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ABSTRACT

X-ray microtomography from solid propellant allows studying the microstructure of fragmented grains in
damaged samples. A new reconstruction algorithm of fragmented grains for 3D images is introduced. Based
on a watershed transform of a morphological closing of the input image, the algorithm can be used with
different sets of markers. Two of them are compared. After the grain reconstruction, a multiscale segmentation
algorithm is used to extract each fragment of the damaged grains. This allows an original quantitative study
of the fragmentation of each grain in 3D. Experimental results on X-ray microtomographic images of a solid
propellant fragmented under compression are presented and validated.
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INTRODUCTION

Propellants are composite materials made of
linear elastic brittle grains embedded in a visco-
elastic elastomer matrix. Damage can occur in the
brittle grains of solid propellants under the action
of a mechanical shock, inducing a possible unsafe
behavior of the propellant. In order to characterize the
progression of damage in such composite materials,
it is interesting to analyze their microstructure at
different steps of the fragmentation, as initiated in
Gillibert and Jeulin (2011a).

In the present paper, specimens of this material
were fragmented under compression generated by
the impact of a mass, and examined by means
of microtomographic images obtained on a high-
resolution micro-CT system. From these 3D images,
the goal is to estimate some statistics on each grain,
that should be relevant to the progression of the 3D
damage: the specific surface area of its cracks, the
volume fraction of its cracks, the number of fragments
and the size distribution of its fragments. For this
purpose, original grains have to be reconstructed from
the image of the fragmented material. Then, each
fragment must be extracted, and must be associated to
its initial grain.

In this paper, we first introduce the type of
materials and of 3D images that are studied. Then
the original algorithm for the reconstruction of
the particles from the observed fragmented image,
based on two types of segmentation (one based
on the h-minima, and one using the K-means
clustering algorithm) is presented. Then a multiscale

segmentation based on the stochastic watershed gives a
3D images of individual fragments. Finally, 3D image
analysis measurements provide a statistical analysis of
the local damage in the material, which gives a new
approach to the local 3D study of damage in materials.
The steps of our approach are illustrated by Fig. 1.

MATERIALS AND 3D IMAGES

The studied images are obtained by X-ray
microtomography with a Skyscan 1172 high-
resolution micro-CT system at the CEA Gramat, a
public laboratory affiliated with the Atomic Energy
and Alternative Energies Commission. The material
samples are a solid propellant in three states: the initial
material, and fragmented materials with two steps of
degradation generated by mechanical impacts. For all
the studied images, a voxel is 3.6 µm. The original
diameter of the grains is 400 µm, but there are many
small fragments in the damaged specimens.

The following images ares studied:

– MAT1 is a 1014 × 1155 × 250 voxels image
(3650.4× 4158× 900 µm3). A slice of this image
is illustrated in Fig. 2. A mechanical impact is
obtained from a 2 kg mass falling 15 cm.

– MAT2 is a 1035 × 1008 × 428 voxels image
(3726× 3628.8× 1540.8 µm3). It is a reference
material without any mechanical impact (Fig. 3).
However it contains some rare cracks.

– MAT3 is a 1116 × 1104 × 424 voxels image
(4017.6× 3974.4× 1526.4 µm3). A mechanical
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impact is obtained from a 2 kg mass falling 30 cm,
with a 9.5 cm rebound (Fig. 4).

Measuring the evolution of local damage in such
materials is a challenge, requiring to extract the crack
network in grains for their individual study. As seen in
Fig. 2 and Fig. 4, the crack network is complex and
many grains are highly fragmented, so that it is not
easy to recover the initial grains from the image. The
purpose of the algorithms developed in this paper is to
give a reliable and automatic method to provide local
estimates of the damage.

3D Images of a composite material
• Initial state
• 2 states of fragmentation

Reconstruction of grains from
fragmented images

• Cracks closing
• Watershed from h minima
• Watershed from K-means

Extraction of fragments by a
multiscale stochastic watershed

Statistical analysis of the grains
fragmentation

Damage characterization

Fig. 1. Flowchart of the study of fragmented media.

RECONSTRUCTION ALGORITHM
OF THE FRAGMENTED GRAINS

A classical approach is used for removing the
cracks: morphological closing and a volumic opening
removing connected components of the holes with
a low volume (Matheron, 1967; Serra, 1982). Then,
a watershed transform on the closed image is used.
Introduced in 1979 by S. Beucher, the watershed is
computed from a gradient image, here the inverse of
the distance map of the closed image, and from a set of
markers (Beucher and Lantuéjoul, 1979).

Two possible sets of markers for this watershed are
explored.

