efforts of previous
sections are culminated in Section 6 where a proof of Theorem 1 is given. As a
consequence, we then prove that when F' is a forest of order n with & components
of order 2 and no isolated vertices, y4(F) < @ and 71, (F) < %. Finally,

we pose a so-called %—Conjecture.

2 A Residual Forest

We consider the total domination game played on a forest F' in which every com-
ponent contains at least three vertices. At any stage of the game, let D denote the
set of vertices played to date where initially D = (). We define a colored-forest with



respect to the played vertices in the set D as a forest in which every vertex is colored
with one of four colors, namely white, green, blue, or red, according to the following
rules.

A vertex is colored white if it is not totally dominated by D and does not
belong to D.

A vertex is colored green if it is not totally dominated by D but belongs to D.

A vertex is colored blue if it is totally dominated by D but has a neighbor not
totally dominated by D.

A vertex is colored red if it and all its neighbors are totally dominated by D.

Note that a vertex u is colored white if and only if D N N[u] = () and is colored
green if and only if D N Nu| = {u}, where N[u] is the closed neighborhood of u.

We remark that in a partially total dominated forest the only playable vertices
are those that have a white or green neighbor since a played vertex must totally
dominate at least one new vertex. In particular, no red or green vertex is playable.
Further, the status of a red vertex remains unchanged as the game progresses. Hence,
once a vertex is colored red, it plays no role in the remainder of the game and can
be deleted from the partially total dominated forest. Moreover since blue vertices
are already totally dominated, an edge joining two blue vertices plays no role in the
game, and can be deleted. Therefore in what follows, we may assume a partially
total dominated forest contains no red vertices and has no edge joining two blue
vertices. Adopting the terminology in [10], we call the resulting forest a residual
forest.

Suppose that a residual forest contains a Ps-component, H. Since we are assum-
ing that every component of the original forest F' contains at least three vertices, at
least one vertex, say v, of H has degree at least 2 in the original forest F'. Let w be
a neighbor of v that is not in H. When a move was made earlier in the game and
the edge vw was removed it is the case that either the vertex w was red and was
deleted or both v and w were blue. In both cases v is colored blue in H. Hence,
every Ps-component in the residual forest consists of one blue vertex and either one
white or one green vertex. The following additional properties of the residual forest
follow readily from the properties of the coloring of the vertices.

Observation 2 The following properties hold in a residual forest.
(a) Every playable vertex has a white or green neighbor.
(b) Every neighbor of a white vertez is a white or blue vertez.
(c) Every neighbor of a green vertex is a blue verter.
(d) Every neighbor of a blue vertex is a white or green vertes.



(e) Every playable vertex is a white or blue vertex.

(f) There is no isolated verte.

(g) Every Py-component consists of one blue vertex and either one white
or one green vertex.

3 The Assignment of Vertex Weights

We next associate a weight with every vertex in the residual forest as follows:

Color of vertex | Weight of vertex
white 4
green 3
blue 2
red 0

Table 1. The weights of vertices according to their color.

Since the residual forest by definition contains no red vertex, the above assign-
ment of weight 0 to red vertices seems redundant. However, in due course of the
game new red vertices are created and at that moment we assign them weight 0.

We define the weight of the residual forest F' as the sum of the weights of the
vertices in F' and denote this weight by w(F'). Hence each white vertex contributes 4
to the sum w(F'), while each green and blue vertex contributes 3 and 2, respectively,
to the sum w(F).

3.1 Types of Playable Vertices

Let v be a playable vertex in F. As observed earlier, the vertex v is white or blue,
and has a white or green neighbor. We distinguish eight different legal moves in the
residual forest F' according to the following types.

Type 1: v is colored white and has at least two white neighbors.

Type 2: v is colored white and has exactly one white neighbor.

Type 3: v is colored blue and has degree at least 3.

Type 4: v is colored blue and has degree 2 with two white neighbors.

Type 5: v is colored blue and has degree 2 with one white and one green neighbor.
Type 6: v is colored blue and has degree 2 with two green neighbors.

Type 7: v is a blue leaf with a green neighbor.

Type 8: v is a blue leaf with a white neighbor.



Suppose that the playable vertex v is colored white. When v is played its color
status changes from white to green. Further, each white neighbor of v changes status
from white to blue, while each blue neighbor of v retains its color status. Hence if
v is a type-1 vertex with k£ white neighbors, then when v is played the weight of F'
decreases by 1 + 2k, which is at least 5. Suppose that v is a type-2 vertex. Let w
denote the white neighbor of v. By Observation 2(g), we know that the component
containing v contains at least three vertices. When v is played, its status changes
from white to green, while the status of w changes from white to blue. Hence, when
v is played the weight of F' decreases by at least 3. Each blue neighbor of v retains
its color status. The status of every blue neighbor of w, if any, remains unchanged
(colored blue) or changes from blue to red, while the status of every white neighbor
of w different from v remains unchanged. Therefore, when v is played the weight of
F' decreases by exactly 3 or by at least 5.

