
152

Scientific original paper

Journal of Microelectronics,
Electronic Components and Materials
Vol. 42, No. 3 (2012), 152 – 163

Towards Smaller Populations in Differential
Evolution
Iztok Fajfar, Tadej Tuma, Janez Puhan, Jernej Olenšek, and Árpád Bűrmen

Faculty of Electrical engineering, University of Ljubljana, Ljubljana, Slovenia

Abstract: Differential evolution is a simple algorithm for global optimization. Basically it consists of three operations: mutation,
crossover and selection. Despite many research papers dealing with the first two operations, hardly any attention has been paid
to selection nor is there a place for this operation in the algorithm basic naming scheme. In the paper we show that employing
certain selection strategies combined with some random perturbation of population vectors notably improves performance in
high-dimensional problems. Further analysis of results shows that the improvement is statistically significant. The application of the
approach on a real-world case of a simple operating amplifier circuit exhibits a similar behaviour and improvement as observed with
the Quartic noisy test function. Due to the nature of the circuit objective function this was expected.

Key words: global optimization, direct search methods, differential evolution, heuristic, parallelization

K majšim populacijam v diferencialni evoluciji
Povzetek: Diferencialna evolucija je preprost algoritem za globalno optimizacijo. Algoritem v osnovi sestavljajo tri operacije: mutacija,
križanje in izbor. Čeprav obstaja množica znanstvenih prispevkov, ki obravnava prvi dve operaciji, je tretji operaciji namenjeno komaj
kaj pozornosti, niti ni zanjo namenjenega mesta v izvirnem načinu poimenovanja različic postopka. V prispevku pokažemo, da lahko z
uporabo različnih postopkov izbora, ki jih kombiniramo z naključno perturbacijo populacijskih vektorjev, opazno izboljšamo delovanje
postopka na večrazsežnostnih problemih. S podrobnejšo analizo rezultatov pokažemo, da so izboljšave statistično pomembne. S
preizkusom postopka na resničnem primeru preprostega operacijskega ojačevalnika ugotovimo, da se algoritem vede podobno kot na
preizkusni funkciji četrtega reda s superponiranim šumom. Glede na naravo kriterijske funkcije vezja smo to pričakovali.

Ključne besede: globalna optimizacija, direktni iskalni postopki, diferencialna evolucija, hevristični postopki, paralelizacija

* Corresponding Author’s e-mail: iztok.fajfar@fe.uni-lj.si

1. Introduction

Differential Evolution (DE) is a simple yet powerful algo-
rithm for global real parameter optimization proposed
by Storn and Price [1]. Through the last decade, the
algorithm has gained on popularity among research
as well as engineering circles due to its extreme im-
plementation simplicity and good convergence prop-
erties. The DE algorithm belongs to a broader class of
Evolutionary Algorithms (EA), whose behavior mimics
that of the biological processes of genetic inheritance
and survival of the fittest. One outstanding advantage
of EAs over other sorts of numerical optimization meth-
ods is that the objective function needs to be neither
differentiable nor continuous, which makes them more
flexible for a wide variety of problems.

A DE starts out with a generation of NP randomly gen-
erated D-dimensional parameter vectors. New param-
eter vectors are then generated by adding a weighted

difference of two population vectors to a third vector.
This operation is called mutation. One then mixes the
mutated vector parameters with the parameters of an-
other vector, called the target vector, to obtain the so-
called trial vector. The operation of parameter mixing is
usually called crossover in the EA community. Finally,
the trial vector is compared to the target vector, and if
it yields a better solution, it replaces the target vector.
This last operation is referred to as selection. In each
generation, each population vector is selected once as
the target vector.

There exist several variants of the DE algorithm [2, 3, 4,
5, 9], of which the most commonly used is DE/rand/1/
bin which we explore in this paper. Before using the
algorithm, one has to decide upon the values of three
parameters affecting the behavior of a DE. The first is
the population size NP, the other two are control pa-
rameters – a scaling factor F, and a crossover rate CR.
Choosing the values of these parameters is usually

153

I. Fajfar et al; Informacije Midem, Vol. 42, No. 3 (2012), 152 – 163

a problem-dependent task requiring a certain user
expertise. Researchers have attempted to tackle the
problem using several adapting and self-adapting
strategies to govern the values of the control param-
eters F and CR [6, 7, 8, 9 and the references within] and
even the population size NP [10, 11, 12, 13, 14]. Oth-
ers have proposed and studied different mutation and
crossover strategies [15, 16, 17, 18]. No explicit research
work has been done so far on the third of the DE opera-
tors, the selection, neither is there any intended place
in the algorithm variant naming scheme (i.e. DE/x/y/z)
for this operator. In this paper we investigate how dif-
ferent selection schemes affect the behavior of the DE
algorithm, in particular its ability to escape the local
minima or stagnation. In addition to that we applied
what would in genetic algorithm be called mutation,
i.e. we randomly changed the population vector pa-
rameters with a fixed probability. Since the term muta-
tion is already reserved in DE, we named this operation
a random perturbation.

In the next section, we shortly describe the functioning
of the basic DE algorithm, and in Section 3 we propose
a random vector perturbation and different selection
algorithms that we investigate. Finally, we present
some results of optimizing test functions and a real
electronic circuit in Sections 4 and 5, respectively.

2. Differential Evolution Overview

Consider the objective (criterion) or fitness function
, where one has to find a minimum so

that . In this case a is called a global
minimum. It is rarely possible to find an exact global
minimum in real problems, so for practical reasons one
must accept a candidate with a reasonable good solu-
tion.

In order to search for a global minimum, differential
evolution utilizes NP D-dimensional parameter vectors
xi,G, i=1,2,...,NP as a population in generation G. NP does
not change from generation to generation. The initial
population is chosen randomly and – if no prior infor-
mation about the fitness function is known – it should
cover the entire search space uniformly.

