GEOLOGIJA 50/2, 247–268, Ljubljana 2007 Depositional environment of Upper Carboniferous - Lower Permian beds in the Karavanke Mountains (Southern Alps, Slovenia) Sedimentacijsko okolje zgornjekarbonskih in spodnjepermskih plasti v Karavankah (Južne Alpe, Slovenija) Matevž NOVAK Geolo{ki zavod Slovenije, Dimi~eva ul. 14, SI-1000 Ljubljana, matevz.novak@geo-zs.si Key words: biostratigraphy, sedimentology, facies, platform evolution, Upper Carboniferous, Lower Permian, Karavanke Mts., Slovenia Ključne besede: biostratigrafija, sedimentologija, facies, razvoj platforme, zgornji karbon, spodnji perm, Karavanke, Slovenija Abstract Late Paleozoic rocks were studied in detail in the Dovžanova soteska section. The Upper Carboniferous sedimentary succession, correlated with upper part of Auernig and Schul-terkofel Fm. in the Carnic Alps, indicates cyclic clastic-carbonate deposition in a coastal to shallow marine ramp setting with strong influence of coarse-grained fluvial-deltaic silici-clastics from the hinterland, storm dominated regime of nearshore sediments, and offshore algal buildups. The Lower Permian sequence is developed differently from its time equivalent Grenzland Fm. and is subdivided into Dovžanova soteska Fm., Born Fm., and Rigelj beds. It is marked by the formation of a reef mound on the platform margin. Open-marine inner platform close to the marginal shoals represented the depositional environment of the mixed carbonate-siliciclastic sediments. Thus, a platform evolution from a ramp into a rimmed shelf is suggested. Izvle~ek Zgornjepaleozojske kamnine so bile detajlno raziskane v profilu Dovžanove soteske. Zgornjekarbonsko sedimentno zaporedje, korelirano z zgornjim delom auerni{ke in schul-terkofelsko formacijo v Karnijskih Alpah, kaže na cikli~no klasti~no-karbonatno sedimen-tacijo na obalnem in plitvomorskem pasu rampe. Zaznamovana je z mo~nim dotokom debelozrnatih fluvialno-deltnih klastitov s kopnega zaledja, prevladujo~e nevihtnim režimom v priobalnem pasu in z algnimi kopami v odprtomorskem pasu. Spodnjepermsko zaporedje se razlikuje od ~asovno ekvivalentne grenzland formacije in je razdeljena na dovžanovo-sote{ko in bornovo formacijo ter rigeljske plasti. Zaznamuje jo razvoj grebenske kope na robu platforme. V notranjosti platforme so se v odprtem morju odložili me{ani karbonat-no-siliciklasti~ni sedimenti. Opisan razvoj kaže na evolucijo platforme iz rampe v {elf z robno bariero. Introduction ring residue or slope talus. They were historically correlated with better exposed secti-Sections of the Upper Carboniferous ons in the Carnic Alps (Austria/Italy), where and Lower Permian fossiliferous shallow they were subdivided into Auernig, Rattenmarine deposits in the Karavanke Mts. are dorf and Trogkofel beds (Geyer, 1895; He-commonly exposed in bands or scattered ritsch et al., 1934; Selli, 1963; Kahler, outcrops as a result of strong overprint by F. & Kahler, G., 1937, 1941; Kahler, F. , Alpine tectonics and thick cover of weathe- 1939, 1942, 1947). In the Karavanke Mts., 248 Auernig beds, Upper Pseudoschwagerina Limestone of the Rattendorf beds and Trogkofel beds were recognised, and within the latter clastic and carbonate units were distinguished (Schellwien, 1898a, b, 1900; Teller, 1903; Heritsch, 1933, 1938, 1939; Ramov{, 1963, 1966, 1968; Kochansky-Devidé, 1965, 1969, 1970, 1971; Kochan-sky-Devidé & Ramov{, 1966; Buser, 1974, 1980; Jurkov{ek, 1987). Earlier works are discussed later in the text. In this paper a part of the doctoral thesis on the biostratigraphy of Late Paleozoic beds in the Dovžanova soteska (Dovžan’s gorge), NE of the town of Trži~, is summarized. In the Dovžanova soteska, the north-south trending valley of the Trži{ka Bistrica river cuts deep into the southern slopes of the Karavanke Mountains and exposes the most complete section of marine fossil-rich Late Carboniferous and Permian beds in Slovenia (Fig. 1). The main focus of the paper is on the facies characteristics of the succession, biostratigraphic correlation, and the interpretation of the depositional Fig. 1. Location map of the investigated area. Sl. 1. Lega raziskanega obmo~ja. Matev` Novak environment. The interpretation of the Late Paleozoic succession refers also to similar, but better exposed deposits in Carnic Alps, which were studied in detail in the last decades (Venturini, 1990; Schönlaub, 1992; Krainer, 1992; Samankassou, 1997; Forke et al., 1998, 2006; Forke, 2002). Biostratigraphy and correlation Fusulinoideans in the lowermost part of the succession are represented by Daixina (Daixina) alpina, D. (D.) communis, Dutke-vitchia aff. multiseptata, and Quasifusulina longissima ultima. A similar assemblage is known from the lithologically identical Aue-rnig and Carnizza Members (upper part of Auernig Formation) in the Carnic Alps. It can be correlated with the Daixina sokensis zone (Gzhelian E) on the Russian Platform (Kahler, F., 1962; Krainer & Davydov, 1998; Leppig et al., 2005; Forke, 2007) (Fig. 2). However, in the upper part of this sequence large inflated forms belonging to the subgenus Daixina (Bosbytauella) occur together with Dutkevitchia expansa, Rugo-sofusulina stabilis, Schwageriniformis sp., and Ruzhenzevites aff. parasolidus. This assemblage corresponds to the fusulinoide-an fauna of the Schulterkofel Formation in Carnic Alps and indicates the Daixina (B.) bosbytauensis-Daixina (B.) robusta zone (Gzhelian F) in the Darvaz area (Central Asia) and in the Southern Urals (Kahler, F. & Krainer, 1993; Forke et al., 1998; Kra-iner & Davydov, 1998; Forke, 2002). The Schulterkofel Formation, formerly known as Lower Pseudoschwagerina Limestone (Kahler, F. , 1947), has been renamed by Krainer (1995a) after the type section on Mt. Schulterkofel in the Nassfeld area according to the stratigraphic guidelines. In the Dovžanova soteska this assemblage is also present in oolitic limestone, capping the erosional unconformity on the thick quartz conglomerate unit and thus speaks for its uppermost Carboniferous age (Fig. 2) (Novak, 2007). In the Dovžanova soteska, the Carboniferous/Permian boundary is not exposed due to a tectonic contact. Limestones above the contact were erroneously correlated with the younger Trogkofel Limestone in Carnic Alps for decades. Recently found conodonts Streptognathodus barskovi, Str. simplex, Str. cf. longissimus, Str. cf. elongatus, Hindeodus Depositional environment of Upper Carboniferous – Lower Permian beds in the Karavanke ... 249 Fig. 2. Composite lithostratigraphic column of the Dovžanova soteska. Sl. 2. Kompozitni litostratigrafski stolpec Dovžanove soteske. 