The first approach is topological and uses the h-
minima filter (Soille, 2003). The minima of the inverse

distance function with a depth is larger than h are used
as a sets of markers. The use of the h-minima with the
watershed on the distance map is very classical, but if
the grains are very fragmented and if the fragments are
scattered, the algorithm fails to reconstruct correctly
some grains.

The second approach is based on a method of
cluster analysis, the K-means clustering, which aims
to partition a set of observations into K clusters (Lloyd,
1982). Here, the observations are random voxels inside
the mask of the grains. The kernels of the clusters,
more precisely the center of gravity of the clusters, are
used as sets of markers for the watershed.

The number of classes for the K-means clustering
algorithm is automatically computed from the
initial image with a covariance-based approach. The
algorithm is described in Faessel and Jeulin (2010): the
authors use the covariance for estimating the average
radius of the grains, and then estimate the number of
grains in the image.

CLOSING OF THE CRACKS

The studied solid propellant has two phases:
grains and matrix. Therefore, the first step of
the reconstruction is to compute a binary mask
for the grains. The threshold is estimated via the
maximization of the interclass variance (Otsu, 1979).

After the binarization, a morphological closing
of the binary mask is used. The structuring element
is a rhombicuboctahedron of radius 3, providing a
good approximation of a sphere of small size on the
digitized image. It offers a good compromise between
performance and exactness. The size of the structuring
element used is the same for the three images but
depends on a subjective choice that is checked by
visual inspection. Results with a rhombicuboctahedron
of radius of radius 2 are also acceptable, but will lead to
a few additional errors in the final reconstruction (the
over-segmentation of a few grains).

The remaining holes inside closed grains are
removed with a volumic opening: all the connected
components of the matrix with a small volume
are removed. The threshold on the volume is the
same for the three images but also depends on a
subjective choice. This threshold is fixed to 113 voxels
(corresponding to a sphere of radius 3). Results with a
threshold corresponding to a sphere of radius 4 or 5 are
also acceptable, but will lead to a few additional errors
in the final reconstruction, generating the fusion of a
few grains.

The results of this first part of the segmentation are
illustrated in Fig. 2 and Fig. 5.
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(A) (B)

Fig. 2. (A) 3D X-ray microtomographic image of a
fragmented granular material (slice). (B) Binarization
by maximization of the interclass variance (slice).

(A) (B)

Fig. 3. (A) Original image for MAT2, the reference
material without any mechanical impact (slice). (B)
Watershed segmentation using markers computed from
the h-minima (slice).

(A) (B)

Fig. 4. (A) Original image for MAT3. An impact is
obtained from a 2 kg mass falling 30 cm (slice). (B)
Watershed segmentation using markers computed from
the h-minima (slice).

(A) (B)

Fig. 5. (A) Morphological closing of the binary
mask with a small rhombicuboctahedron (slice). (B)
Removal of the holes with a volumic filter (slice).

WATERSHED COMPUTED FROM THE
MINIMA

A first segmentation to reconstruct the grains
is provided by markers on selected minima of the
distance map.

From the morphologically closed image,
constructed in the section Closing of the cracks, a
distance map is computed. Then, the inverse of this
distance map is segmented with a watershed transform.
The use of the local minima of the distance map will
lead to an over-segmentation. Therefore, a prior h-
minima transform is used on the distance map.

The h-minima transform suppresses all minima
whose depth is less than h, reducing the number of
local minima. The difficulty is in the choice of h. Using
a trial and error approach and a visual inspection, it is
possible to achieve a good reconstruction (Fig. 6A).

(A) (B)

Fig. 6. (A) Watershed segmentation of the closed
image after a h-minima filter (slice). (B) Watershed
segmentation using markers computed from the K-
means (slice).
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MARKERS COMPUTED FROM THE
K -MEANS

For comparison, an alternative segmentation for
the reconstruction of grains is obtained from markers
generated by the K-means clustering algorithm.

A realization of Poisson point process is generated
inside the binary mask of the image, with a low
intensity. This gives a set of voxels used for a K-means
clustering (Lloyd, 1982).

Given a set of voxels {p1, p2, . . . , pn}, K-means
clustering aims to partition the n voxels into
K ≤ n clusters, {S1,S2, . . . ,SK} so as to minimize
the following sum of squares in each cluster:
∑

K
i=1 ∑p j∈Si

∥∥p j−µi
∥∥2, where µi is the center of mass

of voxels in the cluster Si (assuming all the voxels have
the same mass).

There exists several algorithms for building the set
of clusters minimizing this sum. Here, the MacQueen
algorithm, as implemented in the software R, is used
(MacQueen, 1967).

