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A B S T R A C T	   A R T I C L E   I N F O	

Under	a	capacity	constrained multi‐product	manufacturing	system,	the	prod‐
ucts	 are	 usually	 prepared	 and	 produced	 in	 lots.	 As	 a	 lot‐sizing	 strategy	 is	
critical	for	effective	production	and	high	productivity,	this	encourages	practi‐
cal	and	research	interest	in	the	strategic	batch	sizing	decision	for	a	minimum	
procedure	time	in	an	order‐to‐delivery	(OTD)	operating	environment.	While	
the	lot‐sizing	plan	can	be	formed	by	studying	the	manufacturing	parameters	
of	 the	 established	 bottleneck	 procedure,	 for	 a	 multi‐stage	 manufacturing	
system,	the	bottleneck	is	not	fixed	and	fluctuates	with	the	production	rate	or	
batch	size.	This	paper	proposes	a	lot‐sizing	strategy	to	determine	the	optimal	
lot‐size	 for	 each	 class	 of	 products	 taking	bottleneck	drifting	 into	 considera‐
tion.	A	queuing	network	analyser	(QNA)	method	is	employed	to	deal	with	the
non‐linear	mixed	integer	programming	model	targeting	at	the	total	flow	time	
minimization	of	the	system.	A	practical	case	is	presented	and	solved	using	the	
proposed	method,	 and	 the	 results	 are	 validated	with	 Flexsim,	 a	 simulation	
model.	
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1. Introduction 

In	the	modern	manufacturing	era,	enterprises	are	increasingly	focusing	on	optimizing	the	total	
flow	time	under	an	order‐to‐delivery	(OTD)	environment	[1].	With	the	proliferation	in	product	
variety,	many	products	are	usually	processed	and	produced	in	the	same	production	system	with	
a	view	to	 improving	the	production	efficiency	and	reducing	cost.	 In	 the	multi‐product	produc‐
tion	system,	the	productivity	and	lead	time	of	the	manufacturing	workshop	is	directly	affected	
by	the	batch	size	of	the	product	[2,	3].	With	mass	production,	the	productivity	can	be	increased	
albeit	with	a	 longer	 lead	time	for	the	 lot	production;	with	low‐volume	production,	the	effect	 is	
reversed.	In	the	literature,	this	phenomenon	of	large	lot	sizes	will	cause	long	lead	times	known	
as	the	batching	effect.	As	the	lot	size	decreases	(the	jobshop	context),	the	lead	time	will	also	de‐
crease,	but	once	a	minimal	lot	size	is	reached	a	further	reduction	in	lot	size	will	cause	high	traffic	
intensities	resulting	in	longer	lead	times,	called	the	saturation	effect	[4].	Therefore,	to	meet	the	
shortest	delivery	 lead	time	possible,	 it	 is	often	necessary	to	determine	the	right	 type	and	pro‐
duce	products	in	an	appropriate	quantity.	

There	 are	 many	 models,	 in	 the	 literature,	 focusing	 on	 the	 complex	 relationship	 between	
batch,	lead	time,	and	work‐in‐process	(WIP)	[5‐7].	Karmarkar	[5]	had	studied	the	influences	of	
batch	(lot‐size)	on	manufacturing	lead	times,	and	reported	that	the	best	lot	sizes,	high	capacity	
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utilization	exact	a	high	price	in	lead	time	and	WIP.	The	relationship	between	batch	size	and	lead‐
time	variability	was	investigated	by	Kuik	and	Tielemans	[6],	who	concluded	that	a	minimization	
of	the	average	queue	delay	or	the	average	time	in	system	performance	measure,	would	not	re‐
sult	in	minimum	lead‐time	variability.	Vaughan	[7]	developed	a	comprehensive	process	lot	siz‐
ing/order	point	model,	and	found	that	it	was	more	efficient	to	adjust	the	safety	stock	and	lead	
time	 than	 to	change	 the	 shortage	penalty	parameter	solely	 through	adjusting	 the	safety	stock.	
Recently,	some	scholars	argued	that	the	lead	time	and	productivity	levels	of	the	production	sys‐
tem	were	determined	by	the	bottleneck	equipment,	and	the	optimal	processing	of	a	single	batch	
was	studied	and	analysed	[8‐12].	Koo	and	Koh	[8]	proposed	a	batch	decision	optimization	model	
that	included	a	variety	of	product	lines	with	the	same	preparation	time	by	targeting	maximum	
profit	as	 the	objective.	Similarly,	an	extended	model	 for	optimizing	the	 lot	size	 in	various	pro‐
duction	lines	with	different	process	and	preparation	times	was	formulated	[9].	Liu	[13]	analysed	
the	possibility	of	resources	becoming	the	bottleneck	through	the	bottleneck	drift	index,	and	cal‐
culated	 the	 optimal	 lot	 size	 and	 lead	 time	 of	 the	 bottleneck	 resource	 targeting	 the	 non‐value	
added	time	and	the	difference	in	the	manufacturing	unit	processing	rate	minimum	as	the	opti‐
mization	goal.	However,	they	did	not	consider	the	bottleneck	drifting	caused	by	lot	sizes.	