250 minutus, and Diplognathodus n. sp. together with fusulinoideans Dutkevitchia complicata, Pseudoschwagerina aff. uddeni, Sphaerosch-wagerina citriformis, and Sph. carniolica speak for middle to late Asselian age of these limestones (Buser & Forke, 1996; Forke, 2002; Novak, 2007). Late Asselian fusulino-idean assemblages of Sphaeroschwagerina carniolica, Paraschwageria pseudomira, Pseudochusenella pseudopointeli, Rugoso-fusulina latispiralis, and R. likana occur in the overlying clastic-carbonate succession of the Born Formation (Fig. 2). Due to lit-hologic and faunistic differences these beds can not be correlated with the Zweikofel Formation (Upper Pseudoschwagerina Limestone) of the Carnic Alps (as by Kahler, F. & Kahler, G., 1937) neither they can be regarded as clastic Trogkofel beds (as by Buser, 1974, 1980). They probably represent a time-equivalent to predominantly clastic and fossil-barren beds of the Grenzland Formation (Forke, 2002). Therefore, these fusulinoidean forms have an important role in filling the gaps in the knowledge of the phylogenetic evolution and stratigraphic range of the present genera. The uppermost part of the section below the Tarvis breccia is poorly exposed. Fu-sulinoideans from this interval, informally named Rigelj beds (Novak, 2007), indicate early Sakmarian age due to the presence of Dutkevitchia cf. splendida, Sphaerosch-wagerina cf. asiatica, Quasifusulina tenuis-sima, and Pseudochusenella sp. (Fig. 2). A similar faunal assemblage is present in the uppermost Grenzland Formation of the Car-nic Alps (Novak & Forke, 2005). Lithology and facies interpretation The sedimentary succession in both, the upper part of the Auernig and the Schulterkofel Formation shows a clear cyclic si-liciclastic-carbonate depositional pattern, known as Auernig cyclothems in the Carnic Alps (Austria/Italy) (Kahler, F. , 1955; 1962; Buttersack & Boeckelmann, 1984; Bo-eckelmann, 1985; Massari & Venturini, 1990; Krainer, 1992; Samankassou, 1997, 2003). Because of tectonic deformations and thick cover of weathering residue outcrops are isolated and complete sections are rarely exposed. That makes it impossible to trace cyclothems or even reference horizons over longer distances. However, repeated occu- Matev` Novak rences of every facies or facies association composing the idealised model of Auernig cyclothem, drawn by Krainer (1992) and Krainer & Davydov (1998) (Fig. 3), can be recognised in the stratigraphic succession. The base of the typical cyclothem is represented by conglomerates above the diastem. Based on only a few sedimentary structures that can be observed, a fluvial to coarse-grained deltaic or coastal depositional setting can be proposed for these conglomerate sequences. The overlying trough cross-bedded coarse-grained sandstones of the foreshore and upper shoreface settings mark the beginning of the transgressive systems tract (TST). With further sea-level rise the deposition of finer-grained sandstones follows. Hummocky cross-stratification (HCS) is the result of wave or the combination of wave and current oscillation during storms between the fair-weather and storm wave base on the lower shoreface (Tucker, 2001; Flügel, 2004). Upwards gradually biotur-bated siltstones with scarce marine fauna prevail, interbedded with HCS storm sandstone beds. However, besides the structures, characteristic of tempestites (sharp basal erosion contact with groove casts, HCS, bra-chiopod shell lag at the base of event beds, and dwelling burrows of the Skolithos-type ichnofacies in the upper part of event beds (Frey, 1990; Pemberton & MacEac-hern, 1997)), also many typical turbiditic features (Bouma-like sequences, vortex and load structures) and normal water current structures (parallel-laminated sandstones and lense-shapped concentrations of sandstones within bioturbated siltstones) can be observed. The multitude of the described features most probably reflect various de-positional mechanisms, complex nature of storm-generated currents and amalgamation of storm beds (Reading, 1996). The peak of the TST is represented by intensely bio-turbated siltstones with highly diverse elements of a Cruziana ichnofacies suggesting stable conditions in an offshore setting. The following carbonate complexes mark the maximum relative sea-level. They are represented by algal mounds in which basal, core, flanking and capping beds can be distinguished. Basal beds are usually very rich in fusulinoideans, smaller foramini-fera, ostracodes, gastropods, brachiopods, and bryozoans. Almost unbroken thalli of Anthracoporella spectabilis and Archaeolit-hophyllum missouriense in growth position Depositional environment of Upper Carboniferous – Lower Permian beds in the Karavanke ... 251 build the delicate framework of the massive micritic mound core. In flanking beds, they are accompanied by fragments of phylloid algae Epimastopora and Eugonophyllum, and binded with Tubiphytes or small sessile foraminifera. Capping beds are composed predominantly of crinoid debris. Optimal conditions for growth of calcareous algae is the upper part of the photic zone, i.e. few tenth of metres. Since their delicate thalli were unable to resist agitated water, they point to restricted environments with moderate current action, most probably just below the storm wave base zone (Toomey et al., 1977). The bedded wac-ke- to packstones underlying and overlying massive algal mound core were deposited in a shallower zone of higher energy. Predomination of algal biostromes, composed of fragmented algal thalli, over bioherms indicates that most of the buildups grew within the wave action zone. Accumulation of calcareous algae generally started during Fig. 3. Idealised Auernig Cyclothem from the upper part of the Auernig Formation in the Carnic Alps (after Krainer & Davydov, 1998). Sl. 3. Idealiziran model auerni{ke cikloteme iz zgornjega dela auerni{ke formacije v Karnijskih Alpah (po Krainer & Davydov, 1998). transgression, while the micritic core facies marks the sea-level highstand. Upwards, in the highstand systems tract (HST), the mirror image of clastic sequences complete the idealised cyclothem (Krainer & Davy-dov, 1998) (Fig. 3). The described facies associations and microfacies characteristics suggest that the deposition of Auernig and Schulterkofel Formations took place on a platform of the mixed carbonate-siliciclastic ramp type at the margin of a shallow intracratonic basin (Read, 1985). Similar conclusions were reached by Massari & Venturini (1990) in the Carnic Alps. They pointed out, that the only plausible explanation for substantial shifts of facies belts in relatively short time periods is a flat topography of gently steeping ramp, where even the slightest change of sea-level was causing considerable shifts of the coastal line. However, worldwide recorded Late Paleozoic cyclic deposits exhibit rapid facies changes that reflect both 252 high frequency and high amplitudes of sea-level fluctuations due to glacio-eustatic control associated with Gondwanan glaciation (Soreghan & Giles, 1999; Joachimski et al., 2006). An up to 200 m thick unit of thick-bedded coarse-grained and poorly-sorted quartz conglomerates most probably represents a lateral fan-deltaic depositional environment within the upper part of the Schulterkofel Formation. A rapid sea-level rise following the deposition of conglomerates resulted in the transgressive lag that caps a flooding surface. It is characterised by high content of bioclastic and quartz pebble components from the eroded surface (Reading, 1996). The Dovžanova soteska Formation also shows clear transgressive-regressive trends. Black wavy to nodular-bedded limestones with marlstone intercalations begin the TST. The following black bioturbated fossil-rich siltstones and claystones pass gradually into the Dovžanova soteska Limestone through increasing carbonate/clay ratio. Since the massive limestone body is grossly built of postmortally segmented skeletal fragments of crinoids, bryozoans, green calcareous algae and brachiopods in a micritic matrix, bounded only with encrusting Tubiphytes, algae, bryozoans and small sessile foramini-fers, while the true reef-building metazoans play only a subordinate role, we can refer to it as a reef (or skeletal) mound (Flügel, 2004). The bioclastic packstone to micro-breccia composed of fragmented allochtho-nous reef mound derived debris in the upper part of Dovžanova soteska Limestone, corresponds to SMF 5 (sensu Wilson, 1975; Flügel, 1982) of the reef-flank facies. It was deposited in the forereef