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Dimensionality Reduction Methods

Luigi D’Ambral Pietro Amenta and Michele Gall®

Abstract

In case one or more sets of variables are available, the udimehsional reduc-
tion methods could be necessary. In this contest, afteriawewn the link between
the Shrinkage Regression Methods and Dimensional Redubigthods, authors
provide a different multivariate extension of the Gartheai PLS approach (1994)
where a simple linear regression coefficients frameworkdcbe given for several
dimensional reduction methods.

1 Introduction

When the number of variables is very large, as well as, ingores of more than one sets
of them playing a logical asymmetrical role (explanatorg aesponse variables), it may
be advantageous to find for each set a linear combinationrablas (latent variables)
having some properties in terms of correlation, covariamaariance. The criteria for an
appropriate new basis depends, of course, on the apphc&ioe way of approaching this
problem is to project the data on the maximum data variatidosggace, i.e. the subspace
spanned by the largest principal components (Principal g@orant Analysis — PCA).
Nevertheless, the study of multivariate predictions cdaddalso, faced with several ap-
proaches, for example, Constrained Principal Componeilysis (CPCA) (D’Ambra
and Lauro, 1982). In customer satisfaction evaluation wlikee relationships between
expectations and perceptions are taken in account, ansisalyuld be developed by
looking for the subspace, maximizing the covariance betviiee projected scores of both
sets. This subspace provides the largest singular valuegs abvariance matrix between
expectation and perception data (D’Ambra et al., 1999)alinwhen the goal is to pre-
dict a dependent variable as well as possible in terms of $epsre error, an appropriate
model is Reduced Rank Regression (RRR). In general, whegadhles to predict more
dependent variables by substituting the set of observedeaiory variables with a fewer
sequence of orthogonal latent variables, Dimensional BetuMethods (DRM) should
be applied. The commonly used DRM methods are Principal @mept Regression
(PCR), Canonical Correlation Regression (CCR), RRR antddPaeast Squares (PLS;
Wold, 1966). These methods, together with the shrinkags,@iay an important role in
order to overcome the collinearity problem.
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The paper is organized into 5 sections. In Section 2 the basation is given. Section
3 briefly presents the linkage between the shrinkage ragressethods and the dimen-
sional reduction methods. In this Section we also proposexsension of the Principal
Covariates Regression (de Jong and Kiers, 1992) in ordemdafcontinuum among the
DRM method. Main focus of this paper is in Section 4. Follogvthe Garthwaites’ PLS
approach (1994), we show how a simple linear regressioticesits framework could be
given for the considered DRM methods. Last Section incleidese conclusive remarks
on the methodology proposed, as well as topics for furthezaech.

2 Notation

LetQq,...,Qs,...,Qk be K response variable groups observed/orstatistical units
and collected in a matrix™ = [Y'|...|Y*|...|YX], of order (N, S Qk>, where

Y(%Vle)" . ,SQ’ijQk),...,Y(ﬁxQK) are K different matrices. Thé-th matrix with generic
elementyfq (t=1,...,N; g = 1,...,Qy) denotes the value of theth criteria vari-
able observed on thieth statistical unit for thé:-th response variable groups. Moreover,
let X(n«.) be a matrix of independent variables wittnk (X) = S < min (N, J). The
genericelement;; (i =1,...,N;j =1,...,J)isthe value of thg-th independent vari-
able observed on the sanh statistical unit. In this paper we assume that all vaeisb
have zero mean as regards the weight diagonal mBtridose general term i/ N. Let
Px = X(XTX)*XT orthogonal projector onto the subspace spanned by the oslom
X with XT the transpose of matriX. Finally, let7(s, be an orthogonal matrix of order
(N x S) containing$S latent variables so as to obtain the fitted response matrf)’g hy=
T(S)(T(g)T(S))flT(g)Y = XB(S) with Lg = XTT(S,l)(T(gil)XXTT(S,l))71T£71)X.
Let denoteX the standardized” matrix.

3 Shrinkage regression and dimensional reduction meth-
ods for multivariate analysis

In literature many shrinkage regression methods have bemoged. PCR, PLS, RRR
and Continuum Regression (CR) are only some among the muosufaones (Stone and
Brooks, 1990; Frank and Friedman, 1993; Brown, 1993; Br@uoktsStone, 1994). These
methods should be used when a large singular value is assbéatwo or more inde-
pendent variables with "large” variance decompositiontipas. These variables may
determine collinearity problems with unrealistic and shakdinary least square coeffi-
cientsb®™* = (XTX) ' XTyk(k=1,... K, q=1,...,Qu).