In	reality,	in	a	relatively	balanced	production	system	with	a	large	variety	of	products,	the	fluc‐
tuation	of	the	product	portfolio	and	the	lot	sizes	can	alter	the	load	level	of	the	resources,	which	
might	lead	to	bottleneck	drifting.	As	a	result,	the	lot	size	and	lead	time	found	in	previous	studies	
may	not	be	optimal.	Adacher	and	Cassandras	[4]	studied	the	optimal	lot	sizing	problem	with	the	
example	of	two	products	and	two	processing	operations,	using	the	substitution	method	and	the	
random	comparison	algorithm.	Glock	[14]	solved	the	optimal	lot	size	problem	for	a	multi‐stage	
manufacturing	system	by	studying	the	relationship	between	the	quantity	and	the	total	cost.	Amy	
[15]	proposed	a	mixed	nonlinear	 integer	programming	model	 to	solve	 the	 lot‐sizing	optimiza‐
tion	problem	with	multiple	suppliers	in	multiple	periods	considering	quantity	discounts,	and	a	
Genetic	 Algorithm	 (GA)	 is	 developed	 to	minimize	 the	 total	 related	 cost.	 Therefore,	 this	 paper	
investigates	the	lot‐sizing	problem	with	bottleneck	drifting.	As	the	lot‐sizing	decision	making	is	
related	to	productivity,	which	influences	the	efficient	output	of	the	manufacturing	system	[1],	this	
paper	seeks	to	examine	the	lot‐sizing	problem	for	different	experimental	productivity	scenarios.		

In	this	paper,	we	apply	QNA	(queuing	network	analysis)	[16]	to	establish	a	lot‐size	optimiza‐
tion	model	on	a	multi	process	production	system,	to	decide	the	optimal	lot	sizes	in	the	produc‐
tion	of	multiple	products.	The	objective	of	the	batch	optimization	model	is	to	produce	products	
with	the	shortest	lead	time	according	to	the	demand.	QNA	is	an	accurate	queuing	network	analy‐
sis	model	 developed	 by	 Bell	 Laboratories	 in	 the	US	 [16].	 QNA	 is	 used	 to	 analyze	 the	 queuing	
network	by	estimating	the	distribution	and	variation	coefficient	of	each	arrival	process	and	each	
service	time.	QNA	is	suitable	for	solving	complex	queuing	network	problems,	given	its	low	com‐
putational	 complexity.	Given	 the	 relationship	between	 the	processes	of	 a	multi	 operation	 sys‐
tem,	we	apply	the	QNA	method	to	determine	the	waiting	time	of	the	tandem	process	queue,	with	
the	 total	 process	 time	 as	 the	 shortest	 objective	 function,	 such	 that	 the	 changes	 caused	by	 the	
bottleneck	of	the	product	batch	will	not	affect	the	optimization	objective.	