facies belt and suggests a substantial topographic relief and the rigidity of the reef mound body. Further evidence of this are neptunian dikes and the brecciated horizon in the uppermost part of the complex. Since there is no evidence of regional tectonism at that time, this can not be regarded as the triggering factor of dike formation. Taking into consideration the inherited instability of poorly cemented reef mounds, we can explain fissure opening as a result of high local depositional relief that leads to passive gravitational movements and fracturing (Reading, 1996; Flügel, 2004; Stanton & Pray, 2004). However, seismic events and the loss of hydrostatic support during short-termed relative sea-level falls can not be excluded. Most dikes Matev` Novak exhibit multiple phases of fissure opening and filling with marine sediment. The following horizon, composed of deeper-water calcareous siltstones, marlstones and thin-bedded marly limestones speak for the short-term drowning of the reef complex prior to the deposition of red bedded crinoidal limestones with a rich and diverse shallow-water biotic association. Red stained silty crusts capping almost every limestone bed represent omission surfaces of the hardground type. They were formed during periods in which lowering of the effective wave base reached the sea-floor and there constant water agitation resulted in submarine cementation of calcareous ground and an impregnation with Fe and Mn oxides (Brett, 1998). Similar lithologies have been found in the upper slope sediments of a completely preserved carbonate platform to basin configuration in the Cantabrian Mts. (Bahamonde et al., 2004). The uppermost part of the Dovžanova soteska Formation is marked by a reestablishment of reef growth with strong marine cementation, suggesting a steep slope inclination. The described development of the Dov-žanova soteska Formation with drowning event, restored reefal sedimentation and intermediate tongue of upper-slope facies fits the description of a back-stepping reef with the landwards shift of carbonate production during the episode of relative sea-level rise (Reading, 1996). Basal quartz conglomerates of the Born Formation cut into brecciated uppermost beds of red limestone with erosional unconformity. A clear erosional surface and features like calcareous pisoids and infillings of vadose silt in the topmost limestones of the Dovžanova soteska Formation suggest that the reef sedimentation was terminated as a result of subaerial exposure. During the following transgression, sedimentary depocen-tre migrated towards the open-marine inner platform. The alternation of black bedded bioclastic grain- to packstones, biocalcare-nites, oolites, sandy limestones and quartz sandstones with shallow-water benthos in the lower part of the Born Formation indicates deposition in an open lagoonal setting repeatedly affected by the sedimentary influx from platform-margin oolitic and sand shoals. Some of the mixed carbonate-silici-clastic rocks (e.g. paraconglomerates) have characters of the debris flow deposits (Novak, 2007). One of the rocky pyramids is Depositional environment of Upper Carboniferous – Lower Permian beds in the Karavanke ... 253 built of massive light grey micritic limestone with the rugose coral Carinthiaphyllum kahleri (Holzer & Ramov{, 1979) forming an isolated patch-reef. In the upper part of Born Formation often folded beds of dark limestones with clay admixture, concetrated as irregular interbeds prevail. They contain numerous thalli of phylloid algae, many genera of smaller foraminifera, fusulinoideans, and in some places large planispiral euompha-lid gastropods. The original depositional structures and textures are modified by the intense burrowing, differential early diage-netic cementation, and the differential solubility of clay-rich and carbonate-rich sediments during late diagenetic processes connected with pressure-solution. Evenly-bedded sediments were transformed into wavy or nodular limestones (McIlreath & James, 1984). The lower retrogradational succession of the Rigelj beds indicates gradual shift of the facies belts from high energy coast through open-marine lagoon towards the shallow-marine, and shelf edge. In the transitional coastal belt, conglomerates, sandstones and oolitic limestones were deposited. Sedimentation of black bedded algal limestones with clayshale intercalations took place in the inner-shelf environment. There, in the restricted marine shoals limestones with low diversity algal association were deposited, while in the open lagoon with normal water circulation near to platform edge, sedimentation of limestones with high diversity algal association took place (Flügel, 1977). Reef limestones and limestone breccias mark shelf edge setting. Development of the upper part of Rigelj beds suggests a shift of facies belts back into the open-marine lagoon, where black limestones with high-diversity biota and Osagia-type onco-ids were formed (Flügel, 1977). Substantial content of fine-grained, well-rounded quartz pebbles in several limestone beds indicates periodical terrigenous influx from a distant hinterland. Regressive trend continues with the deposition of sandstones and calcitic siltstones in high-energy shoreface setting. With the deposition of the Tarvis breccia, a new tectono-sedimentary cycle started in Southern Alps in the Middle Permian. It has been interpreted as the deposits of alluvial fans and/or delta fans with periodic lacustrine pans and sabkhas (Rotar, 1999). Conclusion Based on facies relationships in the section of Upper Paleozoic rocks in the Dov-žanova soteska, a change in platform relief can be suggested. A gently steeping ramp morphology without both, the marginal barrier and the shelf break in the basinward direction evolved into a rimmed shelf with steeper slope as a result of lateral and vertical accretion in response to numerous relative sea-level changes. During periods of sea-level stillstands or slow rises the reef mound on the platform margin rapidly prograded, while as a response to periods of rapid sea-level rises the initial drowning and back-stepping events caused vertical accretion and steeper slope angle (Reading, 1996). Similar platform evolution had been suggested in many sedimentary basins in different geologic periods. However, the closest parallel to the platform evolution in the Dovžanova soteska can be found in the evolution of the Permian Capitan Reef in the Delaware Basin in West Texas (Babcock, 1977; Read, 1985; Tinker, 1998; Pomar, 2001; Stanton & Pray, 2004). Acknowledgments I am grateful to my mentors, the late Prof. Stanko Buser and Doc. Dr. Bojan Ogorelec for their help and encouragement. I sincerely thank to Dr. Holger Forke for his “tutorship” in Late Paleozoic biostratigraphy, determination of fusulinoideans and help with microfacies studies. Doc. Dr. Dragomir Skaberne is greatefully acknowledged for his constructive comments and Prof. Jernej Pav{i~ for improvements by reviewing the manuscript. This study was supported by the young researcher training programme founds of the Slovenian Research Agency (ARRS). Sedimentacijsko okolje zgornjekarbonskih in spodnjepermskih plasti v Karavankah (Južne Alpe, Slovenija) V profilih Dovžanove soteske (sl. 1) lahko lo~imo pet glavnih fuzulinoidejnih združb, katerih stratigrafski razpon približno sovpada z razponom ugotovljenih formacij (sl. 2). Za zgornji del auerni{ke formacije je 254 Matev` Novak zna~ilna združba Quasifusulina longissima ultima, Daixina (D.) alpina in Dutkevitc-hia aff. multiseptata; za