Suppose that v is colored blue. When v is played its color status changes from
blue to red. Further, each white neighbor of v changes status from white to blue
or red, while each green neighbor of v changes status from green to red. Hence if
v is a type-3 vertex with k£ white neighbors and ¢ green neighbors, where k + ¢ =
d(v) > 3, then when v is played the weight of F' decreases by at least 2 + 2k + 3/
and 2+ 2k + 30 > 2+ 2d(v) > 8. If v is a type-4, type-5, or type-6 vertex, then
when v is played the weight of F' decreases by at least 6, 7 or 8, respectively. If v is
a type-7 vertex and w denotes its green neighbor, then when v is played both v and
w change status to red. Further, if d(w) > 2, then the color of every blue neighbor
of w different from v either remains unchanged or changes to red. Therefore, the
weight of F' decreases by at least 5 in this case. Suppose v is a type-8 vertex and w
denotes its white neighbor. If w has no white neighbor (this includes the case when
w is a leaf), then when v is played both v and w are recolored red, implying that
the weight of F' decreases by at least 6. If w has a white neighbor, then when v
is played v is recolored red and w is recolored blue, implying that the weight of F'
decreases by at least 4 in this case.

The decrease in the weight of F' according to the different types of playable
vertices is summarized in Table 2.

Type of playable vertex | Decrease in weight of F'
Type-1 >5
Type-2 Jor>5
Type-3 >8
Type-4 >6
Type-5 > 7
Type-6 >3
Type-7 >5
Type-8 >4

Table 2. The decrease in weight when playing different types of vertices.



We therefore have the following observation.

Observation 3 A played vertexr in a residual forest decreases the weight by at
least 3.

The following lemmas will prove to be useful.

Lemma 4 If the game is not yet over, then there exists a legal move that decreases
the weight by at least 5.

Proof. Suppose to the contrary that every legal move decreases the weight by at
most 4. By Observation 3, every playable vertex in the residual forest I’ either
decreases the weight by 3 or by 4. By Table 2, if a playable vertex decreases the
weight by 3, then it is a type-2 vertex; if it decreases the weight by 4, then it is a
type-8 vertex. Thus every white vertex has at most one white neighbor, and every
blue vertex is a leaf with a white neighbor. By Observation 2(c), F' has no green
vertices and consequently F' contains only white and blue vertices.

Suppose that F' contains a blue vertex, v. As observed earlier, v is a leaf with
a white neighbor, say w. If every neighbor of w is a blue vertex, then playing v
decreases the weight by at least 6, a contradiction. Hence the vertex w has a white
neighbor . This implies that playing « decreases the weight by at least 5, which is a
contradiction. Hence F' contains only white vertices. By Observation 2(f) and 2(g),
F' contains at least three vertices. Hence there exists a white vertex with at least
two white neighbors, a possibility ruled out in the first paragraph. O

Lemma 5 If a played vertex in a residual forest is a white vertex, then the resulting
total decrease in weight is odd.

Proof. Let v be a white vertex in the residual forest F' and suppose that v is
playable. When v is played, its status changes from white to green; this contributes 1
to the decrease in weight of F'. Every white neighbor of v changes status from white
to blue and contributes 2 to the decrease in weight of F'. Every blue neighbor of a
white neighbor of v, if any, retains its blue color status or changes status from blue
to red and therefore contributes either 0 or 2 to the decrease in weight of F. All
other vertices retains their color status and contribute 0 to the decrease in weight of
F. Therefore, when v is played the resulting total decrease in weight of F' is odd. [



4 The Three Phases of the Game

Before any move of Dominator, the game is in one of the following three phases.

e Phase 1, if there exists a legal move that decreases the weight by at least 7.

e Phase 2, if every legal move decreases the weight by at most 6, and there exists
a legal move that decreases the weight by 6.

e Phase 3, if every legal move decreases the weight by at most 5.

By Lemma 4, if the game is in Phase 3, then there exists a legal move that decreases
the weight by 5.

We remark that it is possible for a game to be in Phase 2 and later again in
Phase 1. Further, it is possible for a game to be in Phase 3 and later in Phase 1 or
Phase 2.

4.1 Phase 3

As a consequence of our discussion in Section 3 that is summarized in Table 2, we
have the following observation.

Observation 6 If the game is in Phase 3, then the following hold in the residual
forest.

(a) Every white vertex has at most two white neighbors.

(b) Every blue vertez is a leaf.
(c) A green vertex, if it exists, is a leaf with a blue (leaf) neighbor.
(d) A white vertex with a blue (leaf) neighbor has at least one white neighbor.
(e) A white vertex has at most one blue (leaf) neighbor.

We are now in a position to prove the following structural lemma.

Lemma 7 If the game is in Phase 8 and T is any component of the residual forest,
then one of the following holds.

(a) T'= P, with one green vertex and one blue vertex.

(b) T' = Ps, with a blue leaf and two white vertices.

(¢) T = Py, with two blue leaves and two white (central) vertices.