An approach to solve the collinearity problem consistsjiaeing the factof X7 X)~!
in expression ob?~ with a better-conditioned matrig. In the PCR, the matrixy
is given from a spectral decomposition &' X: X*X = 37 \jv;0] whereS <
min (N, J) is the rank ofX. Differently, PLS looks for a vector (||c|| = 1) such that
the scalar producy” X c is maximal andb « c. This leads to consider the predictor
bPES o XTyk replacing(X” X)~! with a better-conditioned matri& o I,. Finally,
Hoerl (1962) and Hoerl and Kennard (1970) recommend the tideeaidge regression
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with b = (X' X +61,) "' XTy¥ andd > 0. In Table 1 all the conditioned matrices for
the different techniques are given.

Table 1: Several conditioned matrice€s.

General solutioh = GX'y"
OLS | PCR | PLS | RRR | v
Conditioned matrix G
G=X"X)" | G= v | Gxl, | G (X"X+4I,)" | G=A4A
Predictor b
(XTX)'XTyy ‘ (Zj)\flvjvf)XTy(’; ‘ o XTyk ‘ (XTX +0I,) ' Xy, ‘ AXTyx

When there is only one dependent variabj? for eachk = ¢ = 1) the OLS, PLS
and PCR could be considerated like a particular case of th€S&@Re and Brooke, 1990).
The coefficient is determined by simple regressionyodn a one dimensiona& ¢, where
the coefficient vector is chosen by maximising different criteria: the squarededation
coefficientr?(y, X c), the covarianc€'ov(y, X ¢) and the varianc® ar(X ¢), respectively

Stone and Brooke (1990) suggest a general principle tordeterthe coefficient vec-
tor ¢, for a fixed continuum solution parameter> 0. The coefficient is obtained by
the maximization o (v, ¢) = (y”X¢)? | X¢|**™ « r2(y, Xc¢) | Xc|* subject to the con-
strain||c|| = 1. Where fory = 0, v = 1 andy — oowe have the continuum solution
among OLS, PLS and PCR, respectively. Many of these shrenkagression methods
can be seen in a more general multivariate framework basacommon objective func-
tion for the DRMs (Abraham and Merola, 2001). All the DMRs eddjve functions are
measures of association between couples of unit norm |gerdbles, which are lin-
ear combinations of the dependent variables€ Y*d;) and of the independent ones
(t; = Xa;).

These measures are expressed in term of squared covaretmaeh the latent vari-
ablest; andu; as well as their variance, respectively (Table 2).

When X7 X is almost singular, it is possible to highlight that the “P€Rooth” cri-
teria of this matrix can be used in other approaches ob@mized DRMs. In same time
the “PCR smooth” criteria can be obtained by mixed DRMs aaphes (i.e. in CPCA we
can obtain as solution matri<*” X (3 A v0] ) X TY* which is equivalent to the PCR
one).

Table 2: Objective functions of the DRMs.

Method Object function Solution matrix
PCA max(a; X' Xa;) XTX
CCR | max((af X"V dy)*/([[t; [I* luy[I")] | (X"X) ' XTYFYFTYF) Y X
RRR max[(a? XTY*d,)?/ ||t;]°] (XTX)IXTYyky T x
CPCA* max(d7 YT PxYd;) YATX (XTX) IXTYF
SIMPLS max(al XTY*d;)? (I—L;) 'XTYFYFTX
*with the constraintsi;a; = did; = 1,a; X" Xa; = 0,5 > 1.




118 Luigi D’Ambra, Pietro Amenta, and Michele Gallo

3.1 Adifferent approach to Principal Covariates Regressia

In literature there is a trade-off between the RRR and the RIGR: the former tries to
maximize the variance of the criterion variables retaingthie predictors latent subspace
while the latter tries to maximize only the variance of thedgictors with PLS considered
as a compromise. A similar continuum can be obtained withxéamsion of the Principal
Covariates Regression (PCovR) or “Weighted maximum olvesdundancy” (de Jong
and Kiers, 1992; Abraham and Merola, 2001). In order to findva-dimensional sub-
space of the predictor space spanned by the columis afcounting for the maximum
variation of X andY*, we propose to consider the model