schulterkofelsko formacijo združba Ruzhenzevites aff. pa-rasolidus, Dutkevitchia expansa, Schwa-geriniformis sp., Rugosofusulina stabilis, “Schellwienia” sp. in Daixina (Bosbytauel-la) sp.; za dovžanovosote{ko združba Rugo-sofusulina latispiralis, Pseudoschwagerina aff. uddeni in Dutkevitchia complicata; za bornovo združba Sphaeroschwagerina car-niolica, Rugosofusulina cf. likana, Parasch-wagerina mukhamedjarovica in Darvasites eocontractus; za rigeljske plasti pa združba Quasifusulina tenuissima, Dutkevitchia cf. splendida, Sphaeroschwagerina cf. asiatica in Pseudochusenella sp. Najstarej{e plasti v Dovžanovi soteski lahko koreliramo z zgornjim delom auer-ni{ke formacije (auerni{kim in carnizza ~lenom), ki obsega cono Daixina sokensis Ruske platforme in pripada gželiju E. Naj-mlaj{e karbonske plasti schulterkofelske formacije lahko koreliramo s cono Daixina (B.) bosbytauensis-Daixina robusta najmlaj-{ega gželija. Pretežno karbonatno razviti dovžanovosote{ka in bornova formacija ter rigeljske plasti ~asovno sovpadajo s sr. as-selijsko-sp. sakmarijsko, pretežno klasti~no razvito in s fosili revno grenzland formacijo v Karnijskih Alpah. Fuzulinoidejne združbe v njih tako pomembno izpolnjujejo vrzeli v poznavanju filogenetskega razvoja in strati-grafskega razpona opisanih rodov. Zaporedje zgornjekarbonskih plasti v Dovžanovi soteski zaznamuje cikli~na sili-ciklasti~no-karbonatna sedimentacija na položni platformi s konfiguracijo obalne klan~ine (rampe). Debelej{i apnen~evi kompleksi predstavljajo razli~ne oblike algnih kop, ki so nastajale v foti~ni coni pod bazo u~inkovanja nevihtnih valov. V nekoliko globljih delih je bil odložen bioturbiran meljevec, v plitvej{em priobrežnem in obrežnem pasu pa pe{~enjaki in konglomerati fluvialno-deltnega okolja (sl. 3). Plate 1 / Tabla 1 Fusulinoidean assemblages of Auernig and Schulterkofel Formations. All figures are 10x magnified. Fuzulinoidejni združbi auerni{ke in schulterkofelske formacije. Vse slike so 10x pove~ane. Fig. 1. (Sl. 1.) Quasifusulina longissima ultima Kanmera, 1958, axial section (osni presek), 852_I_03_a, section (profil) K 4/Schulterkofel Formation (schulterkofelska formacija). Fig. 2. (Sl. 2.) Quasifusulina longissima ultima Kanmera, 1958, saggital section (ekvatorialni presek), 553_02_g, section (profil) ZD 3/Auernig Formation (auerni{ka formacija). Fig. 3. (Sl. 3.) Daixina (Daixina) alpina (Schellwien, 1898), axial section (osni presek), 550_03_a, section (profil) ZD 3/Auernig Formation (auerni{ka formacija). Fig. 4. (Sl. 4.) Dutkevitchia aff. multiseptata (Schellwien, 1898), tangential section (tangencialni presek), 322_10_b, section (profil) ZD 3/Auernig Formation (auerni{ka formacija). Fig. 5. (Sl. 5.) Daixina (Daixina) communis (Schellwien, 1898), axial section (osni presek), 852_II_08_a, section (profil) K 4/Schulterkofel Formation (schulterkofelska formacija). Fig. 6. (Sl. 6.) Ruzhenzevites aff. parasolidus (Bensh, 1962), axial section (osni presek), 321_09_abcd, section (profil) K 4/Schulterkofel Formation (schulterkofelska formacija). Fig. 7. (Sl. 7.) Dutkevitchia expansa (Lee, 1927), axial section (osni presek), 321_04_abcd, section (profil) K 4/Schulterkofel Formation (schulterkofelska formacija). Fig. 8. (Sl. 8.) Schwageriniformis sp., excentric axial section (ekscentri~ni osni presek), 101_01_s, section (profil) DS 1/Schulterkofel Formation (schulterkofelska formacija). Fig. 9. (Sl. 9.) “Schellwienia” sp., axial section (osni presek), 241_II_05_a1, section (profil) ^ 2/Schulterkofel Formation (schulterkofelska formacija). Fig. 10. (Sl. 10.) Rugosofusulina stabilis (Rauzer-Chernousova, 1938), tangential section (tangencialni presek), 852_II_06_d, section (profil) K 4/Schulterkofel Formation (schulterkofelska formacija). Fig. 11. (Sl. 11.) Daixina (Bosbytauella) sp., axial section (osni presek), 241_II_01_b1, section (profil) ^ 2/Schulterkofel Formation (schulterkofelska formacija). Depositional environment of Upper Carboniferous – Lower Permian beds in the Karavanke ... 255 256 Matev` Novak Sedimentolo{ke zna~ilnosti v profilih schulterkofelske formacije kažejo mo~an vpliv nevihtnih dogodkov na sedimentaci-jo drobnozrnatih pe{~enjakov in meljevcev v spodnjem priobrežnem pasu. V zgornjem priobrežnem pasu so nastajali plastnati apnenci z vložki meljevcev, bogati z gastro-podno favno. Ve~ji del schulterkofelske formacije je nastajal v nekoliko globljem morskem okolju kot auerni{ka formacija, v zgornjem delu pa so se lateralno sedimen-tirali vr{ajno-deltni debelozrnati konglomerati (sl. 2). Kontakt zgornjekarbonskih plasti z zgoraj leže~o spodnjepermsko dovžanovosote-{ko formacijo je tektonski, tako da karbon-sko/permska meja ni vidna. To formacijo zaznamujejo jasni transgresijsko-regresij-ski cikli z nastankom, potopitvijo, ponovno rastjo in kon~no okopnitvijo obsežnej{e gre-benske kope. Konfiguracija klan~ine se je s prograda-cijo platformnega roba postopno spreminjala v {elf z robno bariero. V odprti laguni so nastali plastnati apnenci in me{ane karbonatno siliciklasti~ne kamnine bornove formacije s horizonti prodnatih apnencev, sedi-mentiranih z debritnimi tokovi. Najvi{ji del spodnjepermskega zaporedja predstavljajo kamnine novo izdvojene lito-stratigrafske enote, ki je zaradi nepopolne- ga profila in težke sledljivosti na terenu, poimenovana z neformalnim imenom rigeljske plasti (sl. 2). Zaznamujejo jih svetli greben-ski in temni onkoidni apnenci, odloženi na robu karbonatne platforme. References Babcock, J. A. 1977: Calcareous algae, organic boundstones, and the genesis of the upper Capitan Limestone (Permian, Guadalupian), West Texas & New Mexico. In: Hileman, M. E. & Mazzullo, S. J. (eds.), Upper Guadalupina Facies, Permian Reef Complex, Guadalupe Mountains, New Mexico and West Texas, Vol. 1. – Permian Basin Section, SEPM Publication, 77–16, 3–44. Bahamonde, J. R., Kenter, J. A. M., Del-la Porta, G., Keim, L., Immenhauser, A. & Re-ijmer, J. J. G. 2004: Lithofacies and depositional processes on a high, steep-margined Carboniferous (Bashkirian-Moscovian) carbonate platform slope, Sierra del Cuera, NW Spain. – Sedimentary Geology, 166, 145–156. Boeckelmann, K. 1985: Mikrofazies der Auernig-Schichten und Grenzland-Bänke westlich des Rudnig-Sattels (Karbon-Perm; Karnische Alpen). – Facies, 13, 155–174, Erlangen. Brett, C. E. 1998: Sequence Stratigraphy, Paleoecology, and Evolution: Biotic Clues and Responses to Sea-Level Fluctuations. – Palaios, 13/3, 241–262, Tulsa/Oklahoma. Buser, S. 1974: Neue Feststellungen im Perm der westlichen Karawanken. – Carinthia II, 164/84, 27–37, Klagenfurt. Plate 2 / Tabla 2 Fusulinoidean assemblages of Dovžanova soteska and Born Formations. All figures are 10x magnified. Fuzulinoidejni združbi dovžanovosote{ke in bornove formacije. Vse slike so 10x pove~ane. Fig. 1. (Sl. 1.) Rugosofusulina latispiralis Forke, 2002, axial section (osni presek), PR51_jkl, section (profil) TB 1/Born Formation (bornova formacija). Fig. 2. (Sl. 2.) Dutkevitchia complicata (Schellwien, 1898), axial section (osni presek), 379_01_a, section (profil) TB 1/Born Formation (bornova formacija). Fig. 3. (Sl. 3.) Pseudoschwagerina aff. uddeni (Beede & Kniker, 1924), excentric axial section (ekscentri~ni osni presek), 140_08_a1, section (profil) DS 2/ Born Formation (bornova formacija). Fig. 4. (Sl. 4.) Rugosofusulina? minuta Forke, 2002, axial section (osni presek), 073_01_b1, section (profil) DS 2/ Born Formation (bornova formacija). Fig. 5. (Sl. 5.) Pseudoschwagerina aff. muongthensis (Deprat, 1915), axial section (osni presek), 068_09_b1, section (profil) DS 2/ Born Formation (bornova formacija). Fig. 6. (Sl. 6.) Darvasites eocontractus Leven & Shcherbovich, 1980, axial section (osni presek), 068_12_hi, section (profil) DS 2/ Born Formation (bornova formacija). Fig. 7. (Sl. 7.) Sphaeroschwagerina carniolica (Kahler & Kahler, 1937), axial section (osni presek), 140_04_b1, DS 2/BF, section (profil) DS 2/ Born Formation (bornova formacija). Fig. 8. (Sl. 8.) Paraschwagerina mukhamedjarovica Rauzer-Chernousova, 1949, axial section (osni presek), 795_01_a, section (profil) DS 2/ Born Formation (bornova formacija). Depositional environment of Upper Carboniferous – Lower Permian beds in the Karavanke ... 