(d) T = K13, with a blue leaf and three white vertices.

(e) T = Py, where k > 3, consisting entirely of white vertices.

Proof. Let T be a component of the residual forest as described in the statement
of the lemma. If T contains a green vertex, then by Observation 6(c) we have that



T satisfies condition (a) in the statement of the lemma. Hence we may assume that
T contains no green vertex.

Suppose that T' contains a blue vertex, v. By Observation 6(b), the vertex
v is a leaf. Let w be the neighbor of v. By assumption, w is a white vertex.
By Observation 6(b) and 6(e), the vertex v is the only blue neighbor of w. By
Observation 6(d), the vertex w has a white neighbor, say x. If T = P3, then T
satisfies condition (b) in the statement of the lemma. Hence we may assume that
T # P5. If x has two white neighbors, then playing x decreases the weight of T" by
at least 7 (note that after playing x, the vertex v becomes red), contradicting the
fact that we are in Phase 3. Hence, w is the only white neighbor of x. If d(z) > 2,
then by Observation 6(e), d(z) = 2 and z has a blue leaf neighbor. Analogously in
this case, d(w) = 2. Thus if d(x) > 2, then T' = P, and T satisfies condition (c) in
the statement of the lemma. Hence we may assume that = is a leaf. Since T # Ps,
our earlier observations imply that d(w) = 3 and w has a white neighbor, say z,
different from z. If z has a blue (leaf) neighbor, then playing w decreases the weight
of T' by at least 7, a contradiction. If z has a white neighbor different from w, then
playing z decreases the weight of T' by at least 7, a contradiction. Therefore, z is a
leaf, implying that 7' = K 3 and T satisfies condition (d) in the statement of the
lemma.

Hence, we may assume that 7' contains no blue vertex, for otherwise T satisfies
condition (a), (b), (c), or (d) in the statement of the lemma. However, in this case,
by Observation 6(a) we have that T satisfies condition (e) in the statement of the
lemma. U

By Lemma 7, if the game is in Phase 3, then a component of the residual forest
can have one of five possible structures, which are illustrated in Figure 1.

\%%
B B
B W
B W
I \WY% W
G W W
W :
B W \%WY% &
\%%

@ () (o) (d) (e)

Figure 1: Five possible components of the residual forest in Phase 3.



4.2 Phase 2

As a consequence of our discussion in Section 3 that is summarized in Table 2, we
have the following observation.

Observation 8 Suppose it is Dominator’s turn and every legal move decreases the
weight by at most 6. The following hold in the residual forest.

(a) Every white vertex has at most two white neighbors.

(b) Every blue vertex is a leaf or has degree 2 with two white neighbors.

(c) A green vertex, if it exists, is a leaf with a blue (leaf) neighbor.

We are now in a position to prove the following structural lemmas.

Lemma 9 Suppose the game is in Phase 2. If T is a component of the residual
forest and contains a playable vertex that decreases the weight by 6, then T has the
following properties.
(a) A playable vertex that decreases the weight by 6 is a blue vertex.
(b) T only contains blue and white vertices, and contains at least one blue vertez.
(c) A blue vertex of degree 2 in T has two white neighbors, both of which have
at least one white neighbor.

Proof. Let T' be as defined in the statement of the lemma. By Observation 2(e),
every playable vertex is a white or blue vertex. By Lemma 5, a playable vertex in
T that decreases the weight by 6 cannot be a white vertex, and is therefore a blue
vertex. This establishes property (a). By Observation 8(b), every blue vertex is a
leaf or has degree 2 with two white neighbors.

If T contains a green vertex, then by Observation 8(c) it follows that 7" is a P,
with one blue vertex and one green vertex. However, such a colored component does
not have a playable vertex that decreases the weight by 6. Consequently, T' only
contains blue and white vertices, and by property (a) it has at least one blue vertex.
This establishes property (b).

Let v be a blue vertex of degree 2 in 7. By Observation 8(b), both neighbors
of v are white vertices. If either of these two white vertices is adjacent only to blue
vertices, then when v is played the resulting total decrease in weight is at least 8,
a contradiction. Hence both neighbors of v are adjacent to white vertices. This
establishes property (c). 0

Lemma 10 Suppose the game is in Phase 2. Let T be a component of the residual
forest that contains a playable vertex that decreases the weight by 6. If T' has a blue
leaf, v, with a (white) neighbor, w, that is not a leaf, then the following hold.

10



(a) d(w) =2 or d(w) = 3.

(b) Every vertex at distance 2 from v is a white vertex.

(c) At least one neighbor of w has degree at least 2.

(d) Every vertex at distance 3 from v is a blue vertex of degree 2.

Proof. Suppose that 7' contains a blue leaf, v, whose (white) neighbor w is not a
leaf. If every neighbor of w is a blue vertex, then playing an arbitrary neighbor of
w different from v decreases the weight by at least 8, a contradiction. Hence, w has
at least one white neighbor, say .

