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Abstract: Differential evolution is a simple algorithm for global optimization. Basically it consists of three operations: mutation, 
crossover and selection. Despite many research papers dealing with the first two operations, hardly any attention has been paid 
to selection nor is there a place for this operation in the algorithm basic naming scheme. In the paper we show that employing 
certain selection strategies combined with some random perturbation of population vectors notably improves performance in 
high-dimensional problems. Further analysis of results shows that the improvement is statistically significant. The application of the 
approach on a real-world case of a simple operating amplifier circuit exhibits a similar behaviour and improvement as observed with 
the Quartic noisy test function. Due to the nature of the circuit objective function this was expected.
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K majšim populacijam v diferencialni evoluciji
Povzetek: Diferencialna evolucija je preprost algoritem za globalno optimizacijo. Algoritem v osnovi sestavljajo tri operacije: mutacija, 
križanje in izbor. Čeprav obstaja množica znanstvenih prispevkov, ki obravnava prvi dve operaciji, je tretji operaciji namenjeno komaj 
kaj pozornosti, niti ni zanjo namenjenega mesta v izvirnem načinu poimenovanja različic postopka. V prispevku pokažemo, da lahko z 
uporabo različnih postopkov izbora, ki jih kombiniramo z naključno perturbacijo populacijskih vektorjev, opazno izboljšamo delovanje 
postopka na večrazsežnostnih problemih. S podrobnejšo analizo rezultatov pokažemo, da so izboljšave statistično pomembne. S 
preizkusom postopka na resničnem primeru preprostega operacijskega ojačevalnika ugotovimo, da se algoritem vede podobno kot na 
preizkusni funkciji četrtega reda s superponiranim šumom. Glede na naravo kriterijske funkcije vezja smo to pričakovali.

Ključne besede: globalna optimizacija, direktni iskalni postopki, diferencialna evolucija, hevristični postopki, paralelizacija
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1. Introduction

Differential Evolution (DE) is a simple yet powerful algo-
rithm for global real parameter optimization proposed 
by Storn and Price [1]. Through the last decade, the 
algorithm has gained on popularity among research 
as well as engineering circles due to its extreme im-
plementation simplicity and good convergence prop-
erties. The DE algorithm belongs to a broader class of 
Evolutionary Algorithms (EA), whose behavior mimics 
that of the biological processes of genetic inheritance 
and survival of the fittest. One outstanding advantage 
of EAs over other sorts of numerical optimization meth-
ods is that the  objective function needs to be neither 
differentiable nor continuous, which makes them more 
flexible for a wide variety of problems.  

A DE starts out with a generation of NP randomly gen-
erated D-dimensional parameter vectors. New param-
eter vectors are then generated by adding a weighted 

difference of two population vectors to a third vector. 
This operation is called mutation. One then mixes the 
mutated vector parameters with the parameters of an-
other vector, called the target vector, to obtain the so-
called trial vector. The operation of parameter mixing is 
usually called crossover in the EA community. Finally, 
the trial vector is compared to the target vector, and if 
it yields a better solution, it replaces the target vector. 
This last operation is referred to as selection.  In each 
generation, each population vector is selected once as 
the target vector.

There exist several variants of the DE algorithm [2, 3, 4, 
5, 9], of which the most commonly used is DE/rand/1/
bin which we explore in this paper. Before using the 
algorithm, one has to decide upon the values of three 
parameters affecting the behavior of a DE. The first is 
the population size NP, the other two are control pa-
rameters – a scaling factor F, and a crossover rate CR. 
Choosing the values of these parameters is usually 
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a problem-dependent task requiring a certain user 
expertise. Researchers have attempted to tackle the 
problem using several adapting and self-adapting 
strategies to govern the values of the control param-
eters F and CR [6, 7, 8, 9 and the references within] and 
even the population size NP [10, 11, 12, 13, 14]. Oth-
ers have proposed and studied different mutation and 
crossover strategies [15, 16, 17, 18]. No explicit research 
work has been done so far on the third of the DE opera-
tors, the selection, neither is there any intended place 
in the algorithm variant naming scheme (i.e. DE/x/y/z) 
for this operator. In this paper we investigate how dif-
ferent selection schemes affect the behavior of the DE 
algorithm, in particular its ability to escape the local 
minima or stagnation. In addition to that we applied 
what would in genetic algorithm be called mutation, 
i.e. we randomly changed the population vector pa-
rameters with a fixed probability. Since the term muta-
tion is already reserved in DE, we named this operation 
a random perturbation.

In the next section, we shortly describe the functioning 
of the basic DE algorithm, and in Section 3 we propose 
a random vector perturbation and different selection 
algorithms that we investigate. Finally, we present 
some results of optimizing test functions and a real 
electronic circuit in Sections 4 and 5, respectively.