257 258 Matev` Novak Buser, S. 1980: Tolma~ lista Celovec (Klagenfurt) Osnovne geolo{ke karte SFRJ 1 : 100.000. – Zvezni geolo{ki zavod, 62 pp., Beograd. Buser, S. & Forke, H. C. 1996: Lower Permian conodonts from the Karavanke Mts. (Slovenia). – Geologija, 37, 38 (1994/95), 153–171, Ljubljana. Buttersack, E. & Boeckelmann, K. 1984: Palaeoenvironmental Evolution during the Upper Carboniferous and the Permian in the Schulter-Trogkofel Area (Carnic Alps, Northern Italy). – Jb. Geol. B.–A., 126/3, 349–358, Wien. Flügel, E. 1977: Environmental models for Upper Paleozoic benthic calcareous algal communities. In: Flügel, E. (ed.), Fossil algae. Recent results and developments. – Springer-Verlag, 314–343, Berlin. Flügel, E. 1982: Microfacies Analysis of Limestones. – Springer-Verlag, 633 pp., Berlin. Flügel, E. 2004: Microfacies of Carbonate Rocks: Analysis, Interpretation and Application. – Springer-Verlag, 976 pp., Berlin. Forke, H. C. 2002: Biostratigraphic Subdivision and Correlation of Uppermost Carboniferous/ Lower Permian Sediments in the Southern Alps: Fusulinoidean and Conodont Faunas from the Carnic Alps (Austria/Italy), Karavanke Mountains (Slovenia), and Southern Urals (Russia). – Facies, 47, 201–276, Erlangen. Forke, H. C. 2007: Taxonomy, systematics, and stratigraphic significance of fusulinoidean holotypes from Upper Carboniferous sediments (Auernig Group) of the Carnic Alps (Austria, Italy). In: Wong, Th. E. (ed.), Proceedings of the XVth International Congress on Carboniferous and Permian Stratigraphy. Utrecht, the Netherlands, 10.–16. August 2003. – Royal Netherlands Academy of Arts and Sciences, 259–268, 5 Figs. Forke, H. C., Kahler, F. & Krainer, K. 1998: Sedimentology, microfacies, and strati-graphic distribution of foraminifers of the Lower “Pseudoschwagerina” Limestone (Rattendorf Group, Late Carboniferous), Carnic Alps (Austria/Italy). – Senckenbergiana lethaea, 78 (1/2), 1–39, Frankfurt am Main. Forke, H. C., Schönlaub, H. P. & Sa-mankassou, E. 2006: The Late Paleozoic of the Carnic Alps (Austria, Italy); Field-trip of the SCCS Task Group to establish GSSP’s close to the Moscovian/Kasimovian and Kasimovian/ Gzhelian boundaries (31. July – 01. August 2006), Guidebook. – Berichte der Geologischen Bundesanstalt Wien, 70, 57 pp., Wien. Plate 3 / Tabla 3 Fusulinoidean assemblage of Rigelj beds. All figures are 10x magnified. Fuzulinoidejna združba rigeljskih plasti. Vse slike so 10x pove~ane. Fig. 1. (Sl. 1.) Quasifusulina tenuissima (Schellwien, 1898), axial section (osni presek), 519_04_abc, section (profil) R1/Rigelj beds(rigeljske plasti). Fig. 2. (Sl. 2.) Pseudochusenella sp., axial section (osni presek), 519_27_a, section (profil) R1/Rigelj beds (rigeljske plasti). Fig. 3. (Sl. 3.) Sphaeroschwagerina cf. asiatica (Miklucho-Maklay, 1949), axial section (osni presek), 519_16_a, section (profil) R1/Rigelj beds (rigeljske plasti). Fig. 4. (Sl. 4.) Dutkevitchia cf. splendida (Bensh, 1962), axial section (osni presek), 201_II_05_b1, section (profil) Č1/Rigelj beds (rigeljske plasti). Fig. 5. Western slope of Vratni vrh above the Dovžanova soteska with a broad ridge of reddish limestone and Ku{pegar rocky pyramids. Sl. 5. Zahodno pobo~je Vratnega vrha nad Dovžanovo sotesko s {irokim hrbtom rožnatega apnenca in Ku{pegarjevimi turni. Fig. 6. Micritic algal core microfacies. Algal biomicrite (boundstone). Unbroken thalii of Anthracoporella spectabilis in growth position and intermediate voids are filled with micrite, peloids and spar cement (section ZD 1/Auernig Formation). Sl. 6. Mikrofacies mikritnega algnega jedra. Algni biomikrit tipa boundstone. Nepo{kodovane taluse Anthracoporelle spectabilis v življenjskem položaju in prostore med njimi zapolnjujejo mikrit, peloidi in sparitni cement (profil ZD 1/auerni{ka formacija). Fig. 7. Algal wackestone. Archaeolithophyllum missouriense (in the upper right corner) and crusts of A. lamellosum, accompanied by Tubiphytes and encrusting foraminifers (in the centre) in micritic matrix. Other bioclasts are smaller foraminifers (Bradyina in the upper centre), echinoderm fragments and sponge spicules (section ZD 1/Auernig Formation). Sl. 7. Algni apnenec tipa wackestone. Archaeolithophyllum missouriense (v desnem zgornjem kotu) in skorje A. lamellosum, skupaj s tubifiti in sesilnimi foraminiferami (v sredini) v mikritni osnovi. Drugi bioklasti so {e manj{e foraminifere (v sredini zgoraj Bradyina), fragmenti ehinodermov in spikule spongij (profil ZD 1/auerni{ka formacija). Depositional environment of Upper Carboniferous – Lower Permian beds in the Karavanke ... 259 260 Matev` Novak Frey, R. W. 1990. Trace fossils and hum-mocky cross-stratification, Upper Cretaceous of Utah. – Palaios, 5, 203–218. Geyer, G. 1895: Über die marinen Aequiva-lente der Permformation zwischen dem Gailthal und dem Canalthal in Kärnten. – Verh. der k. k. geol. Reichsanstalt, 1895, 392–413, Wien. Heritsch, F. 1933: Rugose Korallen aus dem Trogkofelkalk der Karawanken und der Karnischen Alpen. – Prirod. Razprave, 2, 42–55, Ljubljana. Heritsch, F. 1938: Die stratigraphische Stellung des Trogkofelkalkes. – N. Jb. Min. etc., 79, Abt. B, 63–186, Stuttgart. Heritsch, F. 1939: Karbon und Perm in den Südalpen und in Südosteuropa. – Geol. Rundschau, 30/5, 529–588, Stuttgart. Heritsch, F., Kahler, F. & Metz, K. 1934: Die Schichtfolge von Oberkarbon und Unterperm. In: Heritsch, F. , ed.: Die Stratigraphie von Oberkarbon und Perm in den Karnischen Alpen. – Mitt. geol. Ges., 26, 163–180, Wien. Holzer, H. L. & Ramov{, A. 1979: Neue rugose Korallen aus dem Unterperm der Karawanken. – Geologija, 22/1, 1–20, Ljubljana. Joachimski, M. M., von Bitter, P. H. & Buggisch, W. 2006: Constraints on Pennsyl-vanian glacioeustatic sea-level changes using oxygen isotopes of conodont apatite. – Geology, 34/4, 277–280, Geological Society of America. Jurkov{ek, B. 1987: Tolma~ lista Beljak in Ponteba Osnovne geolo{ke karte SFRJ 1 : 100.000. – Zvezni geolo{ki zavod, 58 pp., Beograd. Kahler, F. 1939: Verbreitung und Lebensdauer der Fusuliniden-Gattung Pseudoschwage-rina und Paraschwagerina und deren Bedeutung für die Grenze Karbon/Perm. – Senckenbergiana, 21 (3/4), 169–215, Frankfurt/Main. Kahler, F. 1942: Beiträge zur Kenntnis der Fusuliniden der Ostalpen: Lebensraum und Lebensweise der Fusuliniden. – Palaeontographica, 94/Abt. A, 1–29, Stuttgart. Kahler, F. 1947: Die Oberkarbon-Permschichten der Karnischen Alpen und ihre Beziehungen zu Südosteuropa und Asien. – Carinthia II, 136/56, 59–76, Klagenfurt. Kahler, F. 1955: Entwicklungsräume und Wanderwege der Fusulinen im Eurasiatischen Kontinent. – Geologie, 4, 179–188, Berlin. Plate 4 / Tabla 4 Fig. 1. Algal mound of the biohermal configuration above the Ku{pegar farm (section ZD 1/Auernig Formation). Massive algal core overlained by the flanking, crestal and capping beds. Sl. 1. Algna kopa s konfiguracijo bioherme nad kmetijo Ku{pegar (profil ZD 1/auerni{ka formacija). V sredini je masivno algno jedro, ki ga prekrivajo bo~ne, temenske