Suppose firstly that d(w) = 2. If z is a leaf, then T' = P3 with one blue leaf and
two white vertices. However, playing the blue vertex decreases the weight by 4, a
contradiction. Hence, d(x) > 2. If z has a white neighbor different from w, then
playing = decreases the weight by at least 7, a contradiction. Hence every neighbor
of z different from w is a blue vertex.

Suppose that = has a (blue) leaf neighbor, say y;. If d(z) = 2, then T' = Py
with two blue leaves and two white central vertices. Playing a blue vertex decreases
the weight by 4, a contradiction with Lemma 9(a). Hence, d(z) > 3. Let y2 be a
(blue) neighbor of z different from y; and w. If y, is a leaf, then playing w decreases
the weight by at least 7, a contradiction. Hence, by Observation 8(b), d(y2) = 2
and ys has two white neighbors. Playing y» decreases the weight by at least 8, a
contradiction. Therefore, every neighbor of x different from w is a blue vertex of
degree 2. Hence if d(w) = 2, then properties (a), (b), (c), and (d) all hold, as desired.

Hence we may assume that d(w) > 3, for otherwise the lemma holds. Let y be a
neighbor of w different from v and x. Suppose that y is a blue vertex. If y is a leaf,
then playing x decreases the weight by at least 7, a contradiction. Hence, d(y) = 2
and y has two white neighbors. Now playing y decreases the weight by at least 8,
a contradiction. Therefore, y is a white vertex, implying by Observation 8(a) that
d(w) = 3. In particular, we note that properties (a) and (b) hold.

If both = and y are leaves, then T is a star K73 with one blue leaf and three
white vertices. However, such a colored component does not have a playable vertex
that decreases the weight by 6, contradicting our assumption about 7'. In particular,
we note that property (c) holds. Renaming = and y if necessary, we may assume
that d(z) > 2.

If « has a white neighbor different from w, then playing x decreases the weight by
at least 7, a contradiction. If z has a blue leaf neighbor, then playing w decreases the
weight by at least 7, a contradiction. Therefore, every neighbor of = different from
w is a blue vertex of degree 2. Analogously, if d(y) > 2, then every neighbor of y
different from w is a blue vertex of degree 2. In particular, we note that property (d)
holds. g

11



Suppose the game is in Phase 2 and T is a component of the residual forest that
contains a playable vertex that decreases the weight by 6. Suppose further that T'
contains a blue leaf. Either T' = P, where T has one white vertex and one blue
vertex or T has the structure described in Lemma 10. In the latter case T' contains
at least one of the four subgraphs that are illustrated in Figure 2, where the degrees
of the darkened vertices are their exact degrees in the tree T', but where the degrees
of the circled vertices may possibly be larger in the tree 7. In addition, any white
vertex at distance 2 from the blue leaf has exactly one white neighbor. Its other
neighbor or neighbors (at distance 3 from the blue leaf) are blue vertices of degree
2 as shown in Figure 2.

B B B
W W W
B W W W W W
WI B B B B
W W W w
W W W W

(a) (b) (c) (@

Figure 2: Subgraphs of a component of the residual forest in Phase 2.

5 Strategy of Dominator

We present in this section a strategy for Dominator playing in a residual forest F'.
The strategy of Dominator is to make sure that on average the weight decrease
resulting from each played vertex in the game is at least 5.

If the game is always in Phase 1, then this is readily achieved since each move of
Dominator decreases the weight by at least 7 while each move of Staller decreases
the weight by at least 3. Hence since Dominator plays the first move, if 2k moves
were played when the game is completed, then the total decrease in weight is at
least 7k 4 3k, while if 2k 4+ 1 moves are played when the game is completed, then the
total decrease in weight is at least 7(k + 1) 4+ 3k. In both cases, the average weight
decrease for each move played is at least 5. We may therefore assume that the game
is not always in Phase 1, and therefore that the game enters Phase 2 or Phase 3 at
some stage.

As an immediate consequence of Lemma 7, Lemma 9, and Lemma 10, we have
the following structural result.

12



Lemma 11 If the game is not in Phase 1, then an arbitrary component T of the
residual forest has one of the following structures:
(a) T has one of the five possible structures illustrated in Figure 1.
(b) T has a subgraph that is one of the four possible subgraphs illustrated in
Figure 2.
(¢) T has the following structure:
(i) T contains only blue and white vertices, with at least one blue vertex.
(ii) Every white vertex has at most two white neighbors.
(iii) Ewvery blue vertex has degree 2 with two white neighbors, each of which
has at least one white neighbor.

Dominator’s strategy is as follows. Suppose that the game is not in Phase 1
and it is Dominator’s turn. If the move of Dominator completes the game, then
by Lemma 11 the residual forest was a tree with the structure shown in either
Figure 1(a) or Figure 2(a). In both cases, the decrease in weight is at least 5. Hence
we may assume that the move of Dominator does not complete the game.