The centers of mass µi are finally used as markers
for the watershed transform on the distance map of
the morphologically closed image constructed in the
section Closing of the cracks.

The numbers K of classes used is directly
estimated from the closed image. Considering for
simplification the closed image as a realization of a
Boolean model of spheres with a single radius R, it is
deduced from the range of the covariance C(h) equal to
2R (Faessel and Jeulin, 2010), obtained by the distance
h for which C(h) = V 2

v . Then, the number of grains is
deduced from this radius and from the Boolean model
assumption (Jeulin, 1991): the volume fraction of the
overlapping grains Vv is expressed as a function of
the average number of grains per unit volume θ , by:
Vv = 1− exp(−θ

4
3 πR3) .θ and consequently the total

number of grains (and of markers) is deduced from Vv
and R3.

The same covariance-based approach, applied
on the original thresholded image, before the
morphological closing, gives an estimation of the size
of the fragments. From this estimation, the intensity
of the Poisson point process used for the clustering
algorithm is deduced. The intensity is chosen such that
each fragments receives at least several points.

The process achieves a satisfactory reconstruction
of the grains, as illustrated in Fig. 6B.

MULTISCALE IMAGE
SEGMENTATION

In this section, the goal is to isolate each fragment
of each grain, for further morphological analysis.
For the separation of the fragments, a multiscale
stochastic watershed algorithm is used. The stochastic
watershed segmentation was first introduced in Angulo
and Jeulin (2007). The approach is based on using
a large number of realizations of random markers
to build a probability density function (pdf) of
contours, starting from a standard watershed algorithm
producing oversegmentation.

The stochastic watershed was proved to be efficient
for unsupervised segmentation (Noyel et al., 2007;
Faessel and Jeulin, 2010). For multiscale images, the
full granulometry of the image is used Gillibert and
Jeulin (2011b). Using morphological openings, this
granulometry can be automatically computed from the
image and is used as a constraint during iterations of
segmentation steps.

STOCHASTIC WATERSHED

The aim of the stochastic watershed Angulo and
Jeulin (2007) is to estimate for each point of the
contours of a standard watershed a probability (called
here probability density function of contours) of
detection from random markers.

The first method introduced for computing the
stochastic watershed is based on a large number
of realizations of random markers to estimate a
probability density function of contours, or of surface
boundaries in 3D. The random markers are generated
with a uniform distribution of their coordiantes. For
the present composite material, a constant background
marker is added to each set of random markers.
This constant background marker is extracted by
thresholding the image via the maximization of the
interclass variance.

For each set of markers, a constrained watershed
transform is computed. Then, the Parzen window
method (typically here a convolution of the probability
image by a Gaussian kernel) is used to estimate the
probability density function of contours from this finite
set of random realizations (Parzen, 1962).

A good estimation of the probability of contours
generated by the stochastic watershed requires 100 to
200 realizations (Angulo and Jeulin, 2007). However,
using λ -flat zones to smoothen the local probability of
contours, a stochastic watershed segmentation can be
achieved with only 50 realizations (Faessel and Jeulin,
2010).
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Computing a large number of watershed
transforms from simulations provides good results
but is a slow process, mainly in 3D. A more efficient
solution for computing stochastic watersheds is to use
a graph-based approach. Probability of boundaries is
directly computed with a good approximation without
the use of any realization (Jeulin, 2008).

As an example, the computation of the stochastic
watershed with 50 realizations of watershed
transforms takes 163 minutes and 20 seconds for the
MAT2 sample on 3.00 GHz Pentium 4. A similar result
can be achieved in 7 minutes an 8 seconds, on the same
computer, using the graph-based approach.

In Stawiaski and Meyer (2010) and Gillibert
and Jeulin (2011b), the direct computation of the
probability of the boundaries is obtained using a region
adjacency graph deduced from the watershed, each
vertex of the graph figuring a basin of attraction
of the watershed, and each edge connecting two
neigbouring basins. This graph-based approach leads
to a multiscale stochastic watershed algorithm that is
used now.

MULTISCALE STOCHASTIC
WATERSHED

The main drawback of the stochastic watershed
is that it is not well suited for the segmentation
of objects with a wide range of scale. A variant
was introduced by the authors to operate on a wide
granulometric spectrum Gillibert and Jeulin (2011b).
The multiscale image segmentation process is based
on a simple idea: estimate the full granulometry of
the image, using morphological openings, then use
multiple stochastic watersheds with different numbers
of markers for each size, and finally combine them
to get a segmentation that is correct for each size
of grains (no oversegmentation for big grains, no
undersegmentation for small grains).

