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Abstract
To implement sound air quality policies, regulatory 
agencies require tools to evaluate the outcomes and 
costs associated with various emission reduction strat-
egies. The applicability of such tools can also remain 
uncertain. It is furthermore known that source-recep-
tor models cannot be implemented through determin-
istic modeling. The article presents an attempt of PM10 
emission modeling carried close to a steel production 
area with the genetic programming and artificial neural 
network method. The daily PM10 concentrations, daily 
rolling mill and steel plant production, meteorological 
data (wind speed and direction – hourly average, air 
temperature – hourly average and rainfall – daily aver-
age), weekday and month number were used for mode-
ling during a monitoring campaign of almost half a year 
(23. 6. 2010 to 12. 12. 2010). The genetic programming 
modeling results show superior agreement with meas-
ured daily PM10 concentrations.
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Izvleček
Za implementacijo politike kakovosti zraka so od regu-
lativnih agencij zahtevana orodja za ovrednotenje re-
zultatov in stroškov, povezanih s strategijami za zmanj-
šanje emisij. Uporaba takšnih orodij ostaja negotova. 
Velja, da za modele tipa vir-prejemnik težko uporablja-
mo deterministično modeliranje. V članku je predsta-
vljen poskus modeliranja emisij delcev PM10 v bližini 
jeklarne z genetskim programiranjem in nevronskimi 
mrežami. Pri skoraj polletni merilni kampanji (od 23. 
6. 2010 do 12. 12. 2010) smo zbirali podatke o dnev-
nih koncentracijah delcev PM10, dnevnih proizvodnjah 
valjarne in jeklarne, meteorološke podatke (urno pov-
prečje smeri in hitrosti vetra ter temperature, dnevne 
padavine), o zaporednem številu dni v tednu in mesecu 
v letu. Rezultati, dobljeni z genetskim programiranjem, 
kažejo izjemno dobro ujemanje z izmerjenimi koncen-
tracijami PM10.

Ključne besede: železarna, koncentracije PM 10, mo-
deliranje, genetsko programiranje, nevronske mreže
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Introduction

Particulate matter (PM) pollution is, especial-
ly in residential areas near industrial areas, a 
problem of great concern. This is not only be-
cause of the adverse health effects but also be-
cause of reduced visibility. [1–3]

To reduce PM levels in the air a deep knowl-
edge of the contributing sources, background 
emissions, the influence of the meteorological 
conditions, as well as of PM10 formation and 
transport processes is needed.
However, current state-of-the-art PM10 mod-
eling does not allow us to quantitatively model 
the whole range of emissions behavior, which 
is why the dispersion modeling is thus increas-
ingly connected with intelligent algorithms 
such as artificial neural networks [4–9] and evo-
lutionary computation. [9]

The objective of this work was to model PM10 
emissions close to a steel plant area in Slovenia 
by means of a genetic programming and arti-
ficial network method. Genetic programming 
and neural network method have been proven 
to be an effective optimization tool for multic-
riterial and multiparametrical problems. [10–13] 
In paper is organized that the basic terms and 
experimental setup are stated in the beginning. 
Afterwards the idea of the proposed concept is 
presented. In the conclusion the main contri-
butions of the performed research are summa-
rized, while guidelines for further research are 
provided.

Experimental setup

Sampling sites
Figure 1 shows the locations of the sampling 
sites, rolling mill, steel plant and residential ar-
eas. Influencing PM10 sources are rolling mill 
and steel plant, combustion and non-combus-
tion traffic and urban background.

Sampling
Samples for this study were collected between 
23. 6. 2010 and 12. 12. 2010. Sampling was per-
formed 1.5 m above the ground. PM10 samples 
were collected for 24 h on Mondays using low-
volume samplers equipped with EPA-equiva-

lent size-selective inlets. Particles with diam-
eter 10 μm (PM10) were collected on cellulose 
esters membranes with high collection efficien-
cies (99 %). In total 172 PM10 samples for each 
sampling site were available.
Before and after the samplings were made the 
filters were exposed for 24–48 h on open but 
dust-protected sieve-trays in an air-conditioned 
weighing room. The gravimetric determination 
of the mass was carried out using an analyti-
cal microbalance (precision 1 μg) located in the 
weighing room. In order to remove static elec-
tricity from filters the balance is equipped with 
a special kit in a Faraday shield.
The limit value of the EU directive – i.e. a daily 
mean PM10 concentration – is 50 μg/m3. At the 
sampling site 1 and 2 the measured PM10 con-
centration exceeded limit value four times and 
five times, respectively.
Figure 2 shows the measured PM10 concentra-
tions during the study period for the sampling 
sites.