Dominator’s initial strategy is to find a sequence of moves myq, ..., my starting
with his first move, m, and with moves alternating between Dominator and Staller
such that if w; denotes the decrease in weight after move m; is played, then

k
sz' > ok, (1)
i=1

where either k is odd and the game is completed after move my, or k is even (and the
game may or may not be completed after move my). Further each move of Dominator
is chosen to decrease the weight by at least 5. If, however, Dominator is unable to
find such a sequence of moves my,...,my, then we will see that the structure of
the residual forest is determined (see Observation 12 later in the section). This
structure enables Dominator to adopt a revised strategy that once again guarantees
on average the weight decrease resulting from each played vertex in the game is at
least 5.

More precisely, Dominator’s strategy proceeds as follows. By Lemma 11, we
know the structure of each component of the residual forest.

Suppose the residual forest contains a component Kj 3, with a blue leaf, v say,
and three white vertices (see Figure 1(d)). In this case, Dominator plays as his
move m the white central vertex to produce a new component K7 3 in the residual
graph, with three blue leaves and a central green vertex. Let T, denote this resulting
component. The decrease in weight, wy, associated with move m; is 5. If Staller
responds by playing her move mo on a vertex from T, then the decrease in weight,
we, associated with her move mg is 9 and Inequality (1) is satisfied where here
k = 2. If, however, Staller plays her move my from a different component, then

13



Dominator plays his move mg from T, resulting in w3 = 9. If the game is complete
after move mg, then, noting that wy > 3, Inequality (1) is satisfied where here
k = 3 (noting that 2?21 wi > 5+3+9 =17 > 5k). If the game is not complete
after move mg, then irrespective of what move my Staller plays we have wy > 3,
implying that once again that Inequality (1) is satisfied where here k = 4 (noting
that 2?21 wi >5+3+9+3=20>5k). Hence we may assume that the residual
forest contains no component K3, with a blue leaf and three white vertices, for
otherwise Inequality (1) is satisfied.

Suppose there is a component 1" in the residual forest that contains a subgraph
as illustrated in Figure 2(b), where v denotes the blue leaf. Let w and x denote the
(white) vertices at distance 1 and 2, respectively, from v in 7. Dominator now plays
as his move m; an arbitrary (blue) vertex at distance 3 from v in 7. The decrease in
weight, wi, associated with move m; is at least 6. Let T}, be the resulting component
that contains v and note that T, = P3 and T, contains two blue leaves (namely, v
and x) and one central white vertex, namely w. If Staller responds by playing her
move mg on v or x, then wp = 8 and Inequality (1) is satisfied where here k = 2
(noting that wy +we = 6+8 = 14 > 5k). If, however, Staller plays her move mg from
a component different than T, then Dominator plays his move mg from 7;, resulting
in wg = 8. If the game is complete after move mg, then Inequality (1) is satisfied
where here £ = 3 (noting that wy > 3 and 2?21 wj > 6+3+8 =17 > 5k). If
the game is not complete after move mg, then irrespective of what move my4 Staller
plays we have ws > 3, implying that once again Inequality (1) is satisfied where here
k = 4 (noting that Z?:l wi > 6+ 3+ 8+ 3 =20). Hence we may assume that the
residual forest contains no subgraph as illustrated in Figure 2(b).

Suppose there is a component 7" in the residual forest that contains a subgraph
as illustrated in Figure 2(c) or 2(d), where v denotes the blue leaf. Let w be the
neighbor of v, and let  and y denote the (white) neighbors of w different from wv.
Dominator now plays as his move mj the vertex w. The decrease in weight associated
with move m; is w; = 5. Let T, be the resulting component that contains v. Note
that T, = K3, which contains three blue leaves (namely, v, z, and y) and one
central green vertex, namely w. If Staller responds by playing her move mo on a
playable vertex in T, (namely on v, x or y), then ws = 9 and Inequality (1) is satisfied
where here k = 2 (noting that w; +wy = 5+9 = 14 > 5k). If, however, Staller plays
her move ms from a component different than T, then Dominator plays his move
mg from T, resulting in ws = 9. As before, Inequality (1) is satisfied with k& = 3 (if
move mg completes the game) or k = 4. Hence we may assume that the residual
forest contains no subgraph as illustrated in Figure 2(c) or 2(d).

By our earlier assumptions and by our structural lemma, namely Lemma 11,
if T is an arbitrary component in the residual forest then T has one of the three
possible structures illustrated in Figure 1(b), 1(c) or 1(e) or T has the structure in
Lemma 11(c).
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We define next a white component to be a component obtained from the residual
forest by deleting all the blue vertices. We note that every white component contains
only white vertices. Further every white component is a path on at least two vertices.
A white component isomorphic to a path P, we call a white P, -component.

Suppose that there is a white component, say C, with at least four vertices.
Let v be a leaf in C. Since every white component is path, there is a path P, on
four vertices emanating from v in C. Let this path be given by P,: vwzy, where
either y is a leaf in C' or y has degree 2 in C'. We note that the neighbors of v, w,
and z, if any, in the residual forest that do not belong to the path P, are all blue
vertices. Dominator now plays the vertex x as his move my in the residual forest,
which results in w; > 5. Let T, be the resulting component in the residual forest
that contains v. We note that in T, the colors of the vertices v, w, z, and y are
white, blue, green, and blue, respectively. Every neighbor of v in T, if any, that is
different from w is a blue vertex, while all neighbors of x in T, are blue vertices.