2. Differential Evolution Overview

Consider the objective (criterion) or fitness function 
, where one has to find a minimum  so 

that . In this case a is called a global 
minimum. It is rarely possible to find an exact global 
minimum in real problems, so for practical reasons one 
must accept a candidate with a reasonable good solu-
tion.

In order to search for a global minimum, differential 
evolution utilizes NP D-dimensional parameter vectors 
xi,G, i=1,2,...,NP as a population in generation G. NP does 
not change from generation to generation. The initial 
population is chosen randomly and – if no prior infor-
mation about the fitness function is known – it should 
cover the entire search space uniformly.

During the optimization process, the new parameter 
vectors are generated by adding a weighted difference 
of two randomly chosen population vectors to a third 
vector: vi,G+1=xr1,G+F∙(xr2,G–xr3,G) with integer, mutually 
different, random indices r1,r2,r3∈{1,2,...,NP}, which must 
all be different from  i  as well, and a real constant factor 
F∈[0,2]. This operation is called mutation and the thus 
obtained vector the mutated vector.

The mutated vector parameters are then mixed with 
another vector, the so-called target vector, in order to 
produce a trial vector ui,G+1=(u1i,G+1,u2i,G+1,...,uDi,G+1)  where

 
(1)

Here, randb(j)∈[0,1] is the jth execution of the uniform 
random generator, CR∈[0,1] is user-determined con-
stant, and rnbr(i)∈{1,2,...,D} is a random index. The latter 
insures that the trial vector gets at least one parameter 
from the mutated vector. This operation of parameter 
mixing is usually called crossover in evolutionary search 
community.

Finally, a selection is performed in order to decide 
whether or not the trial vector should become a mem-
ber of generation G+1. The value of the fitness function 
at the trial vector ui,G+1 is compared to its value at the 
target vector xi,G using the greedy criterion. Only if the 
trial vector yields a better fitness value than the target 
vector, the target vector is replaced. Otherwise the trial 
vector is discarded and the target vector retained.

3. Random Perturbation and Differ-
ent Selection Strategies 

We focus our work on the stage of the DE algorithm 
after crossover, i.e. on the stage when the trial vector is 
already fully formed.

The idea for our modification came first from a simple 
observation that with a crossover rate CR approaching 
1 not much of the target vector survives in its offspring 
(trial vector). In that sense one can argue that the 
search direction from the target to the trial vector can 
be as good (or as bad) as any other direction. The hy-
pothesis we want to test is that there might exist some 
other (possibly better) candidate for replacement than 
the target vector itself.

In what follows, we propose and separately test three 
different rules for selecting the candidate to replace 
the trial vector. We select that candidate according to 
one of the three selection algorithms.
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Algorithm 1: Replace the vector closest to the target 
vector.

Input: trial vector ui,G+1, target vector xi,G, Gth gen-
eration of NP parameter vectors xn,G, n=1,2,...,NP
c = -1
dmin = ∞
for n = 1 to NP do
	 if f (ui,G+1) < f (xn,G) and d(xi,G, xn,G) < dmin then
		  c = n
		  dmin = d(xi,G, xn,G)
	 endif
endfor
if c ≠ -1 then
	 xc,G is replaced by ui,G+1
endif

The notation d(∙,∙) in Algorithm 1 denotes an Euclidean 
distance. The algorithm replaces, of all the vectors that 
yield a worse fitness value than the trial vector, the one 
that is geometrically closest to the target vector. Notice 
that this strategy, the same as the original algorithm, 
always replaces the target vector as long as it is worse 
than the trial vector. Otherwise, it seeks after the can-
didate which is closest possible to the target vector 
to replace it. If no such vector is found, then the trial 
vector is discarded. As in the original algorithm, the 
target vectors with a relatively bad fitness value will be 
replaced more likely, while those with a better fitness 
value will survive. In addition to that, however, some 
near vector is moved to the place where the target 
vector would move if the target vector were not worse 
than the trial vector. This speeds up the clustering of 
the population members around the members with 
generally better fitness values. On one hand this can 
accelerate the convergence significantly, on the other 
hand, however, there is a danger of losing a necessary 
diversity too soon and thus not finding a global solu-
tion.

Algorithm 2:  Replace the vector closest to the trial vec-
tor.

Input: trial vector ui,G+1, Gth generation of NP pa-
rameter vectors xn,G, n=1,2,...,NP
c = -1
dmin = ∞
for n = 1 to NP do
	 if f (ui,G+1) < f (xn,G) and d(ui,G+1, xn,G) < dmin then
		  c = n
		  dmin = d(ui,G+1, xn,G)
	 endif
endfor
if c ≠ -1 then
	 xc,G is replaced by ui,G+1
endif
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The approach with Algorithm 2 is quite different in 
that it searches for the candidate that is geometrically 
closest to the trial vector instead of the target vector. 
In that sense replacements are made that favor smaller 
jumps and encourage searching over less promising 
areas as well.