During the optimization process, the new parameter
vectors are generated by adding a weighted difference
of two randomly chosen population vectors to a third
vector: vi,G+1=xr1,G+F∙(xr2,G–xr3,G) with integer, mutually
different, random indices r1,r2,r3∈{1,2,...,NP}, which must
all be different from i as well, and a real constant factor
F∈[0,2]. This operation is called mutation and the thus
obtained vector the mutated vector.

The mutated vector parameters are then mixed with
another vector, the so-called target vector, in order to
produce a trial vector ui,G+1=(u1i,G+1,u2i,G+1,...,uDi,G+1) where

(1)

Here, randb(j)∈[0,1] is the jth execution of the uniform
random generator, CR∈[0,1] is user-determined con-
stant, and rnbr(i)∈{1,2,...,D} is a random index. The latter
insures that the trial vector gets at least one parameter
from the mutated vector. This operation of parameter
mixing is usually called crossover in evolutionary search
community.

Finally, a selection is performed in order to decide
whether or not the trial vector should become a mem-
ber of generation G+1. The value of the fitness function
at the trial vector ui,G+1 is compared to its value at the
target vector xi,G using the greedy criterion. Only if the
trial vector yields a better fitness value than the target
vector, the target vector is replaced. Otherwise the trial
vector is discarded and the target vector retained.

3. Random Perturbation and Differ-
ent Selection Strategies

We focus our work on the stage of the DE algorithm
after crossover, i.e. on the stage when the trial vector is
already fully formed.

The idea for our modification came first from a simple
observation that with a crossover rate CR approaching
1 not much of the target vector survives in its offspring
(trial vector). In that sense one can argue that the
search direction from the target to the trial vector can
be as good (or as bad) as any other direction. The hy-
pothesis we want to test is that there might exist some
other (possibly better) candidate for replacement than
the target vector itself.

In what follows, we propose and separately test three
different rules for selecting the candidate to replace
the trial vector. We select that candidate according to
one of the three selection algorithms.

154

Algorithm 1: Replace the vector closest to the target
vector.

Input: trial vector ui,G+1, target vector xi,G, Gth gen-
eration of NP parameter vectors xn,G, n=1,2,...,NP
c = -1
dmin = ∞
for n = 1 to NP do
	 if f (ui,G+1) < f (xn,G) and d(xi,G, xn,G) < dmin then
		 c = n
		 dmin = d(xi,G, xn,G)
	 endif
endfor
if c ≠ -1 then
	 xc,G is replaced by ui,G+1
endif

The notation d(∙,∙) in Algorithm 1 denotes an Euclidean
distance. The algorithm replaces, of all the vectors that
yield a worse fitness value than the trial vector, the one
that is geometrically closest to the target vector. Notice
that this strategy, the same as the original algorithm,
always replaces the target vector as long as it is worse
than the trial vector. Otherwise, it seeks after the can-
didate which is closest possible to the target vector
to replace it. If no such vector is found, then the trial
vector is discarded. As in the original algorithm, the
target vectors with a relatively bad fitness value will be
replaced more likely, while those with a better fitness
value will survive. In addition to that, however, some
near vector is moved to the place where the target
vector would move if the target vector were not worse
than the trial vector. This speeds up the clustering of
the population members around the members with
generally better fitness values. On one hand this can
accelerate the convergence significantly, on the other
hand, however, there is a danger of losing a necessary
diversity too soon and thus not finding a global solu-
tion.

Algorithm 2: Replace the vector closest to the trial vec-
tor.

Input: trial vector ui,G+1, Gth generation of NP pa-
rameter vectors xn,G, n=1,2,...,NP
c = -1
dmin = ∞
for n = 1 to NP do
	 if f (ui,G+1) < f (xn,G) and d(ui,G+1, xn,G) < dmin then
		 c = n
		 dmin = d(ui,G+1, xn,G)
	 endif
endfor
if c ≠ -1 then
	 xc,G is replaced by ui,G+1
endif

I. Fajfar et al; Informacije Midem, Vol. 42, No. 3 (2012), 152 – 163

The approach with Algorithm 2 is quite different in
that it searches for the candidate that is geometrically
closest to the trial vector instead of the target vector.
In that sense replacements are made that favor smaller
jumps and encourage searching over less promising
areas as well.

Algorithm 3: Replace either the target vector or the
first one of the first half of the population that is worse
than the trial vector.

Input: trial vector ui,G+1, target vector xi,G, Gth gen-
eration of NP parameter vectors xn,G, n=1,2,...,NP
if f (ui,G+1) < f xi,G) then
	 c = i
else
	 c = -1
	 for n = 1 to NP/2 do
		 if f (ui,G+1) < f (xn,G) then
			 c = n
			 exit_for_loop
		 endif
	 endfor
endif
if c ≠ -1 then
	 xc,G is replaced by ui,G+1
endif

The construction of Algorithm 3 is not so obvious at the
first glance. Similarly to the original algorithm and Algo-
rithm 1, one first checks whether the target vector is to
be replaced, i.e. if the trial vector yields a better fitness
value than the target vector. Otherwise we replace the
first member of the first half of the population whose
fitness value is worse than that of the trial vector. The
idea behind that is to have one half of the population
evolve under the original DE rules while accelerating
the other half with further replacements. Even these
additional replacements are applied asymmetrically
with the members with a smaller index affected more
often. That way we wanted to induce as little a change
to the original method as possible, while inducing a
relatively strong drag on a limited number of popula-
tion members. The 1:1 ratio between both parts of the
population was chosen arbitrarily. It should be noted
that more frequent replacements lead towards a faster
loss of diversity in population, which in turn lessens a
chance to find the global minimum, and we wanted to
find the equilibrium between two usually conflicting
goals, namely fast convergence and high probability
of finding the global optimum. The randomization in-
troduced in the remainder of this section is supposed
to make up for the before mentioned loss of diversity
and in the same time indirectly to fine tune the ratio
between two parts of the population.

