The fate of Hg in terrestrial isopod *Porcellio scaber* and its environment Nataša Nolde¹, Vesna Jereb¹, Damjana Drobne², Milena Horvat¹ ¹Department of Environmental Sciences, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia; E-mail: natasa.nolde@ijs.si ²Department of Biology, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenija **Abstract:** In our work reduction and methylation of inorganic mercury in the *Porcellio scaber* (Isopoda, Crustacea) and its environment were studied using radiotracer ²⁰³Hg. Total mercury (T²⁰³Hg) and monomethylmercury (Me²⁰³Hg) in the whole animals, gut, digestive glands (hepatopancreas), food (hazelnut leaves) and excrement were measured in order to: (1) to obtain the distribution of T²⁰³Hg and Me²⁰³Hg in animals, (2) to investigate the origin of Me²⁰³Hg and the site of its accumulation, and finaly, (3) to assess the mass balance of mercury in our experimental system. After two weeks of the experiment majority of mercury in animals and their environment remained as inorganic ²⁰³Hg²⁺. The net formation of elemental mercury (203Hg) and Me203Hg was detected at much lower concentrations as ²⁰³Hg²⁺. Approximately 3'% of consumed mercury was assimilated by the animals and the majority of Hg was excreted by feaces. Approximately 20 % of T²⁰³Hg was detected in hepatopancreas, 55 % in gut and 25 % in residue of animal. About 25 % of Me²⁰³Hg was found in hepatopancreas, 15 % in gut and 65 % in animal residue. Concentrations of Me203Hg were higher on leaves and in faeces compared to the animals. Also, the amounts of Me²⁰³Hg found in animals were lower than expected. This suggests that demethylation of Me²⁰³Hg could prevail over mercury methylation in the digestive system of the animal. **Key words:** Mercury transformations, reduction, methylation, radiotracer ²⁰³Hg, *Porcellio scaber* # Introduction In the framework of studies on mercury biogeochemistry in contaminated and polluted sites due to past mercury mining in Slovenia a study on the uptake, distribution and transformation of mercury in terrestrial isopod *Porcellio scaber* (Isopoda, Crustacea) was initiated. In our work reduction and methylation of inorganic mercury in the *Porcellio scaber* and its environment was followed. For this purpose an experimental set up was build (Figure 1) where Hg uptake, distribu- tion, retention and transformation was followed using a ²⁰³Hg tracer. During experiment daily reduction of ²⁰³Hg²⁺ to ²⁰³Hg⁰ was measured. Elemental mercury was trapped on activated carbon traps and the radiotracer ²⁰³Hg⁰ was detected by gamma counting. In animals, animal organs, food (hazelnut leaves) and excrement ²⁰³Hg²⁺ and Me²⁰³Hg were measured. For Me²⁰³Hg and ²⁰³Hg²⁺ determination, a radiochemical method with specific separation of ²⁰³Hg²⁺-dithizonate and Me²⁰³Hg - dithizonate by thin layer chromatography described by Jereb et Al.^[1], and gamma counting was used. #### RESULTS AND DISCUSSION An the end of experiment majority of mercury in animals, their food and feaces remained as ²⁰³Hg²⁺. ²⁰³Hg⁰ and Me²⁰³Hg were detected at much lower amounts as ²⁰³Hg²⁺. Approximately 0.60 - 1.88 % of ${}^{203}\text{Hg}^{2+}$ added to the system reduced to 203Hg0 (Table 1). Results from daily reduction of $^{203}Hg^{2+}$ to $^{203}Hg^{0}$ from the experiment with animals showed that the reduction in the vessels containing leaves with 5 µg ²⁰³Hg²⁺/g dry weight was higher than reduction