Algorithm 3: Replace either the target vector or the 
first one of the first half of the population that is worse 
than the trial vector.

Input: trial vector ui,G+1, target vector xi,G, Gth gen-
eration of NP parameter vectors xn,G, n=1,2,...,NP
if f (ui,G+1) < f xi,G) then
	 c = i
else
	 c = -1
	 for n = 1 to NP/2 do
		  if f (ui,G+1) < f (xn,G) then
			   c = n
			   exit_for_loop
		  endif
	 endfor
endif
if c ≠ -1 then
	 xc,G is replaced by ui,G+1
endif

The construction of Algorithm 3 is not so obvious at the 
first glance. Similarly to the original algorithm and Algo-
rithm 1, one first checks whether the target vector is to 
be replaced, i.e. if the trial vector yields a better fitness 
value than the target vector. Otherwise we replace the 
first member of the first half of the population whose 
fitness value is worse than that of the trial vector. The 
idea behind that is to have one half of the population 
evolve under the original DE rules while accelerating 
the other half with further replacements. Even these 
additional replacements are applied asymmetrically 
with the members with a smaller index affected more 
often. That way we wanted to induce as little a change 
to the original method as possible, while inducing a 
relatively strong drag on a limited number of popula-
tion members. The 1:1 ratio between both parts of the 
population was chosen arbitrarily. It should be noted 
that more frequent replacements lead towards a faster 
loss of diversity in population, which in turn lessens a 
chance to find the global minimum, and we wanted to 
find the equilibrium between two usually conflicting 
goals, namely fast convergence and high probability 
of finding the global optimum. The randomization in-
troduced in the remainder of this section is supposed 
to make up for the before mentioned loss of diversity 
and in the same time indirectly to fine tune the ratio 
between two parts of the population.
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Before going into experiments, let us introduce one 
more tiny though important modification to the al-
gorithm. It is interesting to notice that although the 
algorithm itself belongs to a class of metaheuristics 
and stochastic optimization, the randomness in the 
original concept is only used for the selection of the 
vectors from which the mutated vector will be formed 
and for mixing the mutated and target vector param-
eters. The vector parameters  themselves  are  chang-
ing randomly only indirectly through the mutation 
and crossover, and the obtained values are limited 
to a set of linear combinations of parameters already 
contained in a population. Some authors have already 
introduced some more randomness into DE, either di-
rectly by randomization of the vector parameters [19, 
20] or indirectly by randomizing the algorithm control 
parameters F and CR [14, 21, 22], thus increasing the ex-
plorational potential of the algorithm, and even mak-
ing it possible to prove the convergence [20].

In our study we decided simply to mutate every single 
parameter of the trial vector with a fixed probability 
just before the selection procedure takes place:

 
(2)

where rand(j) is the call of the random generator that 
returns the uniformly distributed values along the 
entire jth axis of the parameter space. The constant 
probability of 0.005 was obtained empirically by a few 
preliminary test runs of the algorithm, which also in-
dicated that the uniform distribution over the whole 
parameter space yielded somewhat superior perfor-
mance compared to a normal distribution around the 
current parameter value often used in literature. We 
call this operation perturbation.

4. Experiments on test functions

Overall Performance

In order to get an overall picture and the first impres-
sion of the impact of the three proposed selection strat-
egies and random vector perturbations, we carried out 
a simple test. For testing purposes, fourteen standard 
benchmark functions from [23] were selected, thirteen 
high-dimensional (D=30) and one low-dimensional 
(D=4) function.  Then we randomly selected the three 
parameters from the intervals NP∈{10,...,100}, F∈[0,1], 
and CR∈[0,1], and initialized a random population of 
the NP parameter vectors lying within the boundar-
ies given for the test function in question. Next we ex-

ecuted eight optimization runs of the 150,000 criterion 
function evaluations (CFEs) with the same parameter 
values and initial vector population, but each time 
applying either the original or one of the three pro-
posed selection schemes, once without and once with 
a random perturbation. We repeated this 5,000 times 
for each test function, each time with different control 
parameter values and initial vector population. The re-
sults are summarized in Table 1.

Table 1: Comparison of different modifications of the 
algorithm with the original