155

I. Fajfar et al; Informacije Midem, Vol. 42, No. 3 (2012), 152 – 163

Before going into experiments, let us introduce one
more tiny though important modification to the al-
gorithm. It is interesting to notice that although the
algorithm itself belongs to a class of metaheuristics
and stochastic optimization, the randomness in the
original concept is only used for the selection of the
vectors from which the mutated vector will be formed
and for mixing the mutated and target vector param-
eters. The vector parameters themselves are chang-
ing randomly only indirectly through the mutation
and crossover, and the obtained values are limited
to a set of linear combinations of parameters already
contained in a population. Some authors have already
introduced some more randomness into DE, either di-
rectly by randomization of the vector parameters [19,
20] or indirectly by randomizing the algorithm control
parameters F and CR [14, 21, 22], thus increasing the ex-
plorational potential of the algorithm, and even mak-
ing it possible to prove the convergence [20].

In our study we decided simply to mutate every single
parameter of the trial vector with a fixed probability
just before the selection procedure takes place:

(2)

where rand(j) is the call of the random generator that
returns the uniformly distributed values along the
entire jth axis of the parameter space. The constant
probability of 0.005 was obtained empirically by a few
preliminary test runs of the algorithm, which also in-
dicated that the uniform distribution over the whole
parameter space yielded somewhat superior perfor-
mance compared to a normal distribution around the
current parameter value often used in literature. We
call this operation perturbation.

4. Experiments on test functions

Overall Performance

In order to get an overall picture and the first impres-
sion of the impact of the three proposed selection strat-
egies and random vector perturbations, we carried out
a simple test. For testing purposes, fourteen standard
benchmark functions from [23] were selected, thirteen
high-dimensional (D=30) and one low-dimensional
(D=4) function. Then we randomly selected the three
parameters from the intervals NP∈{10,...,100}, F∈[0,1],
and CR∈[0,1], and initialized a random population of
the NP parameter vectors lying within the boundar-
ies given for the test function in question. Next we ex-

ecuted eight optimization runs of the 150,000 criterion
function evaluations (CFEs) with the same parameter
values and initial vector population, but each time
applying either the original or one of the three pro-
posed selection schemes, once without and once with
a random perturbation. We repeated this 5,000 times
for each test function, each time with different control
parameter values and initial vector population. The re-
sults are summarized in Table 1.

Table 1: Comparison of different modifications of the
algorithm with the original

Selection
Method

Without Perturbation With Perturbation

50,000
CFEs

150,000
CFEs

50,000
CFEs

150,000
CFEs

Original – – 44.1/51.7 43.7/44.1

Algorithm 1 53.5/43.4 45.1/48.0 69.9/26.9 63.1/29.0

Algorithm 2 52.8/44.1 45.7/47.4 62.4/34.4 57.3/35.4

Algorithm 3 61.4/34.6 53.0/37.1 75.2/20.6 68.5/20.5

The fourteen pairs of the numbers in the table stand for
the seven different comparisons (each of the modifica-
tions separately compared to the original) at two dif-
ferent times of the algorithm run: after 50,000 CFEs and
after 150,000 CFEs. The numerator represents the per-
centage of cases in which the corresponding modifica-
tion yielded a better fitness value (at the precision of 6
significant digits) than the original, while the denomi-
nator speaks of the percentage of cases in which the
original method performed better. The sum is gener-
ally smaller than 100, because in some cases both vari-
ants gave the same result. The counting was carried out
over all runs regardless of the control parameter set-
ting or the selected test function. In real-life problems,
often the practitioner has little or no knowledge about
the fitness function and consequently about the best
control parameter settings. Therefore, it seems that
averaging over a range of different test functions and
control parameter settings, selected in the Monte-Car-
lo manner, is an appropriate measure of the algorithm
overall performance.

In the table, the pairs of the numbers in the white cells
represent the state after 50,000 CFEs. We conjectured
that at this optimization stage the convergence is gen-
erally not yet fully reached. Consequently, those pairs
of the numbers indicate the convergence speed rather
than the overall ability to find a global minimum.

The numbers in the shaded cells represent the state
after 150,000 CFEs, when we assume that the number
of the cases reaching the final solution is considerably
larger than of those after 50,000 CFEs. Hence we con-

156

sider these results to reflect the ability of the algorithm
to find a good final solution.

From the table one can infer some quite interesting ob-
servations. Replacing – instead of target vector – the
candidate closest to target (Algorithm 1) or closest to
trial vector (Algorithm 2) without using perturbation
performed just slightly better after 50,000 CFEs (1st
column, 2nd and 3rd row, respectively) and slightly
worse after 150,000 CFEs (2nd column, 2nd and 3rd
row, respectively). That implies that the more frequent
replacements in both cases speed up the convergence
as expected but, in general, they cause the algorithm
more often to stuck in one of the local minima or to
reach stagnation in the end. That is, however, not the
case with the selection strategy using Algorithm 3. This
strategy outperformed the original for almost twice
more cases after 50,000 CFEs and still remained much
better after 150,000 CFEs (4th row, 1st and 2nd col-
umn, respectively). It is important to note that with this
kind of modification the algorithm still performs more
replacements than the original one, which obviously
speeds-up the convergence. The main difference here
is that we perform these additional replacements only
on a limited number of the population members, the
others still undergoing the original selection scheme.
Technically, we can speak of two different schemes run-
ning in parallel.