If Staller responds by playing her move mso on a neighbor of v or on a neighbor
of z in T, then we > 5 and Inequality (1) is satisfied where here & = 2 (noting that
w1 +wy =545 =10 > 5k). If, however, Staller plays her move mgy on a vertex
that is neither a neighbor of v nor a neighbor of z, then Dominator plays as his
move mg the vertex w resulting in w3 > 9. Analogously as before, Inequality (1)
is satisfied with k& = 3 (if move mg completes the game) or k = 4. Hence we may
assume that every white component contains at most three vertices; that is, every
white component is a path P, or a path Pj.

Suppose there is a white P3 component given by vwx, where w has a blue neigh-
bor, say y, in the residual forest. The structure of the component of the residual
forest that contains this white Ps is described in Lemma 11(c), and hence the vertex
y has degree 2 and has two white neighbors. Dominator now plays in the resid-
ual forest as his move mj the vertex y, which gives a decrease in weight of w; and
wy > 6. Let T}, be the resulting component in the residual forest that contains v.
We note that in T, the vertex w is colored blue and has degree 2 (with neighbors
v and z) and both v and x are white vertices all of whose neighbors are blue. If
Staller responds by playing her move my on a neighbor of v or on a neighbor of z
in T,, then we > 6 and Inequality (1) is satisfied where here k = 2 (noting that
w1 +wg > 6+6 =12 > 5k). If, however, Staller plays her move mg on a vertex that
is neither a neighbor of v nor a neighbor of x, then Dominator plays as his move mj3
the vertex w resulting in ws > 10. Analogously as before, Inequality (1) is satisfied
with & = 3 (if move mg completes the game) or k = 4. Hence we may assume that
if there is a white P3-component, then the central vertex of this path has degree 2
in the residual graph.

Suppose that there are two blue vertices of degree 2 that are at distance 3 apart
in a component, T, of the residual forest. By Lemma 11(c)(iii), there exists a path
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v1vg ...vg in T where vz and vg are colored blue and the remaining vertices on the
path are colored white. By our earlier assumptions, v4 is the only white neighbor
of vs, and vy is the only white neighbor of v4. Dominator now plays as his move
m, the vertex vs, and we see that w; > 6. Let T” be the resulting component in
the residual forest that contains v4, and note that v4 is a blue leaf in T” with vs
as its (white) neighbor. If Staller responds by playing her move mg on a neighbor
of vs, then we > 6 and Inequality (1) is satisfied where here k& = 2 (noting that
w1 +wz > 6+6 =12 > 5k). If, however, Staller plays her move mg on a vertex that
is not a neighbor of v5 in 7", then Dominator plays as his move mg the vertex vg.
This gives ws > 8. Analogously as before, Inequality (1) is satisfied with & = 3 (if
move m3 completes the game) or k = 4. Hence we may assume that no two blue
vertices of degree 2 in a component of the residual forest are at distance 3 apart. The
structure of the residual forest is now determined and is described in the following
observation.

Observation 12 At this stage in the game, if T is an arbitrary component in the
residual forest F', then one of the following holds.

(1) T = Ps, with a blue leaf and two white vertices.

(II) T = Ps, with three white vertices.

(I11) T = Py, with two blue leaves and two white (central) vertices.

(IV) T has the structure in Lemma 11(c) with the following additional restrictions:
e Fvery white component is a path Py or a path Ps.
o The central vertex of a white P3-component has degree 2 in F.
e FExactly one vertex of a white Po-component is a leaf in F.

We refer to the components described in Observation 12 as special components.
We remark that every special component that is not of type-I, -11, or -III is a type-IV
component and contains at least five vertices. Let k be the number of special compo-
nents of type-1V in the residual forest F'. We note that F' may possibly also contain
special components of type-I, -II, or -III. We now distinguish the special components
of type-IV into two subtypes. A type-IV component, T', with the property that all
its white components (that is, the components resulting from removing the blue
vertices from T') are Py-components we call a type-IV(a) component. A type-IV
component, T', with the property that 1" contains at least one white P3-component
we call a type-IV(b) component. Let ki and k2 denote the number of type-IV(a)
and type-IV(b) components, respectively, in F'. Hence k = ki + ko.

Let py and ps denote the number of (white) P>-components and Ps-components,
respectively, that result from removing all blue vertices from type-IV components.
Thus the number of white vertices that belong to type-IV components is 2ps + 3ps.
Let b denote the number of blue vertices that belong to type-IV components. We
construct a bipartite graph, B, where the vertices in one partite set are the blue
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vertices that belong to type-IV components and the vertices in the other partite set
correspond to the white components of type-IV components. Each edge of B joins
a blue vertex and a white component to which the blue vertex belongs. It follows
that B is a forest of order b+ ps + p3, size 2b (since every blue vertex is adjacent to
exactly two white vertices from different white components) having k& components.
Hence, b+ p2 + p3 = 2b + k, or, equivalently, b = ps + p3 — k.