The	next	section	presents	the	studied	problem	and	the	assumptions	thereof.	In	Section	3,	the	
non‐linear	programing	model	considering	bottleneck	drifting	is	formulated	and	a	four‐step	algo‐
rithm	is	designed	by	a	traversal	operation	and	implemented	to	deal	with	the	lot‐sizing	optimiza‐
tion	model.	A	practical	case	is	presented	in	Section	4	to	validate	the	proposed	model.	Lastly,	we	
conclude	with	some	remarks.	

2. Problem description and assumptions 

As	 shown	 in	Fig.	 1,	 the	production	 line	 is	 a	 system	with	many	work	procedures.	Each	 service	
station	 represents	 a	 processing	 or	 assembly	 operation.	 All	 kinds	 of	 products	 enter	 and	 leave	
independently	with	 a	minimum	 unit.	 Each	 batch	 of	 products	 follows	 a	 first‐come‐first‐served	
(FCFS)	queuing	strategy.		
	 The	assumptions	are	as	follows:	
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 The	equipment	utilization	rate	is	less	than	1,	and	productivity	cannot	exceed	the	produc‐
tion	capacity;		

 Each	service	station	shows	the	same	product	capacity	for	the	same	products;	
 The	proportion	of	each	product	is	known,	and	each	class	of	products	has	a	fixed	manufac‐

turing	procedure.		
 The	processing	times	of	various	products	are	different	and	independent;	
 Each	lot	of	products	arrives	as	a	Poisson	process;	
 The	preparation	time	before	lot‐size	production,	and	the	preparation	time	of	each	product	

is	different	and	independent.	

	
	 	 Fig.	1	Production	system	with	multi‐stage	procedures	 	

The	parameters	are	denoted	and	described	as	follows:	

Notation	 Interpretation	
F	 Total	processing	time,	units/period
	ത௝ܨ Average	processing time	in	process	j,	units/period
	ഥ௝ݓ Average	queuing	time	on	equipment	j,	units/period
 ௝ݏ̅ Average	processing	time	on	equipment j ,	units/period
௜ݔ   Productivity	of	product	item i, (i = 1,2,3,...,m);	ܺ ൌ ∑ ௜௜ݔ
 ௜ݍ Lot	size	of	product	item	i
 ௜ݎ Proportion	of	product	item i,	ሺ∑ ௜ݎ ൌ 1௜ ሻ
௜௝݌   Processing	time	on	equipment	j of	product	item	i
߬௜௝   Setup	time	on	equipment	j of	product	item	i
 ௜௝ݏ Total	time	required	for	product	item	i	(ݏ௜௝ ൌ ௜௝݌௜ݍ ൅ ߬௜௝)
௜௝ߤ 	 Service	rate	of	a	certain	batch	item	i ௜௝ߤ) ൌ (௜௝ݏ/1
௝ߩ 	 Logistics	intensity	of	equipment	j
 ௜ߣ Average	number	of	arrivals of	product i per	time	unit	(arrival	rate)	
	௝ݏܿ Variation	coefficient	of	processing	time	on	equipment	j
ܿ ௝ܽ 	 Variation	coefficient	of	product	inter‐arrival	time	on	equipment	j	
ܿ ௝݀ 	 Variation	coefficient	of	product	inter‐left	time	on	equipment	j	

3. Model and algorithm  

The	non‐linear	mixed	integer	programming	(MIP)	model	is	formulated	and	constructed	by	min‐
imizing	the	total	flow	time	with	the	QNA	technique.	The	algorithm	procedures	through	the	tra‐
versal	operation	are	designed	and	implemented	in	this	section.	