Selection 
Method

Without Perturbation With Perturbation

50,000
CFEs

150,000
CFEs

50,000
CFEs

150,000
CFEs

Original – – 44.1/51.7 43.7/44.1

Algorithm 1 53.5/43.4 45.1/48.0 69.9/26.9 63.1/29.0

Algorithm 2 52.8/44.1 45.7/47.4 62.4/34.4 57.3/35.4

Algorithm 3 61.4/34.6 53.0/37.1 75.2/20.6 68.5/20.5

The fourteen pairs of the numbers in the table stand for 
the seven different comparisons (each of the modifica-
tions separately compared to the original) at two dif-
ferent times of the algorithm run: after 50,000 CFEs and 
after 150,000 CFEs. The numerator represents the per-
centage of cases in which the corresponding modifica-
tion yielded a better fitness value (at the precision of 6 
significant digits) than the original, while the denomi-
nator speaks of the percentage of cases in which the 
original method performed better. The sum is gener-
ally smaller than 100, because in some cases both vari-
ants gave the same result. The counting was carried out 
over all runs regardless of the control parameter set-
ting or the selected test function. In real-life problems, 
often the practitioner has little or no  knowledge about 
the fitness function and consequently about the best 
control parameter settings. Therefore, it seems that 
averaging over a range of different test functions and 
control parameter settings, selected in the Monte-Car-
lo manner, is an appropriate measure of the algorithm 
overall performance. 

In the table, the pairs of the numbers in the white cells 
represent the state after 50,000 CFEs. We conjectured 
that at this optimization stage the convergence is gen-
erally not yet fully reached. Consequently, those pairs 
of the numbers indicate the convergence speed rather 
than the overall ability to find a global minimum.

The numbers in the shaded cells represent the state 
after 150,000 CFEs, when we assume that the number 
of the cases reaching the final solution is considerably 
larger than of those after 50,000 CFEs. Hence we con-
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sider these results to reflect the ability of the algorithm 
to find a good final solution.

From the table one can infer some quite interesting ob-
servations. Replacing – instead of target vector – the 
candidate closest to target (Algorithm 1) or closest to 
trial vector (Algorithm 2) without using perturbation 
performed just slightly better after 50,000 CFEs (1st 
column, 2nd and 3rd row, respectively) and slightly 
worse after 150,000 CFEs (2nd column, 2nd and 3rd 
row, respectively). That implies that the more frequent 
replacements in both cases speed up the convergence 
as expected but, in general, they cause the algorithm 
more often to stuck in one of the local minima or to 
reach stagnation in the end. That is, however, not the 
case with the selection strategy using Algorithm 3. This 
strategy outperformed the original for almost twice 
more cases after 50,000 CFEs and still remained much 
better after 150,000 CFEs (4th row, 1st and 2nd col-
umn, respectively). It is important to note that with this 
kind of modification the algorithm still performs more 
replacements than the original one, which obviously 
speeds-up the convergence. The main difference here 
is that we perform these additional replacements only 
on a limited number of the population members, the 
others still undergoing the original selection scheme. 
Technically, we can speak of two different schemes run-
ning in parallel.

Comparing the original method with and without per-
turbations gives us no noticeable difference (1st row, 
3rd and 4th column). As reasonably expected, random 
perturbations slow down convergence to some extent 
(1st row, 3rd column), but in the long run no variant 
outperforms the other (1st row, 4th column). It is quite 
interesting to notice that while perturbation seems to 
have no observable effect when applied to the origi-
nal algorithm, it improves the other three variants no-
ticeably. It seems that in these cases perturbation not 
only makes up for the loss of the population variance 
– which might have occurred due to a too fast conver-
gence induced by more frequent replacements – but 
also improves the overall performance. It seems that 
the changed selection schemes and random perturba-
tions support each other. Nevertheless, comparing the 
results of the selection algorithms 1, 2, and 3 with per-
turbation after 50,000 and 150,000 CFEs shows that in 
all the three cases, in the long run, the original method 
compensates a little for the much worse performance 
during the first part of the run. This leaves us, possibly, 
some room for improvement by balancing the fac-
tors that affect the convergence speed and the rate of 
change in the population diversity.

A Closer Look 

Let us now focus a little closer on Algorithm 3 com-
bined with vector perturbation exhibiting the best 
overall improvement in the previous analysis. In order 
to get a more accurate picture, we made the same com-
parisons as before, only this time for each test function 
separately. The results are summarized in Table 2. The 
table shows comparisons of the original method with 
the original method with perturbation, and with Algo-
rithm 3 with and without perturbation. The numbers 
in normal writing represent the state after 50,000 CFEs, 
while the ones in boldface the state after 150,000 CFEs.

Table 2: Comparison of different modifications by sep-
arate test functions

Test Function

Modification Compared to the Original 
Algorithm

Original 
with Pertur-
bation

Algorithm 3
Algorithm 
3 with Per-
turbation

f1 (Quadratic) 34.72/65.28 
31.60/68.40

70.83/29.17 
68.75/31.25

80.21/19.79 
76.39/23.61

f2 (Schwefel 2.22) 33.45/66.55 
31.71/68.29

70.73/29.27 
66.90/33.10

74.22/25.78 
70.03/29.97

f3 (Schwefel 1.2) 51.04/48.26 
54.51/45.49

75.35/23.96 
70.49/29.51

77.08/22.57 
78.47/21.53

f4 (Schwefel 2.21) 49.48/48.08 
48.43/49.83

63.07/34.49 
59.58/39.72

83.97/12.80 
79.79/18.82

f5 (Generalized 
Rosenbrock)