Comparing the original method with and without per-
turbations gives us no noticeable difference (1st row,
3rd and 4th column). As reasonably expected, random
perturbations slow down convergence to some extent
(1st row, 3rd column), but in the long run no variant
outperforms the other (1st row, 4th column). It is quite
interesting to notice that while perturbation seems to
have no observable effect when applied to the origi-
nal algorithm, it improves the other three variants no-
ticeably. It seems that in these cases perturbation not
only makes up for the loss of the population variance
– which might have occurred due to a too fast conver-
gence induced by more frequent replacements – but
also improves the overall performance. It seems that
the changed selection schemes and random perturba-
tions support each other. Nevertheless, comparing the
results of the selection algorithms 1, 2, and 3 with per-
turbation after 50,000 and 150,000 CFEs shows that in
all the three cases, in the long run, the original method
compensates a little for the much worse performance
during the first part of the run. This leaves us, possibly,
some room for improvement by balancing the fac-
tors that affect the convergence speed and the rate of
change in the population diversity.

A Closer Look

Let us now focus a little closer on Algorithm 3 com-
bined with vector perturbation exhibiting the best
overall improvement in the previous analysis. In order
to get a more accurate picture, we made the same com-
parisons as before, only this time for each test function
separately. The results are summarized in Table 2. The
table shows comparisons of the original method with
the original method with perturbation, and with Algo-
rithm 3 with and without perturbation. The numbers
in normal writing represent the state after 50,000 CFEs,
while the ones in boldface the state after 150,000 CFEs.

Table 2: Comparison of different modifications by sep-
arate test functions

Test Function

Modification Compared to the Original
Algorithm

Original
with Pertur-
bation

Algorithm 3
Algorithm
3 with Per-
turbation

f1 (Quadratic) 34.72/65.28
31.60/68.40

70.83/29.17
68.75/31.25

80.21/19.79
76.39/23.61

f2 (Schwefel 2.22) 33.45/66.55
31.71/68.29

70.73/29.27
66.90/33.10

74.22/25.78
70.03/29.97

f3 (Schwefel 1.2) 51.04/48.26
54.51/45.49

75.35/23.96
70.49/29.51

77.08/22.57
78.47/21.53

f4 (Schwefel 2.21) 49.48/48.08
48.43/49.83

63.07/34.49
59.58/39.72

83.97/12.80
79.79/18.82

f5 (Generalized
Rosenbrock)

49.83/50.17
52.96/47.04

58.19/41.81
56.10/43.90

77.00/23.00
73.87/26.13

f6 (Step) 31.36/24.39
29.97/9.76

31.36/27.87
18.12/26.48

47.04/6.62
35.19/3.48

f7 (Quartic noisy) 46.50/53.50
49.30/50.70

70.28/29.72
67.83/32.17

77.97/22.03
77.62/22.38

f8 (Generalized
Schwefel 2.26)

57.14/42.86
58.54/29.62

49.83/50.17
36.59/58.19

82.58/17.42
78.75/11.15

f9 (Generalized
Rastrigin)

50.69/48.96
49.65/43.40

66.67/33.33
57.64/39.24

80.90/19.10
79.17/15.28

f10 (Ackley) 48.26/50.69
48.96/33.33

60.07/39.24
43.75/41.67

81.60/17.36
68.40/15.63

f11 (Generalized
Griewank)

32.17/61.19
31.47/36.71

63.99/29.72
42.31/29.02

73.08/20.28
53.50/17.83

f12 (Generalized
penalty function 1)

43.36/56.29
36.01/45.80

68.53/31.12
52.45/33.22

81.47/18.53
65.38/20.63

f13 (Generalized
penalty function 2)

45.10/54.90
42.66/43.01

62.59/37.06
50.35/37.06

82.17/17.48
72.03/15.03

f13 (Kowalik) 44.41/52.45
45.80/46.50

48.25/47.55
50.70/45.10

52.80/45.80
49.65/45.80

The first and foremost important observation here is
that the modification combined with perturbation
shows noticeably and consistently better performance

I. Fajfar et al; Informacije Midem, Vol. 42, No. 3 (2012), 152 – 163

157

in all cases except for the Kowalik test function where
there is no observable difference. Again we see that
perturbation alone does not really improve perfor-
mance of the original method, two notable exceptions
being the Schwefel 2.26 and Step functions.

The Schwefel function is somehow tricky in that the
global minimum is placed geometrically remote from
the next few best local minima. The original method
exhibits quite a good convergence at the beginning,
while later on perturbations help find the global mini-
mum as without them the original method would be
stuck in a local minimum (see the 1st column, Schwe-
fel 2.26 function). Interestingly enough, modification
without perturbation in that case performs much
worse than the original method. This probably stems
from the fact that this method replaces candidates of
one half of the population excessively, thus addition-
ally forcing the population in one of the local minima.
The modified method with perturbation, however, per-
forms much better in this case.

The same goes for the step function. This function,
too, poses some difficulties for the original algorithm
because it consists of many plateaus and discontinui-
ties. All points within a small neighborhood will have
the same fitness value, making it very difficult for the
process to move from one plateau to another. Pertur-
bations seem to help here significantly.

Up to now we were only interested in the number of
cases in which one method is better than the other.
What about the fitness values they actually produce? In
Table 3 one finds the best fitness values averaged over
all runs, comparing the original algorithm with the one
using Algorithm 3 with perturbations. Notice that the
values are quite large. One must not forget that the-
se values were obtained by running the optimization
using completely random optimization parameters. So
many of the parameter values were used that were not
even close to the recommendations in the literature.
But as we are interested only in the differences betwe-
en different algorithm variants, this is not an issue.

In the first and second column of Table 3 one finds the
average minimuns for each of the two variants, while
in the last column there are the results of paired two-
-sampled two-tailed t-test of comparing the modified
approach with the original.