When a component, T', of the residual forest has been identified as a type-IV
component and some of its vertices are later played, we will continue to refer to
(the residual part of) T" as a type-IV component even though it no longer has the
structure required to be type-IV component. If no vertex in a type-IV component
has yet been played at a particular point in the game, we call such a component a
free-component. We note that a blue vertex in a free-component has degree 2 with
two white neighbors.

Dominator’s strategy is as follows. His aim is to play on a vertex with two white
neighbors whenever such a vertex exists. If no such vertex exists, then he plays a
vertex that decreases the weight by as much as possible. More precisely, Dominator
makes his next move according to the following options.

e Option 1. Dominator selects a free type-IV(a) component, if such a compo-
nent exists, and plays an arbitrary blue vertex.

e Option 2. If option 1 is not possible, then Dominator selects a free type-IV(b)
component, if such a component exists, and plays an arbitrary white vertex
with two white neighbors.

e Option 3. If neither Option 1 nor Option 2 is possible, then Dominator selects
a vertex with two white neighbors in some type-IV component, if such a vertex
exists.

e Option 4. If none of Options 1, 2 or 3 is possible, then every playable ver-
tex in a type-IV component totally dominates exactly one new white vertex,
and Dominator plays a vertex (not necessarily in a type-IV component) that
decreases the weight by as much as possible.

If Staller at any point plays a vertex in a component that is not a free component,
then Dominator makes his next move according to the Options 1, 2, 3, and 4.

Suppose Staller plays a vertex in a free-component, T. If T is a type-IV(a)
component, then Dominator responds by playing his next move according to Op-
tions 1, 2, 3, and 4 above. Suppose, however, that T is a type-IV(b) component. We
note that 1" contains a white path P3, say uvw, where all three vertices are colored
white, v has degree 2 in T, and the neighbors of u (respectively, w) not on this path,
if any, are blue vertices. Further at least one of u and w has a blue neighbor in T
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On the one hand, if Staller plays on v or plays on a blue vertex, then two new white
vertices are totally dominated. In this case Dominator responds by playing his next
move according to Options 1, 2, 3, and 4. On the other hand, if Staller plays on a
vertex in T' that is neither a blue vertex nor the vertex v, then Dominator responds
by playing as his next move the vertex v.

This strategy of Dominator guarantees that at least [ki/2] + max{ka,p3/2}
moves totally dominate two new white vertices from type-IV components when
played. Let M; be the total number of moves played from the k type-IV com-
ponents of F. Since there are 2ps + 3ps white vertices from type-IV components, we
have that

k
M, < 2ps + 3ps — %—max{kg,%}.

Let &1 be the sum of the weights of all vertices that belong to type-IV components
of F. Recalling that k = k1 + ko and b = ps + p3 — k, we have that

&1 = 4xX(2p2+3p3)+2xb
= 8p2+12p3 +2(p2 +p3 — k)
= 10p2 + 14p3 - 2/€1 - 2/€2.

We proceed further with the following claim.
Claim A & > 5M;.

Proof of Claim A. We consider two possibilities.

Case 1. ko > ps3/2. In this case, we note that ki + 6ke > k1 + 3ps > 2p3. Therefore,
the following sequence of equivalent inequalities holds.

%(14}93 — 2k1 — 2]-{72) Z 3p3 — %/{?1 - ]{72
o (PR -Dh 2 by
& ki +6ky > 2p3.
Further in this case when ks > p3/2, we see that My < 2ps +3p3 — k1 /2 — ko and

1
fl =5Hx (2p2 + 5(14;03 —2k1 — 2]{32)) > 5 X (2p2 + 3p3 — k1/2 — kg) > 5M;.

Case 2. ko < p3/2. In this case, we note that 3ps + k1 > 6ka + k1 > 4ko. Therefore,
the following sequence of equivalent inequalities holds.

L(14ps — 2k — 2ks) > 3ps — Lki — Ips
e ops+ 15k > Eko
< 3ps+ k1 > 4ks.

18



Further in this case when ko < p3/2, we see that My < 2py + 3p3 — k1/2 — p3/2
and

1
51 =5 X (2]?2 + 5(14])3 — 2k — 2]{32)) >5H X (2]?2 + 3p3 — k1/2 —p3/2) > 5M;.

In both cases, & > 5M;. This completes the proof of Claim A. O

Let Ms be the total number of moves played in type-I, type-II, and type-I11
special components of F' and let & be the sum of the weights of all vertices that
belong to type-I, type-11, or type-III special components of F. We proceed further
with the following claim.

Claim B & > 5M,.