3.1 Objective function 

The	 optimization	 objective	 of	 the	 described	 problem	 is	 targeted	 as	 the	 total	 production	 time	
minimization	considering	production	capacity	and	other	common	constraints.	The	model	is	for‐
mulated	as	follows.	

	 min ܨ ൌ෍ܨത௝

௡

௝ୀଵ

ൌ෍ሺݓഥ௝ ൅ ௝ሻݏ̅

௡

௝ୀଵ

	 (1)

s.	t. ෍ሺݔ௜݌௜௝ ൅ ௜ݍ/௜߬௜௝ݔ

௠

௜ୀଵ

ሻ ൏ 1	 (2)
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	 ௝ݑ ൌ෍ ௜௝ݑ
௜

, ݅ ൌ 1,2, … ,݉	 (3)

	 ௜௝ݑ ൌ 	௜௝݌௜ݔ (4)

	 ௝ݒ ൌ෍ ௜௝ݑ
௜

, ݅ ൌ 1,2, … ,݉	 (5)

	 ௜௝ݒ ൌ ௜ݍ/௜߬௜௝ݔ (6)

	 ௜ݍ ൑ పഥݍ ௜ܼ߳ାݍ	, (7)

	 ,௜ݔ ௜ݍ ൐ 0	 (8)

where	parameters	u	and	v	are	the	processing	utilization	rate	and	setup	utilization	rate	respec‐
tively.	Eq.	1	is	the	objective	function	for	the	total	production	time	minimization.	Eqs.	2	to	8	are	
the	relevant	constraints	on	productivity,	order,	and	practical	production.		

3.2 Estimation of service time 

In	the	production	system,	the	arrival	of	a	variety	of	products	can	be	regarded	as	a	Poisson	pro‐
cess.	It	is	reasonable	to	simulate	the	multi‐process	production	system	with	the	tandem	queuing	
model,	 where	ܨത௝	denotes	 the	mean	 flow	 time	 of	 a	 product	 in	 processing	 j,	 which	 includes	 the	
waiting	and	processing	times.	The	mean	processing	time	of	a	unit	product	in	process	j	is	found	
from	Eq.	9.	

	 ௝ݏ̅ ൌ෍ ௜ݎ
௜
൫݌௜௝ݍ௜ ൅ ߬௜௝൯	 (9)

In	a	serial	queuing	system,	the	arrival	processes	are	determined	by	the	output	of	the	previous	
process	 in	addition	to	 the	 first	process.	 In	 this	paper,	 the	QNA	method	 is	used	to	estimate	 the	
arrival	process	variation	coefficient	of	each	node,	which	is	regarded	as	an	update	process.	There‐
fore,	the	queuing	time	in	a	steady	state	can	be	obtained	[17].	Suresh	and	Whitt	(1990)	proposed	
the	estimation	method	for	the	arrival	process	variation	coefficient,	and	improved	the	accuracy	of	
the	estimation	of	the	queuing	time	when	the	traffic	intensity	is	0.9	[18].	The	improved	coefficient	
of	the	arrival	process	is	presented	in	Eq.	10.	

	 ܿ ௝݀
ଶ ൌ ቀ1 െ ௝ߩ

ଶ൫1 െ ௝ାଵߩ
ଵ଴ ൯ቁ ܿ ௝ܽ

ଶ ൅ ௝ߩ
ଶ൫1 െ ௝ାଵߩ

ଵ଴ ൯ܿݏ௝
ଶ	

(10)
	 ܿ ௝ܽ

ଶ ൌ ܿ ௝݀ିଵ
ଶ 	

The	queuing	time	by	the	QNA	technique	is	estimated	from	Eq.	11	and	Eq.	12.	

			If	caj
2<	1	 	

ഥ௝ݓ ൌ
௝ሺܿݏ̅ ௝ܽ

ଶ ൅ ௝ݏܿ
ଶሻ∑ ௜௝݌௜ሺݔ ൅ ߬௜௝/ݍ௜ሻ௜

2ሾ1 െ ∑ ௜௝݌௜ሺݔ ൅ ௜ሻ௜ݍ/௜߬௜௝ݔ ሿ
exp ቊെ

2ൣ1 െ ∑ ௜௝݌௜ሺݔ ൅ ߬௜௝/ݍ௜ሻ௜ ൧൫1 െ ܿ ௝ܽ
ଶ൯

3∑ ௜௝݌௜ሺݔ ൅ ߬௜௝/ݍ௜ሻ௜ ൫ܿ ௝ܽ
ଶ ൅ ௝ݏܿ

ଶ൯
ቋ	 (11)