Table 3: Comparison of the average best fitness obta-
ined by the original algorithm and Algorithm 3 with
perturbation

Test Func-
tion

Original
(Average
Best Fitness)

Algorithm 3
with Pertur-
bation
(Average
Best Fitness)

T-Test
Values

Analyti-
cal (ac-
tual) best
fitness

f1 (Quadratic) 1.694659×103 2.338428×102 p<0.01
t=5.09

0

f2 (Schwefel
2.22)

6.908752 2.819474 p<0.01
t=5.47

0

f3 (Schwefel
1.2)

1.429065×104 8.331654×103 p<0.01
t=13.95

0

f4 (Schwefel
2.21)

17.24446 7.910773 p<0.01
t=10.69

0

f5 (Generali–
zed Rosen–
brock)

2.407282×106 2.566153×105 p<0.01
t=3.17

0

f6 (Step) 1.315575×103 2.352474×102 p<0.01
t=4.11

0

f7 (Quartic
noisy)

1.747322 0.1379149 p<0.01
t=4.40

0

f8 (General–
ized Schwefel
2.26)

-1.069594×104 -1.167699×104 p<0.01
t=10.75

-12569.5

f9 (Generali–
zed Rastrigin)

71.73974 49.26490 p<0.01
t=11.05

0

f10 (Ackley) 6.395496 2.192476 p<0.01
t=10.63

0

f11 (Generali–
zed Griewank)

10.83875 1.257148 p<0.01
t=4.22

0

f12 (Generali–
zed penalty
function 1)

4.372791×106 7.482104×105 p=0.02
t=2.27

0

f13 (Generali–
zed penalty
function 2)

9.736573×106 1.050585×106 p<0.01
t=2.786

0

f15 (Kowalik) 1.358227×10-3 1.836926×10-3 p=0.11
t=-1.61

0.0003075

The test further confirms our speculations about the
modification bringing significant advantages over the
original DE. In twelve out of the fourteen test functions
the modification performs significantly better at a 99%
significance level. Again, an exception is the Kowalik
function where the test actually indicates a degrada-
tion of performance (observe the negative t-value),
although not a significant one.

Parameter Impact

In our experiments so far we didn't pay any attention to
the actual control-parameter or population-size selec-
tion. The values were picked up completely randomly

I. Fajfar et al; Informacije Midem, Vol. 42, No. 3 (2012), 152 – 163

158

within the set intervals. In this section we want to in-
vestigate the effect of different parameter settings on
the algorithm performance with the proposed modifi-
cations. We compare the original algorithm to the one
using Algorithm 3 with perturbation. In this paper we
summarize the results only for the case of Generalized
Schwefel 2.26 function. It should be noted, however,
that we observed a similar behavior elsewhere as well
[28].

We started out by choosing the control parameter set-
tings most commonly found in literature, i.e. F = 0.5
and CR = 0.9. Our experimenting showed that at these
values the best fitness (assuming a fixed number of
150,000 CFEs) is generally obtained at the population
size NP = 40. The results in this section are obtained by
changing one of the three values while keeping the
other two fixed. The best fitness values were averaged
over 25 independent runs.

Figure 1 shows that the original method completely
failed to reach the global minimum in the Schwefel
2.26 function (at –12569.5) safe for the lowest values
of CR. Interesting, however, is that the modification
enables DE to find the global minimum at lower and
higher values of CR, but not at the values around 0.7.
A similar behavior can be observed in other functions
as well [28], where the modification brings an improve-
ment at the smaller and bigger values of CR.

Figure 1: Impact of the crossover rate (CR) on the al-
gorithm performance. The solid (black) line shows the
best fitness values averaged over 25 runs, as obtained
by the original DE. The dashed (red) line shows the re-
sults produced by DE with Algorithm 3 and perturba-
tion. The graph shows a situation at the fixed F=0.5 and
NP=40.

Figure 2 shows the results for the same test function
using constant CR=0.9 and NP=40, while changing
F from 0.05 to 0.95. The general pattern that is to be

observed is somewhat different from the observations
with the changing parameter CR. We observe the major
improvement at the smaller F values. It has been men-
tioned in the literature that F must not be too small
in order to be able to find a minimum [25]. A small F
means a small difference vector and hence a small dis-
placement of a mutated vector. It seems that too big a
displacement is not good for the convergence either.
An interesting observation is that our modification im-
proves the results more at the end of smaller F values,
and often to the extent that outperforms the original
algorithm at any other F value. It seems that small dis-
placements – which seem to produce a slow but stable
convergence – go hand in hand with the anticipated
speed up caused by our modification, together pro-
ducing a more stable and faster convergence.

Figure 2: Impact of the control parameter F in the Gen-
eralized Schwefel 2.26 function. The graph shows a
situation at the fixed CR=0.9 and NP=40.

In Figure 3, which depicts the impact of the popula-
tion size, we can see that the major improvement is
achieved at lower population sizes. This effect is espe-
cially evident in case of Schwefel 2.26 function when
the minimum is reached with our modification but not
with the original method.

The large population size in DE usually guarantees a
larger probability of finding the global minimum and,
originally, the proposed population size was NP = 10D
[24]. Other sizes were proposed later but were all con-
siderably greater than the fitness function dimension-
ality D. As clearly seen from Figure 3 and the graphs in
[28], at larger population sizes our modification does
not bring any improvement over the original method
whatsoever. That is somehow expected since the DE
should be quite stable at larger NP. The problem how-
ever is that the stability is of no great practical use if
after a relatively large number of CFEs the algorithm is
still very far from the actual solution. We see one of the

I. Fajfar et al; Informacije Midem, Vol. 42, No. 3 (2012), 152 – 163

159

strongest values of our modification in having instead
of one large population many smaller ones running in
parallel which could bring together the ability to actu-
ally find the global minimum and speed up of conver-
gence.