Meteorological data
Hourly average air temperature, wind speed 
and direction and daily rainfall data were made 
available to the authors by the Slovenian Envi-
ronment Agency.
Figure 3 shows the hourly average tempera-
tures during the study period.

Figure 1: Topographic view of the study area.

Figure 2: The measured PM10 concentrations during the 
study period for the sampling sites.
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Figure 4 shows the frequency distribution of 
wind direction and wind speed obtained based 
on wind direction and speed data measured 
every hour during the study period.

Figure 5 shows the daily rainfall during the pe-
riod of the study.

The hourly data based on electric arc and roll-
ing mill production was collected during the 
study period. During the study period, the elec-
tric arc furnace was stopped for 28 465 min 
and the rolling mill was stopped for 8 213 min. 
Figure 6 shows the minutes of stopping per day 
for the electric arc furnace and rolling mill dur-
ing the study period.

Genetic programming modeling
Genetic programming is probably the most 
general evolutionary optimization method. [14] 
The organisms that undergo adaptation are in 
fact mathematical expressions (models) for the 
PM10 concentrations prediction in the present 
work. The concentration prediction is based 
on the available function genes (i.e., basic ar-
ithmetical functions) and terminal genes (i.e., 
independent input parameters, and random 
floating-point constants). In the present case 
the models consist of the following function 
genes: addition (+), subtraction (-), multiplica-
tion (*) and division (/), and the following ter-
minal genes: weekday (WEEKDAY) and month 
number (MONTH), wind speed [m/s] (SPEED), 
wind direction [°] (DIRECTION), air tempera-
ture [°C] (TEMP), rainfall [ml] (RAIN), electro 
arc furnace efficiency [min/hour] (EAF), rolling 
mill efficiency [min/hour] (ROLLING). In order 
to ascertain the influence of seasons and traffic 
during workday hours the weekday and month 
number were also added as terminal genes. 
One of the randomly generated mathematical 
models 

 (1)

is schematically represented in Figure 7 as a 
program tree with included function genes 
(*, + ,/) and terminal genes (TEMP, RAIN, EAF 
and a real number constants 2 and 5.1).
Random computer programs of various forms 
and lengths are generated by means of the se-
lected genes at the beginning of the simulated 
evolution. The varying of the computer pro-
grams is performed by means of the genetic 
operations during several iterations, known as 
generations. After the completion of the varia-
tion of the computer programs a new genera-

Figure 3: The hourly average temperatures during the study 
period.

Figure 4: Frequency distribution of wind direction and wind 
speed.

Figure 5: Daily rainfall during the study period.

Figure 6: Minutes of stopping per day for the electric arc 
furnace and rolling mill during the study period.
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tion is obtained. Each generation is compared 
with the experimental data. The process of 
changing and evaluating organisms is repeated 
until the termination criterion of the process is 
fulfilled. The maximum number of generations 
is chosen as a termination criterion in the pre-
sent algorithm.
The following evolutionary parameters were 
selected for the process of simulated evolu-
tions: 500 for the size of the population of or-
ganisms, 100 for the maximum number of gen-
erations, 0.4 for the reproduction probability, 
0.6 for the crossover probability, 6 for the maxi-
mum permissible depth in the creation of the 
population, 10 for the maximum permissible 
depth after the operation of crossover of two 
organisms, and 2 for the smallest permissible 
depth of organisms in generating new organ-
isms. Genetic operations of reproduction and 
crossover were used. For selection of organ-
isms the tournament method with tournament 
size 7 was used. 100 independent civilizations 
of mathematical models for prediction of the 
PM10 concentration were developed. The best 
evolution sequence of 100 generations was 
computed in 8 h and 41 min on 2.39 GHz pro-
cessor and 2 GB of RAM by an AutoLISP based 
in-house coded computer program.
The model fitness f has been defined as:

 (2)

where n is the size of sample data and, Pi is 
predicted PM10 concentration, Mi is measured 
PM10 concentration and N is the number of all 
cases when:

The limit value of the EU directive, i.e. a daily 
mean PM10 concentration, is 50 μg/m3. The 

number N tells us when the prediction is above 
that limit value, when in order to assure PM10 
concentration exceedance prediction by devel-
oped predictive model it should in fact be be-
low the limit, and also when prediction by de-
veloped predictive model should be above the 
limit.
The simulated evolution in one run of the ge-
netic programming system (out of 100) pro-
duced the following best model for prediction 
of PM10 concentration for sampling site 1 (cf.  
equation 3) with fitness of 1 019.95, number 
N = 0 and average deviation of 5.96 μg/m3.
The best evolutionary developed model (out 
of 100) for prediction of PM10 concentration 
for sampling site 1 (cf. equation 4) with fit-
ness of 11 124.67, number N = 1 (on the 30. 6. 
2010 the measured PM10 concentrations were 
53.6 μg/m3 and predicted 21.41 μg/m3), and 
average deviation of 6.54 μg/m3.
Figures 8 and 9 show measured and predicted 
PM10 concentrations for sampling sites 1 and 
2, respectively.

Artificial neural network modeling

Artificial neural networks consist of a large 
number of processing elements, called neurons 
that operate in parallel. Computing with neural 
networks is non-algorithmic. They are trained 
through examples rather than programmed by 
software. The Multi-Layer BP network is a su-
pervised, continuous valued, multi-input and 
multi-output feedforward multi-layer network 
that follows a gradient descent method. [14]

The gradient descent method alters the weight 
by an amount proportional to the partial de-
rivative of the error with respect to the weight 
in question. The backpropagation phase of the 
neural network alters the weights wji so that 
the error of the network is minimized. This is 
achieved by taking a pair of input/output vec-
tors and feeding the input vector into the net. 
The net generates an output vector and than the 
output vector is compared to the output vector 
supplied. The comparison gives us the error 
value. The error is then passed back through 
the network (backpropagation process), modi-
fying the weights due to this error using the 

Figure 7: Randomly generated mathematical model for the 
PM10 concentrations prediction, represented in program tree 
form.
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equations. Hence, if the same set of input/out-
put vectors are presented to the network, the 
error would be smaller than previously found. 
For modeling the PM10 emission, three-layer 
feed-forward neural networks were used (Fig-
ure 10). They contained 9 neurons in the input 
layer, and 1 in the output layer. The number of 

neurons in the hidden layer was varied in dif-
ferent experiments.
The detailed topology of the used ANN with 
optimal training parameters and mathematical 
principle of the neuron is shown on Figure 3. 
The ANN were trained with the following pa-
rameters: weekday (WEEKDAY) and month 

Figure 9: Measured and predicted PM10 concentrations 
[μg/m3] for sampling site 2.

Figure 8: Measured and predicted PM10 concentrations 
[μg/m3] for sampling site 1.

(4)

(3)

3 4
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number (MONTH), wind speed [m/s] (SPEED), 
wind direction [°] (DIRECTION), air tempera-
ture [°C] (TEMP), rainfall [ml] (RAIN), electro 
arc furnace efficiency [min/h] (EAF), rolling 
mill efficiency [min/h] (ROLLING).
The ANN registers the input data only in the nu-
merical form therefore the information about 
the inputs must be transformed into numerical 
code. The learning method is error backpropa-
gation. Signals passed through the neurons in 
the hidden and output layers are transformed 
on the basis of an Tangent (nonlinear) function 
which allows the identification of the nonlinear 
system. The data is automatically normalized in 
order to make the training process faster. This 
was done by mapping each term to a value be-
tween 0 and 1 using the Max Min method. This 
normalized data was utilized as the inputs and 
outputs o train the ANN. In other words, two 
vectors are formed in order to train the neural 
network: Input vector is [WEEKDAY, MONTH, 
SPEED, DIRECTION, TEMP, RAIN, EAF, ROLLING, 
HOUR]. The output vector is [PM10 concentra-
tion].
Training of the ANN is finished when the test-
ing error is less than the tolerance limit. This 
tolerance limit is defined to 4 % at the begin-
ning of the training. On average, the networks 
needed 63 iterations to achieve this goal. Ap-
proximately 8 min of training during machin-

ing are needed to set up the full prediction per-
formance of ANN. After the neural network had 
been trained it was applied to 50 examples that 
did not take part in the training process. This 
time the solutions of the examples (PM10 con-
centration) were not supplied, so that the net-
work had to estimate them.
To evaluate the individual effects of network to-
pology and training parameters on the perfor-
mance of neural network 40 different networks 
were trained, tested and analyzed. From the 
results the following conclusions can be drawn:

 ― LWrs.
 ― To minimize the estimation errors, momen-
tum rates between 0.001 and 0.005 are good. 