			If	ܿ ௝ܽ
ଶ ൒ 1	 	

ഥ௝ݓ ൌ
௝ሺܿ݌௝ݏ̅ ௝ܽ

ଶ ൅ ௝ݏܿ
ଶሻ

2ሺ1 െ ௝ሻ݌
ൌ
௝ሺܿݏ̅ ௝ܽ

ଶ ൅ ௝ݏܿ
ଶሻ∑ ௜௝݌௜ሺݔ ൅ ߬௜௝/ݍ௜ሻ௜

2ሾ1 െ ∑ ௜௝݌௜ሺݔ ൅ ௜ሻ௜ݍ/௜߬௜௝ݔ ሿ
	 (12)

3.3 Productivity analysis 

As	the	proportion	of	products	ݎ௜	is	known,	the	productivity	ݔ௜	of	an	item	i	can	be	found	from	the	
total	productivity	X.	The	capacity	constraints	are	illustrated	in	Eq.	13.	From	the	upper	bound	on	
the	lot‐size	of	each	class	of	products	ݍపഥ ,	we	deduce	the	upper	bound	of	X	as	shown	in	Eq.	14.	
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	 ܺ෍ ሺݎ௜݌௜௝ ൅ ௜ሻݍ/௜߬௜௝ݎ
௜

൏ 1	 (13)

	 തܺ ൌ ඌ1/෍ ሺݎ௜݌௜௝ ൅ ௜ሻݍ/௜߬௜௝ݎ
௜

ඐ	 (14)

where	ۂܺہ	is	the	largest	integer	less	than	or	equal	to	X.	

3.4 Algorithm 

To	establish	the	optimized	lot‐sizing	of	each	kind	of	product	with	different	productivity	 levels,	
we	targeted	the	total	production	time	as	the	objective	function	and	formulated	a	non‐linear	MIP	
model.	To	determine	the	optimal	lot	size,	we	introduce	the	algorithm	for	dealing	with	this	issue.	
First,	the	upper	bound	on	productivity	is	analysed	based	on	the	previous	section.	Then,	the	op‐
timal	solution	is	searched	by	a	traversal	operation.	Fig.	2	shows	the	steps	of	the	algorithm.	As	Fig.	
2	shows,	there	are	four	steps	in	the	proposed	algorithm.	

* *, 0F q
i

   

* ,  i iq q calculate X

(0 ),   i iX X X q q  

Calculate F

*F F

* *,  i iq q F F 

1iq 

Yes

Yes

End

( 1,2,..., )

1

 

         i i

for i k k m

q q

 
 

No

No

	

Four	stages	
	
Satege	1:	Initialization.	Initialize	
objective	value	setting:	
∗ܨ ൌ ൅∞, ௜ݍ

∗ ൌ 0.	We	obtain	the	
upper	bound	of	total	productivity	
തܺ	for	different	kinds	of	products	
by	Eq.	14.	
	
Stage	2:	Total	production	time	ܨ	
(including	processing	and	
waiting)	computed	by	Eqs.	9	to	12.	
	
Stage 3: If	ܨ ൏ ௜ݍ	then	,∗ܨ

∗ ൌ 	If	௜.ݍ
ܨ ൐ ݅	for	then	,∗ܨ ൌ ݇	ሺ݇ ൌ
1,2, … ,݉ሻ, ௜ݍ ൌ ௜ݍ െ 1,	and	return	
to	stage	2.	
 
Stage	4:	If	ݍ௜ ൌ 1,	stop.	The	best	
lot‐sizing	solution	is	ݍ௜

∗,	and	the	
minimum	total	production	time	is	
denoted	as	ܨ∗.	If	ݍ௜ ് 1,	then	
return	to	stage	3.	