on leaves with 0,5 μ g ²⁰³Hg²⁺/g of ²⁰³Hg²⁺ (Figure 2), indicating that 203Hg0 formed as a function of initial concentration of ²⁰³Hg²⁺. Similar results were reported by Ludwicki^[2]. No differences in reduction of inorganic mercury between vessels containing animals and control vessels without animals were observed in 18 days, indicating that reduction of Figure 1. Experimental set up ²⁰³Hg²⁺due to bacteria in digestive system of animals (*Porcellio scaber*) was negligible and mercury was most probably reduced due to humidity in the experimental set up and microorganisms on the leaves and feaces. **Figure 2.** Daily reduction of $^{203}\text{Hg}^{2+}$ to $^{203}\text{Hg}^0$ under normal conditions, where animals were present. Concentrations of $^{203}\text{Hg}^{2+}$ were in two vessels $0.5~\mu\text{g}^{203}\text{Hg}^{2+}$ g dry weight of leaf and in other two vessels $5~\mu\text{g}^{203}\text{Hg}^{2+}$ /g dry weight of leaf. In the vessels marked with 0.5bl and 5bl were no animals and were used as controls. About 3 % of consumed T²⁰³Hg was assimilated by the animals, majority (60 to 100 %) of Hg was excreted by feaces (Table 1). The assimilated mercury was distributed in the animal as follows: hepatopancreas 12.2 to 36.8 %, the gut about 27.0 to 75.0 % and in the residue of the animals about 6.5 to 39.9 % of T²⁰³Hg. For MeHg the following distribution was abserved: 25 % of Me²⁰³Hg was detected in hepatopancreas, 15 % in gut and 65 % in residue (Figure 3). The percentages of Me²⁰³Hg compared to T²⁰³Hg in organs were very low, the highest, about 5 %, in animals residue (Figure 4). The results showed that the animal accumulated Me²⁰³Hg in some selective parts, which is in agreement with the data from the literature where accumulation of MeHg in nevtral nerve cord and gills in grass shrimp (Palaemonetes pugio)[6] was found. **Table 1.** Mass balance of $T^{203}Hg$ in ng. O - amount of $T^{203}Hg$ (ng) offered on a food, C - amount of consumed $T^{203}Hg$ (ng) by animals, U - amount of unconsumed $T^{203}Hg$ (ng), F - amount of $T^{203}Hg$ in the feaces, % F - % of feaces production with regard to consumed food , A - amount of $T^{203}Hg$ assimilation from consumed food, % A - % of $T^{203}Hg$ assimilated from consumed food, R - amount of reduced $T^{203}Hg^{2+}$ to $T^{203}Hg^{0}$, % R...% of $T^{203}Hg^{0}$ in the system. Factor (F+A)/C indicates mass balance of $T^{203}Hg$ in animal. Factor (U+F+A+R)/O indicates mass balance of $T^{203}Hg$ in experimental system. | Conc. Hg
in leaves
(µg/g) | 0 | С | U | F | %
F | A | %
A | R
²⁰³ Hg ⁰ | %
R | (F+A)
/C | (U+F+A
+R)/ O | |---------------------------------|------|-----|------|-----|--------|------|--------|-------------------------------------|--------|-------------|------------------| | 0,5 | 153 | 103 | 50 | 97 | 94.2 | 2.5 | 2.43 | 0.92 | 0.60 | 0.97 | 0.98 | | 0,5 | 152 | 66 | 86 | 66 | 100 | 2.31 | 3.50 | 1.22 | 0.80 | 1.04 | 1.02 | | 5 | 1524 | 432 | 1092 | 248 | 57.4 | 13.3 | 3.08 | 28.6 | 1.88 | 0.60 | 0.91 | | 5 | 1514 | 496 | 1018 | 311 | 62.7 | 15.6 | 3.14 | 13.6 | 0.90 | 0.66 | 0.90 | Figure 3. Distribution of $T^{203}Hg$ and $Me^{203}Hg$ in the animals exposed to $5 \mu g^{203}Hg^{2+}/g$ of dry weight of leaf. **Figure 5.