 ― It is found that there is an optimum number 
of hidden nodes beyond there is no signifi-
cant change in the error prediction. In this 
instance, the optimum number of hidden 
layer nodes is 3.

 ― Networks trained with the tanh transfer 
function in all their processing elements 
give the least prediction errors, while those 
employing sigmoid and sine give the highest 
and next highest prediction errors respec-
tively.

 ― By using a multi-layer perceptron with back-
propagation training method, the neural net-
work is trained to an accuracy of ±3 % error.

Figure 10: Predictive force model topology.

Training parameter

learning 
rate

momentum 
constant

Layer 1 0.11 0.001

Layer 2 0.15 0.003

Layer 3 0.01 0.001
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In testing the model, the PM10 concentra-
tions for sampling site 1 and 2 were predict-
ed with average deviation of 9.47 μg/m3 and 
11.92 μg/m3, respectively. The number of cases 
N when the prediction is above the EU directive 
limit value, when in order to assure PM10 con-
centration exceedance prediction by developed 
predictive model it should in fact be below the 
limit, and also when prediction by developed 
predictive model should be above the limit is 
for both sampling sites 6.
Figures 11 and 12 show measured and predict-
ed PM10 concentrations for sampling sites 1 
and 2, respectively.

The distribution of concentrations deviation of 
training, test and verification data is presented 
in the Table 1. 

Conclusions

This paper presented the possibility of the 
PM10 concentration prediction close to a steel 
plant area with genetic programming and arti-
ficial networks. The daily PM10 concentrations, 
daily rolling mill and steel plant production, 
meteorological data (wind speed and direc-
tion – hourly average, air temperature – hourly 
average and rainfall – daily average), weekday 
and month number were used for modeling 
during a monitoring campaign of almost half 
a year (23. 6. 2010 to 12. 12. 2010). The spe-
cial fitness function for genetic programming 
system was designed in order to assure also 
PM10 limit value exceedance prediction. For 
each sampling site the best models for PM10 
prediction were obtained from 100 runs of the 
genetic programming system. The model for 
sampling sites 1 and 2 predicts concentrations 
within an average error range of 5.96 μg/m3 
and 6.54 μg/m3, respectively. All exceedances 
of the EU directive limit value (50 μg/m3) were 
administered at sampling site 1, but only 4 out 
of 5 of these occurred at sampling site 2. In 
general it is also important to know how many 
times the prediction is above EU directive limit 
value when it should in fact (measured values) 
be below the limit and otherwise. The number 
of such cases at sampling site 1 and 2 are 0 and 
2, respectively. Also the special artificial neu-
ral network topology adjustments were used. 
40 different neural networks were trained, 
tested and analyzed. The best artificial neural 
network for sampling sites 1 and 2 predicts 
concentrations within an average error range 
of 9.47 μg/m3 and 11.92 μg/m3, respectively. 
2 out of 4 EU directive limit value (50 μg/m3) 
exceedances were administered at sampling 
site 1 and only 4 out of 5 of these occurred at 

 
Sampling site 1 Sampling site 2

Training
data

Testing
data

All
data

Training
data

Testing
data

All
Data

N 121 50 171 121 50 171
Average [μg/m3] 5.85 18.23 9.47 3.41 14.23 6.58
St. dev. [μg/m3] 4.53 14.63 10.39 3.17 9.72 7.66

Table 1: Distribution of concentrations deviation of training, test and verification data.

Figure 12: Measured and predicted PM10 concentrations 
[μg/m3] for sampling site 2.

Figure 11: Measured and predicted PM10 concentrations 
[μg/m3] for sampling site 1.
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sampling site 2. The number, when the predic-
tion is above that limit value, when in order to 
assure PM10 concentration exceedance predic-
tion by developed predictive model it should in 
fact be below the limit, and also when predic-
tion by developed predictive model should be 
above the limit, was 6 at both sampling sites. In 
the future we will carry out genetic program-
ming based dispersion modeling according to 
the calculated wind field, air temperature, hu-
midity and rainfall in a 3D Cartesian coordinate 
system. The prospects for arriving at a robust 
and faster alternative to the well-known La-
grangian and Gaussian dispersion models are 
optimistic.
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