Fig.	2	Two‐step	optimization	algorithm	for	multi‐stage	production	system	

4. Case study and simulation comparison 

4.1 Case solutions 

We	consider	a	production	system	with	five	main	procedures,	and	four	classes	of	products	need	
to	be	processed	(Fig.	3).	The	information	on	the	different	parameters	are	presented	in	Table	1	
such	as	processing	time,	upper	bound	of	each	class	of	products	and	product	ratio.	Suppose	the	
arrival	times	of	all	products	are	regarded	as	Poisson,	then	ܿܽଵ ൌ 1, ௝ݏܿ	

ଶ ൌ 0.5.	The	best	solution	
of	the	lot‐sizing	for	each	class	of	products	is	calculated	using	the	proposed	algorithm	procedure.		
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1

W1
（λ,ca1）

2

W2

3

W3

4

W4

5

W5

 

Fig.	3	Serial	production	system	with	five	procedures	

Table	1	Parameter	values	of	four	products	in	serial	manufacturing	system	

Parameters	 Product	1	 Product	2	 Product	3	 Product	4	

Waiting	time	

߬௜ଵ	 0.018	 0.012	 0.015	 0.01	
߬௜ଶ	 0.01	 0.02	 0.02	 0.01	
߬௜ଷ	 0.02	 0.01	 0.02	 0.01	
߬௜ସ	 0.015	 0.005	 0.015	 0.01	
߬௜ହ	 0.012	 0.012	 0.015	 0.01	

Processing	time	

	௜ଵ݌ 0.008	 0.01	 0.006	 0.006	
	௜ଶ݌ 0.008	 0.01	 0.006	 0.006	
	௜ଷ݌ 0.01	 0.008	 0.005	 0.005	
	௜ସ݌ 0.01	 0.01	 0.006	 0.005	
	௜ହ݌ 0.01	 0.009	 0.005	 0.006	

Product	ratio	 	௜ݎ 0.3	 0.2	 0.1	 0.4	
Upper	bound	 పഥݍ 	 30	 30	 50	 50	

	
From	the	algorithm,	we	obtain	the	best	lot	sizes	under	different	productivity	conditions.	For	

instance,	with	a	productivity	of	90	%,	the	best	solution	of	the	four	products	is	7,	6,	10	and	7	units	
respectively,	and	with	minimum	total	production	time	of	1.230	units.	The	fifth	procedure	is	the	
bottleneck	with	 the	highest	utilization	 rates	of	84.02	%,	as	 shown	by	Table	2.	The	 results	are	
illustrated	in	Table	2	for	the	various	productivity	situations.	

From	Table	2,	the	best	lot‐sizing	solution	for	each	class	of	products	obtained	from	our	algo‐
rithm	suggests	the	following	findings:		

 As	the	productivity	rate	declines,	the	best	lot‐size	for	each	class	of	products	and	the	total	
production	time	decrease.		

 In	a	relatively	balanced	manufacturing	system,	with	a	variation	in	lot‐sizing,	the	bottleneck	
of	the	manufacturing	system	drifts	as	we	imagined.		

 As	the	productivity	rate	declines,	the	utilization	rate	of	the	machine	fluctuates	slightly,	ra‐
ther	 than	declining.	The	reason	 for	 the	utilization	rate	 increases	 is	 that	 the	waiting	 time	
has	been	increased	with	the	much	more	preparation	operations.	

	

Table	2	Results	for	different	productivity	situations	
Produc‐
tivity	
(%)	

Utilization	rate	of	the	machine	(%)	 Total	time	
(days)	

Lot	size	(piece)	