Figure 3: Impact of the population size in the General-
ized Schwefel 2.26 function. The graph shows a situa-
tion at the fixed CR=0.9 and F=0.5.

5. Test runs on a simple operating
amplifier circuit

The Circuit

After successfully testing the proposed algorithm
on standard benchmark functions, we wanted to see

whether the method behaved in the same fashion on
a real circuit as well. As an example we look at a simple
two-stage operating amplifier, whose circuit diagram is
shown in Fig 4. The amplifier is designed in a 0.18 μm
CMOS process with 1.8 V supply voltage.

The operating point of the amplifier is determined by
the input bias current flowing into the drain terminal of
Xmn1b. Xmn1 and Xmn4 mirror this current to set the
bias of the differential pair (Xmn2 and Xmn3) and out-
put amplifier (Xmp3). Transistors Xmp1 and Xmp2 act
as active load to the differential pair. Frequency com-
pensation is introduced by Rout and Cout. Ports inp, inn,
and out represent the noninverting input, inverting
input, and output of the amplifier, respectively. Tran-
sistors Xmn1s and Xmp1s power down the amplifier
when signals slp (slpx) are pulled high (low).

The testbench circuit shown in Fig 5 provides supply
voltage (Vdd) to the amplifier along with a 100 μA bias
current. Feedback is introduced by resistors Rfb and
Rin. Rload and Cload represent the load resistance and ca-
pacitance. Because the supply voltage is single-ended,
the input signal (Vin) requires a common mode bias
(Vcom=Vdd/2).

During the optimization we simulated the circuit across
three corners: nominal (nominal PMOS and NMOS
model, 25○ C, Vdd=1.8 V), worst power (fast NMOS and
PMOS model, 100○ C, Vdd=2.0 V), and worst speed (slow
NMOS and PMOS model, 0○ C, Vdd=1.8 V). In each of the
corners we performed the following analyses: operat-
ing point, DC sweep of input voltage (from –2 V to 2
V), DC sweep of common mode bias (from 0.7 V to Vdd

Figure 4: The circuit diagram of a simple two stage operating amplifier.

I. Fajfar et al; Informacije Midem, Vol. 42, No. 3 (2012), 152 – 163

160

– 0.1 V), small signal AC analysis, and transient analysis
of the response to a ±0.5 V step in input voltage. Rfb and
Rin were both set to 1 MΩ, except in transient analysis
where Rin was set to 100 kΩ.

From the obtained results of above analyses the fol-
lowing performance measures were derived:
-	 Vgs and Vds overdrive voltage (i.e. Vgs–Vt and Vds–Vdsat)

for all transistors, except Xmn1s and Xmp1s, at
operating point and at all points analyzed in the
DC sweep of common bias,

-	 output voltage swing where DC gain is above
50% of maximal gain,

-	 gain, unity-gain bandwidth (UGBW), and phase
margin,

-	 overshoot, undershoot, 10% - 90% rise and fall
time, 5% settling time, and slew rate of transient
response,

-	 total gate area of all transistors (except Xmn1s
and Xmp1s).

Next, from these performance measures, we construct-
ed the cost function [26] consisting of the following
requirements:
-	 overdrive voltage should be at least 1m V,
-	 output voltage swing must be greater than 1.6 V,
-	 gain, UGBW, and phase margin must lie above 75

dB, 60 MHz, and 60○, respectively,
-	 overshoot and undershoot must be below 10%,

rise and fall time below 100 ns, settling time be-
low 300 ns, and slew rate above 10 V/μs,

-	 total gate area should be less than 1500 μm2.

Thus constructed cost function was used for guiding
the optimization algorithm which should find optimal
adjustment of the 10 circuit parameters listed in Table
4.

Table 4: Definitions of the circuit parameters subject to
optimization

Parameter Description Range Unit

dif_w
channel width of Xmn2
and Xmn3

[1, 95] μm

dif_l
channel length of Xmn2
and Xmn3

[0.18, 4] μm

load_w
channel width of Xmp1
and Xmp2

[1, 95] μm

load_l
channel length of Xmp1
and Xmp2

[0.18, 4] μm

mirr_w
channel width of Xmn1b,
Xmn1 and Xmn4

[1, 95] μm

mirr_l
channel length of Xmn1b,
Xmn1 and Xmn4

[0.18, 4] μm

out_w channel width of Xmp3 [1, 95] μm

out_l channel length of Xmp3 [0.18, 4] μm

c_out capacitance of Cout [0.01, 10] pF

r_out resistance of Rout [0.001, 200] kΩ

Performance measures were evaluated in all corners,
except for the Vgs and Vds overdrive voltages, which
were evaluated only in the nominal corner. The cost
function was expressed as a sum of contributions

where m is the number of performance measures. Eve-
ry performance measure resulted in one contribution
fi, which was obtained by transforming its worst value
observed across all corners (yi(x)) using a piecewise-
-linear function f(yi(x), gi, ni, pi, ci). Here gi, ni, pi, and ci
denote the goal, the norm, the penalty factor, and the
tradeoff factor, respectively. For requirements of the
form yi(x) ≤ gi the contribution was computed as

For requirements of the form yi(x) ≥ gi the contribution
was

The tradeoff factor for overdrive voltages was set to ti
= 0, because we are not interested in improving them
beyond their respective goals. All other tradeoff factors
were set to ti = 0.001 and the penalty factors were set to
pi = 1. The norms were set to gi / 10 for all performance
measures, except for the area, where ni = 100 μm2 was
used.

Figure 5: The testbench circuit for the operating ampli-
fier from Fig 4.

I. Fajfar et al; Informacije Midem, Vol. 42, No. 3 (2012), 152 – 163

161

Optimization Results

We ran the circuit optimization using the same DE para-
meters as with the test functions in the previous secti-
on. Simple circuits such as the one in question often ex-
hibit unimodal objective function contaminated with
numerical noise. Therefore we expected the results to
be reminiscent of those obtained with the Quartic noi-
sy test function [28].