Many hierarchical segmentation algorithms were
studied, such as the waterfalls (Beucher, 1994) or
the P algorithm (Beucher and Marcotegui, 2009).
Here the approach is based on the merging of the
watersheds basins using a minimum spanning tree
(Eppstein, 2000). In the merging process, a constraint
is introduced: the granulometry of the image. The
algorithm is described in Fig. 7.

Background mask (M)
Gradient-based watershed (W)
Region adjacency graph (G) from W
Minimum spanning tree (MST) from G

Graph initialization

Morphological granulometry
Compute volumetric granulometry classes: v(x)
Estimate the number of grains in each class: n(x)

Image measurements 

Main loop 
Pick the upper untreated class: C
Compute the probability density function (PDF) 
       on the graph for n(C) markers

For i in {0,1,...,100}
   Remove edges of probability i from the PDF
   Estimate the new probability of the remaining edges
   Estimate the granulometry of the resulting 
          segmented image: v(x)

Use the step i which minimises |v(C)-v(C)|
Remove segmented grains from the image

Is there any class left?

Yes

No

Combine all the grains segmented at all the steps
Return the final result

i

i

Fig. 7. The main steps of the multiscale image
segmentation process.

The first step of the approach is to estimate
the granulometry of the image, using morphological
openings. From the granulometry, a small number of
classes are chosen (3 classes in this paper). A good
approach for this choice is to maximize the interclass
variance. The total volume of the grains in each class
x will be denoted v(x). The number of grains in each
class x is deduced from v(x) and is denoted n(x). It is
used to generate the corresponding number of markers
in the calculation of the probability of the boundaries
between grains of the segmentation.

Then, the standard watershed transform is
computed from the local minima of the gradient. From
this watershed, the adjacency graph is constructed and
a minimum spanning tree is extracted.

The first class is chosen, starting from the largest
grains. The stochastic watershed is computed with
a number of markers equals to n(1). Based on this
stochastic watershed, a first hierarchy on boundaries
is computed with the merging algorithm. For each
step i of the hierarchy, the granulometry of the
corresponding segmentation is computed (vi(1)).

In the full hierarchy, there is a size step which
minimizes the difference |vi(1)− v(1)|. This step is
used for the segmentation of the grains in the first class.
All the segmented grains are removed from the image
and added to the background mask. The minimum
spanning tree is updated and the next class is chosen.
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The same process is applied to all the classes.
When no more class is left, all the segmentations are
combined together. Results are illustrated in Fig. 8.
A few fragments are missing, and a few grains are
oversegmented, but this errors have a small impact on
the results of the measurements.

(A)

(B)

Fig. 8. (A) Original image before multiscale
segmentation (slice). (B) Final multiscale stochastic
watershed segmentation (slice).

IMAGE ANALYSIS AND
MEASUREMENTS

VOLUME FRACTION AND SPECIFIC
SURFACE AREA OF DAMAGED GRAINS
From the reconstructed data, the volume fraction

of each grain is estimated before and after the
morphological closing. From this two measurement,
the volume fraction of the cracks of each grain is
estimated.

For each image, grains reconstructed with the
h-minima markers and grains reconstructed with
the K-means markers are studied for comparison.
The results for the volume fraction of the cracks,
presented as normalized histograms (namely the
proportion of grains in % with a given property),
are shown in Figs. 9, 10 and 11. The agreement
between the K-means reconstruction results and the
h-minima reconstruction results is excellent, showing
the robustness of our segmentations for the purpose of
damage measurement.

With the number of intercepts (transitions from
background to foreground) in 13 directions generated
by a voxel and its first and second neighbours on
the cubic grid, it is possible to estimate the surface
area of each grain i from the closed reconstructed
data (denoted Sc(i)). With the same process, the
surface area of each grain before the morphological
closing is estimated (denoted S f (i)). From this two

measurement, the surface area S(i) of the cracks of
each grain is estimated:

S(i) = S f (i)−Sc(i) .

Due to some imperfections on the original grains,
the surface area estimated with this process correspond
to the surface area of the cracks, the small irregularities
at the surface of the grains and the porosity.

The specific surface area Sspec measures the total
surface area per unit of volume:

Sspec(i) =
S(i)
V (i)

.

The results for the specific surface area, presented
as a normalized histogram, are shown in Fig. 12,
Figs 13 and 14. Once again, the agreement between
the K-means reconstruction results and the h-minima
reconstruction results is excellent.