Machine	1	Machine	2	Machine	3	Machine	4 Machine	5 Prod	1	 Prod	2	 Prod	3	 Prod	4	

90	 83.64	 83.40	 81.56	 82.18	 84.02	 1.230	 7	 6	 10	 7	
89	 82.85	 82.67	 80.85	 81.41	 83.24	 1.173	 7	 6	 9	 7	
88	 81.92	 81.74	 79.94	 80.50	 82.30	 1.121	 7	 6	 9	 7	
87	 82.11	 81.43	 80.27	 80.52	 82.11	 1.073	 6	 6	 9	 7	
86	 81.35	 80.74	 79.59	 79.77	 81.35	 1.028	 6	 6	 8	 7	
85	 81.89	 81.74	 80.04	 79.94	 81.89	 0.983	 6	 5	 8	 6	
84	 80.93	 80.78	 79.10	 79.00	 80.93	 0.941	 6	 5	 8	 6	
83	 79.96	 79.82	 78.16	 78.05	 79.96	 0.903	 6	 5	 8	 6	
82	 79.22	 79.15	 77.51	 77.33	 79.22	 0.869	 6	 5	 7	 6	
81	 79.71	 78.99	 78.18	 77.61	 79.23	 0.835	 5	 5	 7	 6	
80	 79.79	 79.09	 78.29	 77.71	 79.31	 0.803	 5	 5	 7	 5	
79	 78.80	 78.10	 77.31	 76.74	 78.32	 0.772	 5	 5	 7	 5	
78	 78.74	 78.67	 77.11	 76.16	 78.27	 0.743	 5	 4	 7	 5	
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4.2 Simulation verification 

A	simulation	test	is	implemented	to	validate	the	effectiveness	and	validity	of	the	proposed	model.	
When	 the	 variation	 coefficient	 of	 the	 processing	 time	 is	ܿݏ௝

ଶ ൐ 1,	we	 supposed	 the	 processing	
time	 complies	with	 the	ܪଶ	distribution.	When	ܿݏ௝

ଶ ൌ 1,	we	 obtain	 the	 exponential	 distribution.	
When	ܿݏ௝

ଶ ൐ 1,	the	processing	time	can	be	treated	as	an	Erlang	distribution	[18].	The	manufac‐
turing	process	is	simulated	by	the	Flexsim	software	with	the	original	data	information	in	Table	1,	
and	the	simulation	is	run	for	ten	thousand	days	(10	times).	Fig.	4	compares	the	simulated	total	
production	time	and	the	proposed	model.		

From	Fig.	4,	 the	deviation	result	between	 the	simulation	model	and	programming	model	 is	
about	12%.	From	Wu’s	research	[19],	when	ܿݏଶ ൏ 1,	the	estimation	variation	of	waiting	time	for	
multi‐stage	 queuing	 system	 by	 the	QNA	 method	 is	 6.3%.	 As	 there	 are	 five	 procedures	 in	 the	
manufacturing	system,	the	variation	of	the	serial	system	is	much	more	than	the	single	machine	
(6.3%)	due	to	the	deviation	accumulation.	As	the	waiting	time	estimation	method	focuses	on	a	
single	machine,	 the	 accuracy	 of	 the	 estimation	 of	waiting	 time	 directly	 influences	 the	 perfor‐
mance	of	the	programming	model.	As	for	the	multi‐stage	serial	manufacturing	system	with	lim‐
ited	procedures,	the	best	solution	accuracy	of	the	proposed	model	is	satisfactory	and	tolerable	
based	on	the	above	comparison	analysis.	

	
Fig.	4	Comparison	of	total	time	for	simulation	model	and	programming	model	

5. Conclusion 

In	 this	paper,	 the	non‐linear	MIP	model	by	 the	QNA	method	 is	proposed	 to	deal	with	 the	 lot‐
sizing	problem	 for	 a	multi‐stage	manufacturing	 system	with	multiple	 classes	 of	 products.	Not	
only	can	the	model	be	applied	into	a	lot‐sizing	optimization	problem	of	a	manufacturing	system	
with	fixed	bottlenecks,	but	also	this	model	is	applicable	to	a	sensitive	production	system	whose	
bottleneck	fluctuates	with	the	variation	of	the	product	combination	and	lot‐sizing.	The	model	is	
validated	against	a	simulation	model	run	by	the	Flexsim	software,	and	it	demonstrates	excellent	
performance.	However,	from	the	comparison	results,	the	model	shows	tolerable	variation,	which	
stimulates	us	to	improve	the	accuracy	of	the	model	by	revising	the	waiting	time	parameters.	In	
future,	the	lot‐sizing	decision	making	problem	which	jointly	considers	bottleneck	drift	and	un‐
predictable	events	(machine	malfunction	or	failure,	and	stochastic	occurrences)	can	be	studied.	
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