** T^{203} Hg and Me^{203} Hg concentrations in composite samples of animal organs (n1=8, n2=9) and individual samples of leaves (n=6) and excrement (n=4) after acid digestion and extraction in Dz-tl. Anials were exposed to $5\mu g^{203}$ Hg²⁺/g dry weight of leaf. For calculations of T^{203} Hg and Me^{203} Hg concentrations in organs liophylized mass 1,23 mg for hepatopancreas, 0,98 mg for gut and 12 mg for residue were used. **Figure 4.** % Me²⁰³Hg regarding T²⁰³Hg calculated from TLC (Thin Layer Chromatography) in different organs of animals, feaces and food (hazelnut leaves). Precise values of T²⁰³Hg and Me²⁰³Hg concentrations in hepatopancreas, gut and residue are shown in Figure 5. Generaly, concentrations of Me²⁰³Hg in organs were very low, compared to T²⁰³Hg concentrations. Concentrations of Me²⁰³Hg were higher in leaves and feaces compared to the animals (Figure 5), which shaws that the methylation already occurs on hazelnut leaves. With regard to quantity of Me²⁰³Hg in consumed food and knowing that greater part (95 %^[5], 70-80 %^[6]) of consumed MeHg should be absorbed in the gut of the animal, our experimental animals assimilated relatively low amounts of Me²⁰³Hg (app. 4 %). This sug- gested that demethylation of Me²⁰³Hg could prevail over mercury methylation in the digestive system of the animal, leading to increased excretion of ingested mercury. Loss of T²⁰³Hg from mass balance of system and animal were detected by higher concentrations of ²⁰³Hg²⁺on leaves (Table 1). Some additional experiment (*data not shown*), where Hg reduction was measured immediately after ²⁰³Hg²⁺ was aplied on leaves has shown that about 80 % of total reduced Hg formed during the first day of experiment. Therefore, most probably loss of Hg occured during leaves preparation (radiotracer aplication, dryig overnight), due to microbial reduction of inorganic mercury. #### **CONCLUSIONS** Our results have shown that ²⁰³Hg⁰ formed as a function of initial concentration of ²⁰³Hg²⁺, and that reduction of ²⁰³Hg²⁺due to bacteria in digestive system of *Porcellio scaber* was negligible compared to reduction in its environment. Based on consumed Me²⁰³Hg, relatively low amounts of Me²⁰³Hg in animals were found, therefore demethylation of Me²⁰³Hg could prevail over mercury methylation in the digestive system of the animal. Further experiments will therefore be needed with ¹⁴CH₃Hg in order to verify this hypothesis. In the future, transformation processes of mercury in feaces should be addressed as part of the experiment. ## Acknowledgements This work was supported by the Slovenian Ministry of Education, Science and Sport. ### REFERENCES - [11] JEREB, V., HORVAT, M., DROBNE, D., PIHLAR, B. (2003): Transformations of mercury in the terrestrial isopod *Porcellio scaber* (Crustacea); *The Science of the Total Environment* 304, pp. 269-284. - [2] LUDWICKI, J. K. (1990): In vitro Methylation and Demethylation of Mercury Compounds by the Intestinal Contents; *Bull. Environ. Contam. Toxicol.* 44, pp. 357-362. - [3] DROBNE, D., HOPKIN, S. P. (1995): The toxicity of zink to terrestrial isopods in a »standard« laboratory test; *Ecotoxcol Environ Saf* 31, pp. 1-6. - [4] DROBNE, D., HOPKIN, S. P. (1994): Ecotoxicological Laboratory Test for Assessing the Effects of Chemicals on Terrestrial Isopods; *Bull. Environ. Contam. Toxicol.* 53, pp. 390-397. - [5] WHO-FAO-IAEA (1996): Trace Elements in Human Nutrition and Health; World Health Organisation (WHO), Geneva, pp. 195-209. - [6] BOENING, D. W. (2000): Ecological effects, transport, and fate of mercury: a general review; Chemosphere 40, pp. 1335-1351.