49.83/50.17 
52.96/47.04

58.19/41.81 
56.10/43.90

77.00/23.00 
73.87/26.13

f6 (Step) 31.36/24.39 
29.97/9.76

31.36/27.87 
18.12/26.48

47.04/6.62 
35.19/3.48

f7 (Quartic noisy) 46.50/53.50 
49.30/50.70

70.28/29.72 
67.83/32.17

77.97/22.03 
77.62/22.38

f8 (Generalized 
Schwefel 2.26)

57.14/42.86 
58.54/29.62

49.83/50.17 
36.59/58.19

82.58/17.42 
78.75/11.15

f9 (Generalized 
Rastrigin)

50.69/48.96 
49.65/43.40

66.67/33.33 
57.64/39.24

80.90/19.10 
79.17/15.28

f10 (Ackley) 48.26/50.69 
48.96/33.33

60.07/39.24 
43.75/41.67

81.60/17.36 
68.40/15.63

f11 (Generalized 
Griewank)

32.17/61.19 
31.47/36.71

63.99/29.72 
42.31/29.02

73.08/20.28 
53.50/17.83

f12 (Generalized 
penalty function 1)

43.36/56.29 
36.01/45.80

68.53/31.12 
52.45/33.22

81.47/18.53 
65.38/20.63

f13 (Generalized 
penalty function 2)

45.10/54.90 
42.66/43.01

62.59/37.06 
50.35/37.06

82.17/17.48 
72.03/15.03

f13 (Kowalik) 44.41/52.45 
45.80/46.50

48.25/47.55 
50.70/45.10

52.80/45.80 
49.65/45.80

The first and foremost important observation here is 
that the modification combined with perturbation 
shows noticeably and consistently better performance 
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in all cases except for the Kowalik test function where 
there is no observable difference. Again we see that 
perturbation alone does not really improve perfor-
mance of the original method, two notable exceptions 
being the Schwefel 2.26 and Step functions. 

The Schwefel function is somehow tricky in that the 
global minimum is placed geometrically remote from 
the next few best local minima. The original method 
exhibits quite a good convergence at the beginning, 
while later on perturbations help find the global mini-
mum as without them the original method would be 
stuck in a local minimum (see the 1st column, Schwe-
fel 2.26 function). Interestingly enough, modification 
without perturbation in that case performs much 
worse than the original method. This probably stems 
from the fact that this method replaces candidates of 
one half of the population excessively, thus addition-
ally forcing the population in one of the local minima. 
The modified method with perturbation, however, per-
forms much better in this case. 

The same goes for the step function. This function, 
too, poses some difficulties for the original algorithm 
because it consists of many plateaus and discontinui-
ties. All points within a small neighborhood will have 
the same fitness value, making it very difficult for the 
process to move from one plateau to another. Pertur-
bations seem to help here significantly.

Up to now we were only interested in the number of 
cases in which one method is better than the other. 
What about the fitness values they actually produce? In 
Table 3 one finds the best fitness values averaged over 
all runs, comparing the original algorithm with the one 
using Algorithm 3 with perturbations. Notice that the 
values are quite large. One must not forget that the-
se values were obtained by running the optimization 
using completely random optimization parameters. So 
many of the parameter values were used that were not 
even close to the recommendations in the literature. 
But as we are interested only in the differences betwe-
en different algorithm variants, this is not an issue.

In the first and second column of Table 3 one finds the 
average minimuns for each of the two variants, while 
in the last column there are the results of paired two-
-sampled two-tailed t-test of comparing the modified 
approach with the original.

Table 3: Comparison of the average best fitness obta-
ined by the original algorithm and Algorithm 3 with 
perturbation

Test Func-
tion

Original
(Average 
Best Fitness)

Algorithm 3 
with Pertur-
bation
(Average 
Best Fitness)

T-Test 
Values

Analyti-
cal (ac-
tual) best 
fitness

f1 (Quadratic) 1.694659×103 2.338428×102 p<0.01 
t=5.09

0

f2 (Schwefel 
2.22)

6.908752 2.819474 p<0.01 
t=5.47

0

f3 (Schwefel 
1.2)

1.429065×104 8.331654×103 p<0.01 
t=13.95

0

f4 (Schwefel 
2.21)

17.24446 7.910773 p<0.01 
t=10.69

0

f5 (Generali–
zed Rosen–
brock)

2.407282×106 2.566153×105 p<0.01 
t=3.17

0

f6 (Step) 1.315575×103 2.352474×102 p<0.01 
t=4.11

0

f7 (Quartic 
noisy)

1.747322 0.1379149 p<0.01 
t=4.40

0

f8 (General–
ized Schwefel 
2.26)

-1.069594×104 -1.167699×104 p<0.01 
t=10.75

-12569.5

f9 (Generali–
zed Rastrigin)