During each optimization run we performed, as with
test functions, 150,000 CFEs. We run the optimizations
on 20 2.66 Ghz Core i5 (4 cores per machine) machi-
nes, and it took approximately 3 weeks to complete
the computation. Unlike with most test functions, the
study of the results showed us that already after 20,000
CFEs there were no observable changes neither in ob-
tained average fitness values nor standars errors. From
relatively flat lines with almost zero standard error at
fitness value of 0.56 we conclude that the minimum
actually lies at that value (cf. Figs 6 to 8).

Figure 6: Impact of the crossover in optimizing the sim-
ple operating amplifier circuit, after 5,000 CFEs (left)
and 20,000 CFEs (right). The graph shows a situation at
the fixed F=0.5 and NP=40.

Figure 7: Impact of the control parameter F in optimi-
zing the simple operating amplifier circuit, after 5,000
CFEs (left) and 20,000 CFEs (right). At the values of
F=0.2 and below there was practically no change af-
ter 5,000 CFEs with the original algorithm, while some
further improvement could be observed with Algori-
thm 3 with perturbation. The graph in this case is com-
paratively flat, showing lessened sensitivity to control
parameter F. The graph shows a situation at the fixed
CR=0.9 and NP=40.

Similarly to the results with Quartic noisy function, our
modification does not improve the best results obtain-
ed with the original DE. The very important observati-
on however, is the fact that it does not worsen the best
results either, and the resulting fitness values are quite
better at the control parameter values where the origi-
nal DE did not perform very well. In that sense one can
argue that applying Algorithm 3 with perturbatuion
lessens the algorithm sensitivity to control parameter
values. Although the differential evolution algorithm
itself is surprisingly simple to implement there is still
much bewilderment among scientists about setting
the values of the control parameters. So any step to-
wards parameter insensitiveness of the DE is welcome.

As seen in Fig 8, one still needs a relatively large popu-
lation in order to stand a fair chance of finding the glo-

I. Fajfar et al; Informacije Midem, Vol. 42, No. 3 (2012), 152 – 163

162

bal minimum. It seems that innumerable local minima
introduced by the intensive numerical noise could only
be overcome with relatively large populations. At the
same time we observe that our proposed modification
quite improves results at small populations, i.e. NP < 20.
Eventhough the improvement itself does not lead us to
the global minimum at that small populatuion sizes, it
could be crucial for reducing the sizes of sub-populati-
ons in the multi-population model of parallel differen-
tial evolution [27 and the references within].

6. Conclusion

In the paper we studied different replacement schemes
in the DE algorithm combined with additional random
perturbation of vector parameters. By experimenting
with a suite of standard test functions we observed
that only one replacement scheme provided observ-

ably better results than the original algorithm. It was
somehow surprising to note that perturbation did not
improve behavior of the original replacement scheme
while it improved all the others.

Studying the performance of Algorithm 3 combined
with random perturbation showed a statistically sig-
nificant improvement in all higher dimensional test
functions. We also saw that the improvement is greater
at certain values of the control parameters and popula-
tion sizes, i.e. at lower values of F and NP, and at lower
as well as higher values of CR.

Especially outstanding was the improvement in small-
er population sizes. According to the outcomes of the
experiments with both the Quartic noisy function and
the real-world circuit we beleive it is worthwile to aim
some research effort in the direction of DE parallelizati-
on using sub-populations of sizes below 20.

One of the advantages of the approach proposed in
this paper is the fact that its intervention with the origi-
nal method does not interfere with any other opera-
tion and can therefore be applied independently and
combined with many other approaches proposed in
literature.

All in all, the beauty of the original DE algorithm is its
utmost implementation simplicity. Our research tried
not to stray away from this simplicity and we showed
that it is possible to improve the algorithm perfor-
mance by only changing the rule for replacing the
population members combined with simple random
perturbation. We believe that further work in this direc-
tion is worthwhile.

Acknowledgement

This work has been supported by the Ministry of Edu-
cation, Science, Culture and Sport of Republic of Slove-
nia within the research program P2-0246 – Algorithms
and optimization methods in telecommunications.

References

1.	 R. Storn and K. Price, “Differential evolution – a
simple and efficient heuristic for global optimiza-
tion over continuous spaces,” J. Glob. Optim., vol.
11, pp. 341–359, 1997.

2.	 K. Price, “An introduction to differential evolution,”
in New ideas in optimization, D. Corne, M. Dorigo,
and F. Glover, Eds. London (UK): McGraw-Hill Ltd.,
1999, pp. 79–108.

Figure 8: Impact of the population size in optimizing
the simple operating amplifier circuit, after 5,000 CFEs
(left) and 20,000 CFEs (right). At the smaller population
sizes, the original algoritm was soon stuck (no chan-
ge from 5,000 CFEs to 20.000 CFEs), while Algorithm
3 with perturbation still improved the outcome. The
graph shows a situation at the fixed CR=0.9 and F=0.5.

I. Fajfar et al; Informacije Midem, Vol. 42, No. 3 (2012), 152 – 163

163

3.	 D. Jiang, H. Wang, and Z. Wu, “A variant of differ-
ential evolution based on permutation regulation
mechanism,” in International Symposium on In-
telligence Computation and Applications (ISICA):
2010, pp. 76–85.

4.	 E. Mezura-Montes, J. Velázquez-Reyes, and C. A.
Coello Coello, “A comparative study of differen-
tial evolution variants for global optimization, ”
in Proceedings of the 8th Annual Conference on
Genetic and Evolutionary Computation (GECCO):
2006, vol. 1, pp. 485–492.