in krovne plasti. Fig. 2. Microfacies of the bedded intermound limestone. Bioclastic packstone with fusulinoidean foraminifers, bryozoans and algal fragments as predominant bioclasts. In the micritic matrix there are also gastropods, echinoderm fragments, ostracods and smaller foraminifers (section ZD 1/Auernig Formation). Sl. 2. Mikrofacies plastnatega apnenca med kopami. Bioklasti~ni apnenec tipa packstone s fuzulinidnimi foraminiferami, briozoji in algnimi fragmenti kot prevladujo~imi bioklasti. Poleg teh so v mikritnem vezivu {e polži, fragmenti ehinodermov, ostrakodi in manj{e foraminifere (profil ZD 1/auerni{ka formacija). Fig. 3. Algal mound of the biostromal configuration above the Ku{pegar farm (section ZD 2/Auernig Formation). Between the underlying and overlying thick-bedded limestone local algal accumulations occur. Sl. 3. Algna kopa s konfiguracijo biostrome nad kmetijo Ku{pegar (profil ZD 2/auerni{ka formacija). V sredini so lokalna nakopi~enja alg, v talnini in krovnini pa debeloplastnat apnenec. Fig. 4. Algal boundstone. Recrystallized thalli of phylloid algae are locally encrusted by Tubiphytes. Voids in the peloidal micritic matrix are filled by spar cement. Broken thalli indicate in situ brecciation (section ZD 2/Auernig Formation). Sl. 4. Algni apnenec tipa boundstone. Rekristalizirani talusi filoidnih alg so ponekod obra{~eni s tubifiti. Osnova je peloidno-mikritna, vmesni prostori pa so zapolnjeni s sparitnim cementom. Pretrgani talusi kažejo na in situ poru{itve (profil ZD 2/auerni{ka formacija). Figs. 5, 6. Ichnofossil association of the Cruziana ichnofacies (section K 4/Schulterkofel Formation): fig. 5 Thalassinoides, fig. 6 Zoophycos. Sl. 5, 6. Ihnofosilna združba Cruziana ihnofaciesa (profil K 4/Schulterkofelska formacija): sl. 5 Thalassinoides, sl. 6 Zoophycos. Figs. 7, 8. Ichnofossil association of the Skolithos ichnofacies (section K 4/Schulterkofel Formation): fig. 7 Arenicolites, fig. 8 Skolithos. Sl. 7, 8. Ihnofosilna združba Skolithos ihnofaciesa (profil K 4/Schulterkofelska formacija): sl. 7 Arenicolites, sl. 8 Skolithos. Depositional environment of Upper Carboniferous – Lower Permian beds in the Karavanke ... 261 262 Matev` Novak Plate 5 / Tabla 5 Fig. 1. Amalgamed beds of fine-grained quartz sandstones with hummocky cross-stratification by the Trži{ka Bistrica river-bed (Schulterkofel Formation). Sl. 1. Amalgamirane plasti drobnozrnatih kremenovih pe{~enjakov s kupolasto navzkrižno plastnatostjo ob strugi Trži{ke Bistrice (Schulterkofelska formacija). Fig. 2. Skeletal carbonate siltstone (tempestite) with sharp boundary between the two storm events and gradation of crinoid fragments, briozoans and fusulinoideans (Schulterkofel Formation). Sl. 2. Skeletni karbonatni meljevec (tempestit) z ostro mejo med dvema nevihtnima dogodkoma in gradacijo fragmentov krinoidov, briozojev in fuzulinoidej (schulterkofelska formacija). Fig. 3. Brachiopod shell lag interlayered in the hummocky cross-stratified sandstone beds (section K 4/Schulterkofel Formation). Sl. 3. Pola nakopi~enih brahiopodnih lupin med plastema kupolasto navzkrižno stratificiranega pe{~enjaka (profil K 4/schulterkofelska formacija). Fig. 4. Transgressive contact between the quartz conglomerate and siltstone in transitions to calcarenite and oolitic limestone (section K 1 /Schulterkofel Formation). Sl. 4. Transgresijski kontakt med kremenovim konglomeratom in meljevcem s prehodi v kalkarenit in oolitni apnenec (profil K 1 /schulterkofelska formacija). Fig. 5. Recrystallized brachiopod valves are thoroughly encrusted by the cystoporid bryozoans (of the genus Fistulipora) while the latter are encrusted by Tubiphytes obscurus. Bioclastic micritic wackestone of the upper part of the Dovžanova soteska Limestone (section DS 1/Dovžanova soteska Formation). 20x magnified. Sl. 5. Prekristaljene brahiopodne lupine so popolnoma inkrustrirane s cistoporidnimi briozoji (rodu Fistulipora), te pa obra{~a Tubiphytes obscurus. Bioklasti~ni mikritni apnenec tipa wackestone iz zgornjega dela grebenskega apnenca Dovžanove soteske (profil DS 1/dovžanovosote{ka formacija). Pove~ano 20x. Fig. 6. Meshed system of wide irregular vertical fissures (neptunian dikes) exhibit multiple phases of filling with marine sediment (section DS 1/Dovžanova soteska Formation). Sl. 6. Mrežast sistem {irokih nepravilnih vertikalnih razpok (neptunskih dajkov), zapolnjenih z morskimi sedimenti v ve~ fazah (profil DS 1/dovžanovosote{ka formacija). Fig. 7. Infillings of neptunian dike in the limestone of the reef-flank, where internal brecciation of the bioclastic packstone occured first. Opened fissures were filled with marine sediment with intraclasts, echinoderms and bryozoans (section DS 1/Dovžanova soteska Formation). Sl. 7. Zapolnitve neptunskega dajka v apnencu grebenskega pobo~ja, kjer je najprej pri{lo do notranje poru{itve bioklasti~nega apnenca tipa packstone. Odprte razpoke so bile zapolnjene z morskim sedimentom z intraklasti, ehinodermi in briozoji (profil DS 1/dovžanovosote{ka formacija). Fig. 8. Bioclastic packstone. Larger bioclasts are brachiopod and bivalve shells with micritic envelops and bioturbated by endolithic organisms. Rare fusulinoideans occur also. Smaller bioclasts are phylloid algae (predominantly Epimastopora alpina), Tubiphytes, and echinoderm and bryozoan fragments. Several generations of cements can be noticed. The first is the fibrous cement, suggesting phreatic marine environment. Corrosion vugs and intragranular pores were filled with red internal sediment in the first phase and in the second phase with sparite. Note geopetal fabric (“umbrella porosity”) in the reefal limestone, indicating that the limestone bed has been cut by a vertical fissure (on the left). The latter was filled in two phases. In the first one with dark marine sediment with bryozoans, echinoderms, trilobites and rare grains of quartz, muscovite and sandstone. The second generation of infilling is represented by similar marine sediment (section DS 1/Dovžanova soteska Formation). Sl. 8. Bioklasti~ni apnenec tipa packstone. Ve~ji bioklasti so brahiopodne in {kolj~ne lupine z mirkitnimi ovoji, bioturbirane z endolitskimi organizmi in redke fuzulinidne foraminifere. Manj{i bioklasti so filoidne alge (najve~ Epimastopora alpina), tubifiti ter fragmenti ehinodermov in briozojev. Opaznih je ve~ generacij cementa. Prvo generacijo tvori vlaknati cement, ki kaže na cementacijo v morski freati~ni coni. Korozijske votlinice in intragranularne pore so bile v prvi fazi zapolnjene z rde~im internim sedimentom, v drugi pa s sparitom. Jasno vidne geopetalne strukture (dežnikasta poroznost) v grebenskem apnencu kažejo na to, da je razpoka (levo) presekala plast vertikalno. Zapolnjena je bila v dveh fazah. V prvi se je odložil temnej{i morski sediment z briozoji, ehinodermi, trilobiti in redkimi zrni kremena, muskovita ter pe{~enjaka. V drugi fazi je odprto razpoko zapolnil podoben morski sediment (profil DS 1/dovžanovosote{ka formacija). Depositional environment of Upper Carboniferous – Lower Permian beds in the Karavanke ... 