71.73974 49.26490 p<0.01 
t=11.05

0

f10 (Ackley) 6.395496 2.192476 p<0.01 
t=10.63

0

f11 (Generali–
zed Griewank)

10.83875 1.257148 p<0.01 
t=4.22

0

f12 (Generali–
zed penalty 
function 1)

4.372791×106 7.482104×105 p=0.02 
t=2.27

0

f13 (Generali–
zed penalty 
function 2)

9.736573×106 1.050585×106 p<0.01 
t=2.786

0

f15 (Kowalik) 1.358227×10-3 1.836926×10-3 p=0.11  
t=-1.61

0.0003075

The test further confirms our speculations about the 
modification bringing significant advantages over the 
original DE. In twelve out of the fourteen test functions 
the modification performs significantly better at a 99% 
significance level. Again, an exception is the Kowalik 
function where the test actually indicates a degrada-
tion of performance (observe the negative t-value), 
although not a significant one. 

Parameter Impact

In our experiments so far we didn't pay any attention to 
the actual control-parameter or population-size selec-
tion. The values were picked up completely randomly 
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within the set intervals. In this section we want to in-
vestigate the effect of different parameter settings on 
the algorithm performance with the proposed modifi-
cations. We compare the original algorithm to the one 
using Algorithm 3 with perturbation. In this paper we 
summarize the results only for the case of Generalized 
Schwefel 2.26 function. It should be noted, however, 
that we observed a similar behavior elsewhere as well 
[28].  

We started out by choosing the control parameter set-
tings most commonly found in literature, i.e. F = 0.5 
and CR = 0.9. Our experimenting showed that at these 
values the best fitness (assuming a fixed number of 
150,000 CFEs) is generally obtained at the population 
size NP = 40. The results in this section are obtained by 
changing one of the three values while keeping the 
other two fixed. The best fitness values were averaged 
over 25 independent runs.

Figure 1 shows that the original method completely 
failed to reach  the  global  minimum  in  the  Schwefel  
2.26  function (at –12569.5) safe for the lowest values 
of CR. Interesting, however, is that the modification 
enables DE to find the global minimum at lower and 
higher values of CR, but not at the values around 0.7. 
A similar behavior can be observed in other functions 
as well [28], where the modification brings an improve-
ment at the smaller and bigger values of CR. 

Figure 1: Impact of the crossover rate (CR) on the al-
gorithm performance. The solid (black) line shows the 
best fitness values averaged over 25 runs, as obtained 
by the original DE. The dashed (red) line shows the re-
sults produced by DE with Algorithm 3 and perturba-
tion. The graph shows a situation at the fixed F=0.5 and 
NP=40.

Figure 2 shows the results for the same test function 
using constant CR=0.9 and NP=40, while changing 
F from 0.05 to 0.95. The general pattern that is to be 

observed is somewhat different from the observations 
with the changing parameter CR. We observe the major 
improvement at the smaller F values. It has been men-
tioned in the literature that F must not be too small 
in order to be able to find a minimum [25]. A small F 
means a small difference vector and hence a small dis-
placement of a mutated vector. It seems that too big a 
displacement is not good for the convergence either. 
An interesting observation is that our modification im-
proves the results more at the end of smaller F values, 
and often to the extent that outperforms the original 
algorithm at any other F value. It seems that small dis-
placements – which seem to produce a slow but stable 
convergence – go hand in hand with the anticipated 
speed up caused by our modification, together pro-
ducing a more stable and faster convergence.

Figure 2: Impact of the control parameter F in the Gen-
eralized Schwefel 2.26 function. The graph shows a 
situation at the fixed CR=0.9 and NP=40.

In Figure 3, which depicts the impact of the popula-
tion size, we can see that the major improvement is 
achieved at lower population sizes. This effect is espe-
cially evident in case of Schwefel 2.26 function when 
the minimum is reached with our modification but not 
with the original method. 

The large population size in DE usually guarantees a 
larger probability of finding the global minimum and, 
originally, the proposed population size was NP = 10D 
[24]. Other sizes were proposed later but were all con-
siderably greater than the fitness function dimension-
ality D. As clearly seen from Figure 3 and the graphs in 
[28], at larger population sizes our modification does 
not bring any improvement over the original method 
whatsoever. That is somehow expected since the DE 
should be quite stable at larger NP. The problem how-
ever is that the stability is of no great practical use if 
after a relatively large number of CFEs the algorithm is 
still very far from the actual solution. We see one of the 
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strongest values of our modification in having instead 
of one large population many smaller ones running in 
parallel which could bring together the ability to actu-
ally find the global minimum and speed up of conver-
gence.

Figure 3: Impact of the population size in the General-
ized Schwefel 2.26 function. The graph shows a situa-
tion at the fixed CR=0.9 and F=0.5.