5.	 Y. Wang, Z. Cai, and Q. Zhang, “Differential Evo-
lution With Composite Trial Vector Generation
Strategies and Control Parameters,” IEEE Trans.
Evol. Comput., vol. 15, pp. 55–66, 2011.

6.	 J. Brest, S. Greiner, B. Bošković and M. Mernik,
“Self-adapting control parameters in differential
evolution: a comparative study on numerical
benchmark problems,” IEEE Trans. Evol. Comput.,
vol. 10, pp. 646–657, 2006.

7.	 J. Liu and J. Lampinen, “A fuzzy differential evolution
algorithm,” Soft Comput., vol. 9, pp. 448–462, 2005.

8.	 D. Zaharie, “Control of population diversity and
adaptation in differential evolution algorithms,”
in Proceedings of 9th International Conference
on Soft Computing, R. Matoušek, P. Ošmera, Eds.
Brno (Czech Republic): Mendel 2003, pp. 41–46.

9.	 J. Zhang and A. C. Sanderson, “JADE: Adaptive
Differential Evolution With Optional External Ar-
chive,” IEEE Trans. Evol. Comput., vol. 13, pp. 945–
958 , 2009.

10.	 J. Brest and M. Sepesy Maučec, “Population size
reduction for the differential evolution algorithm,”
Appl. Intell., vol. 29, pp. 228–247, 2008.

11.	 J. Teo, “Exploring dynamic self-adaptive popula-
tions in differential evolution,” Soft Comput., vol.
10, pp. 673–686, 2006.

12.	 C. Zhang, J. Chen, B. Xin, T. Cai, and C. Chen, “Dif-
ferential evolution with adaptive population size
combining lifetime and extinction mechanisms,”
in Proceedings of 8th Asian Control Conference
(ASCC): 2011, pp. 1221–1226.

13.	 H. Wang, S. Rahnamayan, and Z. Wu, “Adaptive
differential evolution with variable population
size for solving high-dimensional problems,” in
Proceedings of the IEEE Congress on Evolutionary
Computation (CEC): 2011, pp. 2626–2632.

14.	 J. Brest and M. S. Maučec, “Self-adaptive differ-
ential evolution algorithm using population size
reduction and three strategies,” Soft Comput., vol.
15, pp. 2157–2174, 2011.

15.	 H. Y. Fan and J. Lampinen, “A trigonometric mu-
tation operation to differential evolution,” J. Glob.
Optim., vol. 27, pp. 105–129, 2003.

16.	 S. Das, A. Abraham, U. K. Chakraborty, and A. Ko-
nar, “Differential evolution using a neighborhood-

based mutation operator,” IEEE Trans. Evol. Com-
put., vol. 13, pp. 526–553, 2009.

17.	 D. Zaharie, “Influence of crossover on the behav-
ior of differential evolution algorithms,” Appl. Soft
Comput., vol. 9, pp. 1126–1138, 2009.

18.	 S. M. Islam, S. Das, S. Ghosh, S. Roy, and P. N. Sugan-
than, “An adaptive differential evolution algorithm
with novel mutation and crossover strategies for
global numerical optimization,” IEEE Trans. Syst., Man
and Cybern. (SMC), part B, vol. 42, pp. 482–500, 2012.

19.	 Z. Yang, J. He, and X. Yao, “Making a difference
to differential evolution,” in Advances in me-
taheuristics for hard optimization, Z. Michalewicz
and P. Siarry, Eds.: Springer, 2007, pp. 415–432.

20.	 J. Olenšek, Á. Bűrmen, J. Puhan, and T. Tuma,
“DESA: a new hybrid global optimization method
and its application to analog integrated circuit
sizing,” J. Glob. Optim., vol. 44, pp. 53–77, 2009.

21.	 J. Brest, S. Greiner, B. Bošković, M. Mernik, and V.
Žumer, “Self-adapting control parameters in dif-
ferential evolution: a comparative study on nu-
merical benchmark problems,” IEEE Trans. Evol.
Comput., vol. 10, pp. 646–657, 2006.

22.	 S. Das, A. Konar, and U. K. Chakraborty, “Two im-
proved differential evolution schemes for faster
global search,” in Proceedings of GECCO, Wash-
ington D.C.: 2005, pp. 991–998.

23.	 X. Yao, Y. Liu, and G. Lin, “Evolutionary program-
ming made faster,” IEEE Trans. Evol. Comput., vol.
3, pp. 82–102, 1999.

24.	 R. Storn, “On the usage of differential evolution
for function optimization,” in Biennial Conference
of the North American Fuzzy Information Process-
ing Society (NAFIPS), Berkeley: 1996, pp. 519–523.

25.	 R. Gämperle, S. D. Müller, and P. Koumoutsakos,
“A parameter study for differential evolution,” in
Proc. WSEAS NNA-FSFS-EC, Interlaken, Switzer-
land: 2002, pp. 293–298.

26.	 A. Bűrmen, D. Strle, F. Bratkovič, J. Puhan, I. Fajfar,
and T. Tuma, “Automated robust design and opti-
mization of integrated circuits by means of pen-
alty functions,” AEÜ Int. J. Electron. Commun., vol.
57, pp. 47–56, 2003.

27.	 W. Zhu, “Massively parallel differential evolu-
tion—pattern search optimization with graph-
ics hardware acceleration: an investigation on
bound constrained optimization problems,” J.
Glob. Optim., vol. 50, pp. 417–437, 2011.

28.	 I. Fajfar, “Selection strategies and random per-
turbations in differential evolution,” in Proc. IEEE
Congress on Evolutionary Computation, Bris-
bane, Australia: 2012.

Arrived: 25. 07. 2012
Accepted: 09. 10. 2012

I. Fajfar et al; Informacije Midem, Vol. 42, No. 3 (2012), 152 – 163