263 264 Matev` Novak Kahler, F. 1962: Stratigraphische Vergleiche im Karbon und Perm mit Hilfe der Fusuliniden. – Mitt. Geol. Ges., 54 (1961), 147–161, Wien. Kahler, F. & Kahler, G. 1937: Beiträge zur Kenntnis der Fusuliniden der Ostalpen: Die Pseudoschwagerinen der Grenzlandbänke und des oberen Pseudoschwagerinenkalkes. – Pala-eontographica, 87/Abt. A, 1–44, Stuttgart. Kahler, F. & Kahler, G. 1941: Beiträge zur Kenntnis der Fusuliniden der Ostalpen: Die Gattung Pseudoschwagerina und ihre Vertreter im Unteren Schwagerinenkalk und im Trogkofelkalk. – Palaeontographica, 92/Abt. A, 59–98, Stuttgart. Kahler, F. & Krainer, K. 1993: The Schulterkofel Section in the Carnic Alps, Austria: Im- plications for the Carboniferous-Permian Boundary. – Facies, 28, 257–276, Erlangen. Kochansky-Devidé, V. 1965: Die ältesten Fusulinidenschichten Sloweniens. – Geolo{ki vjesnik, 18/2 (1964), 333–336, Zagreb. Kochansky-Devidé, V. 1969: Triticitenkalk (Oberkarbon, Gshel-Stufe) bei Sol~ava, Ostkarawanken. – Geolo{ki vjesnik, 22 (1968), 99–104, Zagreb. Kochansky-Devidé, V. 1970: Permski mi-krofosili zahodnih Karavank. – Geologija, 13, 175–256, Ljubljana. Kochansky-Devidé, V. 1971: Mikrofosili in biostratigrafija zgornjega karbona v zahodnih Karavankah. – Razprave 4. razr. SAZU, 14/6, 205–211, Ljubljana. Plate 6 / Tabla 6 Fig. 1. Red thin-bedded bioclastic limestones with clayey-silt crusts representing omission surfaces of the hardground type (section DS 1/Dovžanova soteska Formation). Sl. 1. Rde~i tankoplastnati bioklasti~ni apnenci z glineno-meljastimi skorjami, ki kažejo na prekinitve sedimentacije in tvorbo povr{in tipa “hardground” (profil DS 1/dovžanovosote{ka formacija). Fig. 2. Gastropod shells on the hardground surface of the red limestone with silty crust (section DS 1/Dovžanova soteska Formation). Sl. 2. Hi{ice polžev na “hardground” povr{ini plasti rde~ega apnenca z meljasto skorjo (profil DS 1/ dovžanovosote{ka formacija). Fig. 3. Erosional unconformity between the bedded Dovžanova soteska Limestone and quartz conglomerate in the base of Born Formation (section DS 1). Sl. 3. Erozijski kontakt med plastnatim apnencem Dovžanove soteske in kremenovim konglomeratom v bazi bornove formacije (profil DS 1). Fig. 4. Oosparitic grainstone overlying transgressional contact of the Born Formation with the Dovžanova soteska Formation. Constituents of ooid nuclei are fusulinoideans, crinoid fragments, gastropods, Tubiphytes, shell fragments and intraclasts. The majority of nuclei was dissolved and replaced with coarse-grained spar, indicating fresh-water diagenesis. Ooids were obviously washed in biopelmicritic sediment in the lower-energy environment (section DS 1/Born Formation). Sl. 4. Oosparitni apnenec tipa grainstone nad transgresijskim kontaktom bornove z dovžanovosote{ko formacijo. Jedra ooidov tvorijo fuzulinoideje, krinoidi, polži, tubifiti, fragmenti lupin in intraklasti. Ve~ina jeder je bilo raztopljenih in zapolnjenih z zrnatim sparitom, kar kaže na sladkovodno diagenezo. Ooidi so bili naplavljeni v biopelmikritni sediment mirnej{ega okolja (profil DS 1/bornova formacija). Fig. 5. Biocalcarenitic limestone (grainstone). Among bioclasts algae (Neoanchicodium, Gyroporella), gastropods, echinoderms, fusulinoideans and Tubiphytes predominate. Vadose zone cementation is indicated by the geopetal textures, such as stalactitic fibrous cement and “umbrella porosity” (section DS 2/Born Formation). Sl. 5. Biokalkarenit tipa grainstone. Med bioklasti prevladujejo alge (Neoanchicodium, Gyroporella), gastropodi, ehinodermi, fuzulinoideje in tubifiti. Na cementacijo v vadozni coni kažejo geopetalne strukture v obliki stalaktiti~nega vlaknatega cementa in dežnikaste poroznosti (profil DS 2/bornova formacija). Fig. 6. Intensely bioturbated bioclastic mud- to bindstone. Bioturbation burrows were filled with spar. Stacked phylloid algae binded micritic sediment. Stylolitic seams indicate later compaction (section TB 1/Born Formation). Sl. 6. Mo~no bioturbiran bioklasti~ni apnenec tipa mud- do bindstone. Bioturbacijski rovi so bili zapolnjeni s sparitom. Nakopi~ene filoidne alge so vezale mikritni sediment. Stilolitski kontakti kažejo na kasnej{o kompakcijo (profil TB 1/bornova formacija). Fig. 7. Nodular limestone beds with clayshale intercalations in the Trži{ka Bistrica river-bed exhibit pressure dissolution effects and calcitic vein systems (section TB 1/Born Formation). Sl. 7. Gomoljaste plasti apnenca z interkalacijami glinavca v strugi Trži{ke Bistrice kažejo posledice raztapljanja pod pritiskom in sisteme kalcitnih žil (profil TB 1/bornova formacija). Depositional environment of Upper Carboniferous – Lower Permian beds in the Karavanke ... 265 266 Matev` Novak Kochansky-Devidé, V. & Ramov{, A. 1966: Ost- und Südalpen. In: Neuergebnisse aus dem Zgornjekarbonski mikrofosili in stratigraf- Paläozoikum der Ost- und Südalpen. – Jb. Geol. ski razvoj v zahodnih Karavankah. – Razprave B.–A., 135/1, 99–193, Wien. 4. razr. SAZU, 9, 299–333, Ljubljana. Krainer, K. 1995a: Kurzer Bericht über sedi-Krainer, K. 1992: Fazies, Sedimentation- mentologisch-stratigraphische Untersuchungen sprozesse und Paläogeographie im Karbon der im Jungpaläozoikum (Auernig- und Rattendorfer Plate 7 / Tabla 7 Fig. 1. Quartzose paraconglomerate with hybrid siliciclastic-carbonate arenitic matrix. The carbonate of the matrix is bio-intramicritic packstone with fusulinoideans, crinoids, algae, Tubiphytes and smaller foraminifers. Spar cement around quartz pebbles and larger bioclasts indicate pressure-shadow cementation during compaction (section TB 1/Born Formation). Sl. 1. Kremenov parakonglomerat s hibridno karbonatno-siliciklasti~no arenitno osnovo. Karbonat osnove je bio-intramikrit tipa packstone s fuzulinoidejami, krinoidi, algami, tubifiti in manj{imi foraminiferami. Obrobni sparitni cement ob prodnikih in ve~jih bioklastih kaže znake cementacije v senci pritiskov pri kompakciji (profil TB 1/bornova formacija). Fig. 2. Beds of pebbly limestone (paraconglomerate) of debris-flow origin overlying sandstone by the Trži{ka Bistrica river-bed (section TB 1/Born Formation). Sl. 2. Plasti prodnatega apnenca (parakonglomerata), odloženega z debritnim tokom na pe{~enjaku ob strugi Trži{ke Bistrice (profil TB 1/bornova formacija). Fig. 3. Alternation of biocalcarenite and sandy limestone indicates periodic influx of terrigenous sediment (section DS 2/Born Formation). Sl. 3. Menjavanje biokalkarenita in pe{~enega apnenca kažejo na periodi~en vnos terigenega sedimenta (profil DS 2/Bornova formacija). Fig. 4. Fusulinid packstone. Tests of fusulinoideans (Darvasites spp., “Triticites sp.”) with slightly abraded and micritized peripheries suggest pre-depositional transport. Matrix is formed of peloidal micrite and spar cement. Fusulinoideans, thriving in high-energy environments, were transported into the lower-energy setting (section DS 2/Born Formation). Sl. 4. Fuzulinski apnenec tipa packstone. Hi{ice fuzulinoidej (Darvasites spp., “Triticites sp.”) so na obodih rahlo abradirane in mikritizirane, kar kaže na transport pred odložitvijo. Vezivo je iz peloidnega mikrita in sparitnega cementa. Fuzulinoideje, ki živijo v visokoenergijskih okoljih, so bile transportirane v nižjeenergijsko okolje (profil DS 2/bornova formacija). Fig. 5. Biosparitic grainstone containing high-diversity of dasyclad (Mizzia, Epimastopora, Neoanchicodium) and other algae (Ortonella morikawai in the middle of the right edge). Other bioclasts are fusulinoideans and smaller foraminifers, echinoderms and fragments of brachiopod and gastropod shells. Abiotic components are aggregate grains and peloids (Rigelj beds). Sl. 5. Biosparitni apnenec tipa grainstone z raznoliko floro dazikladacejnih (Mizzia, Epimastopora, Neoanchicodium) in drugih alg (ob desnem robu na sredini Ortonella morikawai). Drugi bioklasti so fuzulinidne in manj{e foraminifere, ehinodermi ter fragmenti brahiopodnih in gastropodnih lupin, ostalo pa so agregatna zrna in peloidi (rigeljske plasti). Fig. 6. Fusulinid siltstone. An interesting monospecific suite of elongated fusulinoideans (Quasifusulina