5. Test runs on a simple operating 
amplifier circuit

The Circuit

After successfully testing the proposed algorithm 
on standard benchmark functions, we wanted to see 

whether the method behaved in the same fashion on 
a real circuit as well. As an example we look at a simple 
two-stage operating amplifier, whose circuit diagram is 
shown in Fig 4. The amplifier is designed in a 0.18 μm 
CMOS process with 1.8 V supply voltage.

The operating point of the amplifier is determined by 
the input bias current flowing into the drain terminal of 
Xmn1b. Xmn1 and Xmn4 mirror this current to set the 
bias of the differential pair (Xmn2 and Xmn3) and out-
put amplifier (Xmp3). Transistors Xmp1 and Xmp2 act 
as active load to the differential pair. Frequency com-
pensation is introduced by Rout and Cout. Ports inp, inn, 
and out represent the noninverting input, inverting 
input, and output of the amplifier, respectively. Tran-
sistors Xmn1s and Xmp1s power down the amplifier 
when signals slp (slpx) are pulled high (low).

The testbench circuit shown in Fig 5 provides supply 
voltage (Vdd) to the amplifier along with a 100 μA bias 
current. Feedback is introduced by resistors Rfb and 
Rin. Rload and Cload represent the load resistance and ca-
pacitance. Because the supply voltage is single-ended, 
the input signal (Vin) requires a common mode bias 
(Vcom=Vdd/2).

During the optimization we simulated the circuit across 
three corners: nominal (nominal PMOS and NMOS 
model, 25○ C, Vdd=1.8 V), worst power (fast NMOS and 
PMOS model, 100○ C, Vdd=2.0 V), and worst speed (slow 
NMOS and PMOS model, 0○ C, Vdd=1.8  V). In each of the 
corners we performed the following analyses: operat-
ing point, DC sweep of input voltage (from –2 V to 2 
V), DC sweep of common mode bias (from 0.7 V to Vdd 

Figure 4: The circuit diagram of a simple two stage operating amplifier.
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– 0.1 V), small signal AC analysis, and transient analysis 
of the response to a ±0.5 V step in input voltage. Rfb and 
Rin were both set to 1 MΩ, except in transient analysis 
where Rin was set to 100 kΩ.

From the obtained results of  above analyses the fol-
lowing performance measures were derived:
-	 Vgs and Vds overdrive voltage (i.e. Vgs–Vt and Vds–Vdsat) 

for all transistors, except Xmn1s and Xmp1s, at 
operating point and at all points analyzed in the 
DC sweep of common bias,

-	 output voltage swing where DC gain is above 
50% of maximal gain,

-	 gain, unity-gain bandwidth (UGBW), and phase 
margin,

-	 overshoot, undershoot, 10% - 90% rise and fall 
time, 5% settling time, and slew rate of transient 
response,

-	 total gate area of all transistors (except Xmn1s 
and Xmp1s).

Next, from these performance measures, we construct-
ed the cost function [26] consisting of the following 
requirements:
-	 overdrive voltage should be at least 1m V,
-	 output voltage swing must be greater than 1.6 V,
-	 gain, UGBW, and phase margin must lie above 75 

dB, 60 MHz, and 60○, respectively,
-	 overshoot and undershoot must be below 10%, 

rise and fall time below 100 ns, settling time be-
low 300 ns, and slew rate above 10 V/μs,

-	 total gate area should be less than 1500 μm2.

Thus constructed cost function was used for guiding 
the optimization algorithm which should find optimal 
adjustment of the 10 circuit parameters listed in Table 
4.

Table 4: Definitions of the circuit parameters subject to 
optimization

Parameter Description Range Unit

dif_w
channel width of Xmn2 
and Xmn3

[1, 95] μm

dif_l
channel length of Xmn2 
and Xmn3

[0.18, 4] μm

load_w
channel width of Xmp1 
and Xmp2

[1, 95] μm

load_l
channel length of Xmp1 
and Xmp2

[0.18, 4] μm

mirr_w
channel width of Xmn1b, 
Xmn1 and Xmn4

[1, 95] μm

mirr_l
channel length of Xmn1b, 
Xmn1 and Xmn4

[0.18, 4] μm

out_w channel width of Xmp3 [1, 95] μm

out_l channel length of Xmp3 [0.18, 4] μm

c_out capacitance of Cout [0.01, 10] pF

r_out resistance of Rout [0.001, 200] kΩ

Performance measures were evaluated in all corners, 
except for the Vgs and Vds overdrive voltages, which 
were evaluated only in the nominal corner. The cost 
function was expressed as a sum of contributions 

where m is the number of performance measures. Eve-
ry performance measure resulted in one contribution 
fi, which was obtained by transforming its worst value 
observed across all corners (yi(x)) using a piecewise-
-linear function f(yi(x), gi, ni, pi, ci). Here gi, ni, pi, and ci 
denote the goal, the norm, the penalty factor, and the 
tradeoff factor, respectively. For requirements of the 
form yi(x) ≤ gi the contribution was computed as 

For requirements of the form yi(x) ≥ gi the contribution 
was 

The tradeoff factor for overdrive voltages was set to ti 
= 0, because we are not interested in improving them 
beyond their respective goals. All other tradeoff factors 
were set to ti = 0.001 and the penalty factors were set to 
pi = 1. The norms were set to gi / 10 for all performance 
measures, except for the area, where ni = 100 μm2 was 
used.