The damage on the grains is quantified from both
specific surface area and volume fraction. On the
sample MAT2, the reference material without any
mechanical impact, the volume fraction of the cracks
is low (mostly between 0 and 0.2) and the volume
fraction is almost always 0. On the sample MAT3,
impacted with a 2 kg mass falling 30 cm, with a 9.5
cm rebound, there is only 6% of the grains with a
zero specific surface area of the cracks, and the volume
fraction of the cracks is mostly between 0.2 and 0.5.

The sample MAT1, impacted with a 2 kg mass
falling 15 cm, is less damaged than the sample MAT3.
This is visible on both specific surface area and volume
fraction. On the sample MAT1 there is only 8% of
the grains with a zero specific surface area of the
cracks, and the volume fraction of the cracks is mostly
between 0.1 and 0.4.
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Fig. 9. Histogram of the volume fraction of the cracks
for MAT1. HM are the grains reconstructed with the h-
minima markers and KM are the grains reconstructed
with the K-means markers.
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Fig. 10. Histogram of the volume fraction of the cracks
for MAT2. HM are the grains reconstructed with the h-
minima markers and KM are the grains reconstructed
with the K-means markers.
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Fig. 11. Histogram of the volume fraction of the cracks
for MAT3. HM are the grains reconstructed with the h-
minima markers and KM are the grains reconstructed
with the K-means markers.
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Fig. 12. Histogram of the specific surface area of the
cracks for MAT1 (given in µm−1). HM are the grains
reconstructed with the h-minima markers and KM are
the grains reconstructed with the K-means markers.
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Fig. 13. Histogram of the specific surface area of the
cracks for MAT2 (given in µm−1). HM are the grains
reconstructed with the h-minima markers and KM are
the grains reconstructed with the K-means markers.
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Fig. 14. Histogram of the specific surface area of the
cracks for MAT3 (given in µm−1). HM are the grains
reconstructed with the h-minima markers and KM are
the grains reconstructed with the K-means markers.
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Fig. 15. Histogram of the number of fragments for
MAT2 and MAT3. HM are the grains reconstructed
with the h-minima markers and KM are the grains
reconstructed with the K-means markers.
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NUMBER OF FRAGMENTS

With the multiscale stochastic watershed algorithm
introduced in the the previous section, the separation
of the fragments can be achieved. Using the labels
computed with the reconstruction algorithm, each
segmented fragment is associated to its original grain.

Therefore, it is possible to know the number of
fragments in each grain. This number includes the
grain itself and is therefore larger or equal to 1. From
this number, a normalized histogram is estimated, as
illustrated in Fig. 15 for samples MAT2 and MAT3.

For the fragmented grains (MAT3), a three scale
stochastic watershed is used. For the reference material
without any mechanical impact, a simple stochastic
watershed, without any additional steps, gives a correct
segmentation.

As for the specific surface area and volume
fraction, the damage of the grains can be quantified
from these normalized histograms, the initial material
showing almost no fragmentation, as compared to
the shocked material, MAT3. The results obtained
from the two types of segmentation are pretty close,
showing again the robustness of the used segmentation
techniques.

We can observe from the normalized histogram
that many grains are very fragmented (≥ 30 fragments
per grain, as seen in Fig. 15).

CONCLUSION

The proposed algorithm gives a satisfactory
reconstruction of the fragmented grains with both
markers sets. Visual inspection reveals that the K-
means markers give better results when the grains are
highly fragmented and if the fragments are scattered,
but the boundaries of the grains are less accurate. The
h-minima markers give correct boundaries between
grains but fail to reconstruct a few grains.

In both cases, the closing of the grains
depends on two parameters: the radius of the
rhombicuboctahedron used and the volume of the
holes. The h-minima markers require an additional
parameter: h. The number of clusters used for the
computation of the K-means is directly deduced from
the image. Therefore, the K-means depend on less
parameters and is less user-dependent.

The two algorithms require a similar time for
the reconstruction. The reconstruction of the sample
MAT2, using the K-means approach, requires 18
minutes and 12 seconds on a 3.00 GHz Pentium 4. The

reconstruction of the same sample requires 19 minutes
and 15 seconds using the h-minima approach.

Both approaches are very useful in order to
generate data on the damage of materials from a fully
automated 3D image analysis. The reproducibility
of results on fragmentation obtained from two
segmentation methods is very good. The analysis
proves that the methods provide 3D damage
measurements consistent with the mechanical impacts
applied on the materials. They will provide useful
information for the fully automatic characterization
of damage in various conditions, helping to improve
the reliability of solid propellants. A similar approach
can be followed for the quantitative analysis of the
progression of damage in materials, starting from 3D
images.
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