tenuissima) has been redeposited into the quartzitic silty sediment. Imbrication of tests suggests current transport mechanism (section R 1/Rigelj beds). Sl. 6. Fuzulinski meljevec. Zanimiva monospecifi~na združba podolgovatih hi{ic fuzulinidnih foraminifer vrste Quasifusulina tenuissima je bila transportirana v kremenov meljast sediment. Imbrikacija hi{ic kaže na tokovni transport (profil R 1/rigeljske plasti). Fig. 7. Oncobiosparitic grainstone. Osagia-type oncoids are constructed of calcitic microtubes of encrusting foraminifers (Hedraites, Apterinella) and algae Girvanella and Claracrusta, that overgrow other skeletal grains. Highly diverse bioclasts are represented by fusulinoideans, palaeotextularians, brachiopods, echinoderms, bivalves, gastropods, ostracods, dasyclad (Epimastopora, Globuliferoporella), and codiacean (Neoanchicodium) algae. This type of limestone was deposited in restricted shelf lagoons but also in high-energy environment on the open shelf edges (section R 1/Rigelj beds). Sl. 7. Onkobiosparitni apnenec tipa grainstone. Onkoide tipa Osagia tvorijo kalcitne cevke inkrustrirajo~ih foraminifer (Hedraites, Apterinella) in alge Girvanella ter Claracrusta, ki obra{~ajo druga skeletna zrna. Pestra združba bioklastov je zastopana s fuzulinoidejami, paleotekstularijami, brahiopodi, ehinodermi, {koljkami, polži, ostrakodi in dazikladacejnimi (Epimastopora, Globuliferoporella) in kodiacejnimi (Neoanchicodium) algami. Ta tip apnenca je nastajal v za{~itenih {elfnih lagunah in tudi visokoenergijskem okolju na robovih odprtih {elfnih platform (profil R 1/rigeljske plasti). Depositional environment of Upper Carboniferous – Lower Permian beds in the Karavanke ... 267 268 Matev` Novak Schichtgruppe) der Karnischen Alpen. – Jb. Geol. B.–A., 138/4, 687–690, Wien. Krainer, K. 1995b: Anthracoporella Mounds in the Late Carboniferous Auernig Group, Carnic Alps (Austria). – Facies, 32, 195–214, Erlangen. Krainer, K. & Davydov, V. 1998: Facies and biostratigraphy of the Late Carboniferous/ Early Permian sedimentary sequence in the Car-nic Alps (Austria/Italy). In: Crasquin-Soleau, S., Izart, A. Vaslet, D. & De Wever, P. (eds.), Peri-Tethys: stratigraphic correlations 2. – Geodiver-sitas, 20/4, 643–662, Paris. Leppig, U., Forke, H. C., Montenari, M. & Fohrer, B. 2005: A three- and two-dimensional documentation of structural elements in schwa-gerinids (superfamily Fusulinoidea) exemplified by silicified material from the Upper Carboniferous of the Carnic Alps (Austria/Italy): a comparison with verbeekinoideans and alveolinids. – Facies, 51, 541–553, Springer-Verlag. Massari, F. & Venturini, C. 1990: The significance of the Auernig Group cyclicity. In: Venturini, C. (ed.), Field workshop on Carboniferous to Permian sequence of the Pramollo-Nassfeld Basin (Carnic Alps) (September 2–8, 1990), Guidebook. – Arti Grafiche Friulani, 81–86, Udine. McIlreath, I., A. & James, N. P. 1984: Carbonate slopes. In: Walker, R. G. (ed.), Facies Models (2nd ed.), 317 pp., Geological Association of Canada, Ontario. Novak, M. 2007: Biostratigrafija mlaj{ega paleozoika Dovžanove soteske. Ph. D. Thessis – Fac. for nat. sci. and engineering, University of Ljubljana, 159 pp., Ljubljana. Novak, M. & Forke, H. C. 2005: Updated fusulinid biostratigraphy of Late Paleozoic rocks from the Karavanke Mts. (Slovenia). In: Hubmann, B. & Piller, W. E. (eds.), 75. Jahrestagung der Paläontologischen Gesellschaft : Graz, 27. Aug. – 2. Sept. 2005 : Beitragskurzfassungen. – Berichte des Institutes für Erdwissenschaften Karl-Franzens-Universität Graz, 10, 90–91, Institut für Erdwissenschaften, Bereich Geologie und Paläntologie, Karl-Franzens-Universität, Graz. Pemberton, S. G. & MacEachern, J. A. 1997: The ichnological signature of storm deposits: the use of trace fossils in event stratigraphy. In: Brett, C. E. (ed.), Paleontological Event Horizons: Ecological and Evolutionary Implications. – Columbia University Press, New York, 73–109. Pomar, L. 2001: Types of carbonate platforms: a genetic approach. – Basin Research, 13, 313–334. Ramov{, A. 1963: Biostratigraphie der Trogkofel-Stufe in Jugoslawien. – N. Jb. Geol. Paläont. Mh., 7, 382–388, Stuttgart. Ramov{, A. 1966: Geolo{ki razvoj zahodnih Karavank. – Arhiv Oddelka za geologijo Nar.-mat. fakultete, Ljubljana. Ramov{, A. 1968: Biostratigraphie der klastischen Entwicklung der Trogkofelstufe in den Karawanken und Nachbargebieten. – N. Jb. Geol. Paläont., Abh. 131/1, 72–77, Stuttgart. Read, J. F. 1985: Carbonate Platform Facies Models. – AAPG Bulletin, 69/1, 1–21. Reading, H. G. (ed.), 1996: Sedimentary environments: processes, facies and stratigraphy (3rd ed.). – 704 pp., Blackwell Science. Rotar, T. 1999: Sedimentno-petrolo{ke raziskave trbi{ke bre~e med Mirco nad Jeseni- cami in Jeseni{kim Rovtom. Diplomsko delo. – Naravoslovnotehni{ka fakulteta v Ljubljani, Oddelek za geologijo, 75 pp., Ljubljana. Samankassou, E. 1997: Palaeontological response to sea-level change: distribution of fauna and flora in cyclothems from the Lower Pseu-soschwagerina limestone (latest Carboniferous, Carnic Alps, Austria). – Geobios, 30/6, 785–796, Villeurbanne. Samankassou, E. 2003: Upper Carboniferous-Lower Permian buildups of the Carnic Alps, Austria–Italy. In: Ahr, W. M., Harris, P. M., Morgan, W. A. & Somerville, I. D. (eds.), Permo-Carboniferous carbonate platforms and reefs. – SEPM Special Publication, 78 & AAPG Memoir, 83 (2004), 201–217. Schellwien, E. 1898a: Bericht über die Ergebnisse einer Reise in die karnischen Alpen und die Karawanken. – Sitzungsberichte der k. preuss. Akademie der Wissenschaften, Phys.-math. Kl., 693–700, Berlin. Schellwien, E. 1898b: Die Fauna des karnischen Fusulinenkalkes, Teil II: Foraminifera. – Palaeontographica, 44, 237–282, Stuttgart. Schellwien, E. 1900: Die Fauna der Trogkofelschichten in den Karnischen Alpen und den Karawanken. – Abh. Geol. R.–A., 16/1, 1–122, Wien. Schönlaub, H. P. 1992: Stratigraphy, Bio-geography, and Paleoclimatology of the Alpine Paleozoic and its Implications for Plate Movements. – Jb. Geol. B–A., 135/1, 381–418, Wien. Selli, R. 1963: Schema geologico delle Alpi Carniche e Giulie occidentali. – Giorn. Geol., 30 (2), 1–121, Bologna. Soreghan, G. S. & Giles, K. A. 1999: Amplitudes of Late Pennsylvanian glacioeustasy. – Geology, 27/3, 255–258, Geological Society of America. Stanton, R. J., Jr. & Pray, L. C. 2004: Skeletal-carbonate neptunian dikes of the Capi-tanian Reef: Permian, Guadalupe Mountains, Texas, U.S.A.. – Journal of Sedimentary Research, 74/6, 805–816, SEPM (Society for Sedimentary Geology), Boulder/Colorado. Teller, F. 1903: Exkursion in das Feistritztal bei Neumarktl in Oberkrain. – IX. Internat. Geol. Kongress, Führer geol. Exkurs. Nr. XI, 1–27, Wien. Tinker, S. W. 1998: Shelf-to-basin facies distribution and sequence stratigraphy of a steep-rimmed carbonate margin: Capitan depo-sitional system, McKittrick Canyon, New Mexico and Texas. – Journal of Sedimentary Research, 68, 1146–1174. Toomey, D. F. , Wilson, J. L. & Rezak, R. 1977: Evolution of Yucca Mound complex, Late Pennsylvanian phylloid-algal buildup, Sacramento Mountains, New Mexico. – AAPG Bulletin, 61/12, 2115–2133. Tucker, M. E. 2001: Sedimentary Petrology: an introduction to the origin of sedimentary rocks (3rd ed). – Blackwell Science Ltd., 262 pp., Oxford. Venturini, C. (ed.), 1990: Field workshop on Carboniferous to Permian sequence of the Pramollo-Nassfeld Basin (Carnic Alps) (September 2–8, 1990), Guidebook. – Arti Grafiche Friu-lani, 159 pp, Udine. Wilson, J. L. 1975: Carbonate facies in geologic history. – 471 pp., Springer-Verlag.