Figure 5: The testbench circuit for the operating ampli-
fier from Fig 4.
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Optimization Results

We ran the circuit optimization using the same DE para-
meters as with the test functions in the previous secti-
on. Simple circuits such as the one in question often ex-
hibit unimodal objective function contaminated with 
numerical noise. Therefore we expected the results to 
be reminiscent of those obtained with the Quartic noi-
sy test function [28]. 

During each optimization run we performed, as with 
test functions, 150,000 CFEs. We run the optimizations 
on 20 2.66  Ghz Core i5 (4 cores per machine) machi-
nes, and it took approximately 3 weeks to complete 
the computation. Unlike with most test functions, the 
study of the results showed us that already after 20,000 
CFEs there were no observable changes neither in ob-
tained average fitness values nor standars errors. From 
relatively flat lines with almost zero standard error at 
fitness value of  0.56 we conclude that the minimum 
actually lies at that value (cf. Figs 6 to 8). 

Figure 6: Impact of the crossover in optimizing the sim-
ple operating amplifier circuit, after 5,000 CFEs (left) 
and 20,000 CFEs (right). The graph shows a situation at 
the fixed F=0.5 and NP=40.

Figure 7: Impact of the control parameter F in optimi-
zing the simple operating amplifier circuit, after 5,000 
CFEs (left) and 20,000 CFEs (right). At the values of 
F=0.2 and below there was practically no change af-
ter 5,000 CFEs with the original algorithm, while some 
further improvement could be observed with Algori-
thm 3 with perturbation. The graph in this case is com-
paratively flat, showing lessened sensitivity to control 
parameter F. The graph shows a situation at the fixed 
CR=0.9 and NP=40.

Similarly to the results with Quartic noisy function, our 
modification does not improve the best results obtain-
ed with the original DE. The very important observati-
on however, is the fact that it does not worsen the best 
results either, and the resulting fitness values are quite 
better at the control parameter values where the origi-
nal DE did not perform very well. In that sense one can 
argue that applying Algorithm 3 with perturbatuion 
lessens the algorithm sensitivity to control parameter 
values. Although the differential evolution algorithm 
itself is surprisingly simple to implement there is still 
much bewilderment among scientists about setting 
the values of the control parameters. So any step to-
wards parameter insensitiveness of the DE is welcome.

As seen in Fig 8, one still needs a relatively large popu-
lation in order to stand a fair chance of finding the glo-
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bal minimum. It seems that innumerable local minima 
introduced by the intensive numerical noise could only 
be overcome with relatively large populations. At the 
same time we observe that our proposed modification 
quite improves results at small populations, i.e. NP < 20. 
Eventhough the improvement itself does not lead us to 
the global minimum at that small populatuion sizes, it 
could be crucial for reducing the sizes of sub-populati-
ons in the multi-population model of parallel differen-
tial evolution [27 and the references within].

6. Conclusion

In the paper we studied different replacement schemes 
in the DE algorithm combined with additional random 
perturbation of vector parameters. By experimenting 
with a suite of standard test functions we observed 
that only one replacement scheme provided observ-

ably better results than the original algorithm. It was 
somehow surprising to note that perturbation did not 
improve behavior of the original replacement scheme 
while it improved all the others.

Studying the performance of Algorithm 3 combined 
with random perturbation showed a statistically sig-
nificant improvement in all higher dimensional test 
functions. We also saw that the improvement is greater 
at certain values of the control parameters and popula-
tion sizes, i.e. at lower values of F and NP, and at lower 
as well as higher values of CR. 

Especially outstanding was the improvement in small-
er population sizes. According to the outcomes of the 
experiments with both the Quartic noisy function and 
the real-world circuit we beleive it is worthwile to aim 
some research effort in the direction of DE parallelizati-
on using sub-populations of sizes below 20. 

One of the advantages of the approach proposed in 
this paper is the fact that its intervention with the origi-
nal method does not interfere with any other opera-
tion and can therefore be applied independently and 
combined with many other approaches proposed in 
literature.

All in all, the beauty of the original DE algorithm is its 
utmost implementation simplicity. Our research tried 
not to stray away from this simplicity and we showed 
that it is possible to improve the algorithm perfor-
mance by only changing the rule for replacing the 
population members combined with simple random 
perturbation. We believe that further work in this direc-
tion is worthwhile.
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