Proof of Claim B. Let s1, s9, and s3 denote the number of type-I, type-11, and type-
IIT special components. The total number of vertices in such special components is
given by 3s1 + 3s9 +4s3. Each of these three special components needs two moves to
complete the game on that component (irrespective of whether Dominator or Staller
plays first on it). Hence Ma = 2(s; + s2 + s3). Each type-I, type-II, and type-III
special component contributes a weight of 10, 12, and 12, respectively, to the weight
of F. We conclude that £ = 10s; + 1252 + 1253 > 5 x 2(s1 + s2 + s3) = 5My. O

The total number of moves played to complete the game is M1+ Ms. Further, the
total decrease in weight is & + &2, and Claims A and B imply & + & > 5(M; + Ms).
Consequently, on average the weight decrease resulting from the M7 + Ms moves is
at least 5, as desired.

The strategy of Dominator implemented in this section shows that on average
the weight decrease resulting from each played vertex in the game is at least 5. We
state this formally as follows.

Theorem 13 In a residual forest F', we have that vig(F) < w(F)/5 .

6 Proof of Theorem 1 and a General Bound

In this section we present a proof of our main result, namely Theorem 1. Recall its
statement.

Theorem 1 Let F be a forest on n vertices in which every component contains at
least three vertices. Then,

4dn , <4n+2



Proof. Coloring the vertices of F' with the color white we produce a colored-forest in
which every vertex is colored white and every component contains at least three ver-
tices. In particular, we note that F' has n white vertices and has weight w(F') = 4n.
Applying Theorem 13 to the resulting colored-forest F', we have that v;,(F) < 4n/5.
To prove the upper bound on the Staller-start game total domination number, we
note that the first move of Staller is on a white vertex with at least one white
neighbor and decreases the weight by at least 3. If Rr denotes the resulting resid-
ual colored-forest, then w(Rp) < w(F) — 3 and v;,(F) = 1 + v4(Rr). Applying
Theorem 13 to the residual forest Rp, we have that

w(R w(F)—3 w(F) +2 4n + 2
%{/g(F)Zl—i-’ytg(RF)Sl-i- (5F)§1+ (E)> = (E)) — o

This completes the proof of Theorem 1. O

When either Game 1 or Game 2 is played on a P, exactly two moves are required.
Using the bounds in Theorem 1 we are now able to prove general upper bounds for
the total domination games played on any forest that has no isolated vertices.

Corollary 14 If F is a forest of order n with k components of order 2 and no
isolated vertices, then

4n + 2k ,

Yig(F) < 5 and ’Ytg(F) <

dn + 2k + 2
7 .

Proof. If every component of F' has order at least 3, then the bounds are the same
as in Theorem 1. If all the components of F' have order 2, then every vertex of F' will
be played in both Game 1 and Game 2, and the upper bounds follow immediately.
Finally, suppose F' has at least one component of order 2 and at least one component
of larger order. Let F} denote the union of all the components of F' that have order
at least 3, and let F5 be the union of all & components of order 2. Note that F5 has
order 2k, and Fi has order n — 2k. The forest F' is the disjoint union of these two
subforests.

When Game 1 is played on F', Dominator’s strategy is to make an optimal move
in Game 1 played on Fi. If on any turn Staller plays a vertex v in F3, then Dominator
plays the neighbor of v. Otherwise, Dominator always responds to Staller’s move
with an optimal move in the subforest F}. Following this strategy it follows from
Theorem 1 that

_An+2k
=

When Game 2 is played on F' the strategy of Dominator is similar to that in Game
1. In particular, when Staller plays a vertex in F}, Dominator responds with an

+ 2k

A(n — 2k
Vg (F) < g (Fy) + 2k < (”5>
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optimal move in Game 1 restricted to Fi. When Staller plays a vertex v in Fb,
Dominator plays the neighbor of v. In this way Dominator can limit the number
of moves in Fy to ~;,(F1). Since all 2k vertices of Fy must be played, Theorem 1
implies

4(n —2k) + 2 _ A4An+2k +2

Vig(F) < 71y (F1) + 2k < + 2

g

We believe that the upper bounds of Theorem 1 cannot be achieved and pose
the following conjecture, which we call the %—Game Total Domination Conjecture
or, simply, the %— Conjecture.

%-Conjecture: Let F be a forest on n vertices in which every component contains
at least three vertices. Then,

3 3 1
"o ) < 2L

We remark that if the %—Conjecture is true, then the upper bound on the
Dominator-start game total domination number is tight as may be seen by tak-
ing, for example, F' = ki Py U koPy where ki,ko > 0 and k1 + ko > 1. Since
Yig(P1) = vi4(P1) = 3 and y(FR) = v;,(Ps) = 6, the optimal strategy of Staller
is whenever Dominator starts playing on a component of F', she plays on that
component and adopts her optimal strategy on the component. This shows that
Yig(F) = 3k1 + 6ka = 3n/4, where n = 4k + 8ko is the number of vertices in F'.
That the upper bound on the Staller-start game total domination number given the
%—Game Total Domination Conjecture is tight may be seen by taking, for example,
F = P5 (noting that here v, (F) =4 = (3n +1)/4 and n = 5).
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