T=XW
X =TZx + Ex (3.1)
Yk = TZYIc + Eyk

whereT contains scores on S componenisjs theJ x S matrix of component weights
with Zx andZy+ loading matrices, of ordéiS x J) and(S x @), containing the regres-
sion parameters that relate the predictors and the respamnisdles to the components
in T, respectively. Following de Jong and Kiers (1992), we psgpto maximise the

following least-squares loss function

Q| X = TZx| + u | XTY*E = Z52pi|" + (1 —a—p) |[Y* = TZ|*  (3.2)

with 77T = [ andTTEx = TTEy+» = 0. The least-squares solutions are given
by the firstS eigenvectors of matri{aXXT +(1—a—p)YFYT 4 ,uXXTY’“Y’fT}

if X spans the complete space afidcontains scores on all components wWith =
X(XTX)~XTYy*. W may be computed by regression’6fon X, if X7 X has not full
rank, otherwise, with = X T where X~ is any generalized inverse of. We intro-
duce two parametersi(andy), both varying between 0 and 1, so thatells how much
the model is PLS like an@ll — oo — i) determines its Multiple Linear Regression (MLR)
nature. We highlight some special cases:

e fora = 0 andp = 0if S = min[rank(X), rank(Y*)] than the solution leads to
MLR, with an emphasis on fittiny*, otherwise to RRR if

S < min[rank(X), rank(Y™")]

e for o = 1 andp = 0 the solution puts an emphasis on reconstrucingith a PCA
of X or with PCR if we use the principal components as predictard’f;

e for o = 0 andu = 1 the solution leads to Partial Least SquareXadndY*;
e finally, for ;, = 0 and for any admissible value far, we have the original PCovR

solution. In case ofv = 1/2, the authors find a compromise situation comparable
to PLS regression (de Jong and Kiers, 1992).
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4 Simple Linear Regression Coefficients approachto DRM

In order to investigate the dependence structure betweamd theY”*, we define the
matrix Y* = [Yl || Y]] YK} of order (N, S Qk> . The generig-th column
of the k-th matrixY'* is given byt = ijl fiz; b wheregk is given by the weighted

sum of simple linear regression considering slope coeffidie, = f; («72;) ~ xTyk
with weights f; and intercept equal to zero. For this weight Garthwaite 4) $@&iggests
fi=1/Jorf; = :c]T:cj according to different weighting policies.

Matrix Y* = [Yl || Y] YK] can be also expressed as

N J
Y*=XFB= Zj:1 fiP.,Y
with My = diag(aTas, ..., 2%z,), F = diag(fi,..., f;), B = My'X™Y andP,, =

x; (x;ij)_l :cJT The dependence structure betweérandY ™, in a best approximation
subspace, could be displayed on the principaltas® as

J K
H%inz Z Hfjpijg - fjtstsTprjngQ (4'1)

subject to constraint§ t, = 1 andt’t, = 0 for s’ # s. This leads us to the extraction of
the eigenvalues, and eigenvectorg associated to the eigen-systémy *7t, = \t,.

Table 3: Special cases of the proposed approdthFirst solution.

Variance Criteria Covariance Criteria
e PCA(Y*) is equivalent e Cov (Y*a, Y*b) is equivalento
Multiple PCR(X) PLS (v*, X)
() MCOA (Y, ...,YX) PLS(X, Y*)with X metric equal ta\/

M COA(Y!,...,YEY*)
() OMCOA-PLSY, ..., Y5 Y*) | o« K  Cov? (Y*a, kak>
is equivalent to OMCOA-PLS

The analysis ot * and X, based on the above mentioned criteria, lead to well known
techniques and interesting properties (Table 3), where M&@nds for Multiple Coiner-
tia Analysis (Chessel and Hanafi, 1996); COA stands for Cataswe Analysis (Lafosse
and Hanafi, 1997); OMCOA stands for Orthogonal Multiple @Gotra Analysis (Vivien,
1999), and finally OMCOA-PLS is the acronym for Orthogonallfytle Coinertia Anal-
ysis — Partial Least Squares (Vivien and Sabatier, 2000).

This approach highlights an equivalence between the w@&iand covariance criteria
in Table 3. Moreover, this can be also showed following twifedent approaches: the
former B matrix approachjs based on the matri® of regression coefficients. An uncen-
tred PCA on matrixB is equivalent to PLSY(*, X) as well as the uncentred PCA ¢
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leads to COA, OMCOA, OMCOA-PLS, Multiblock—PLS (Wangen dmlvalski, 1988)
and Generalized Constraint Principal Component AnalySengralized CPCA; Amenta
and D’Ambra, 2001). The latteCfossed regression approactan be performed by us-
ing the(Zf:1 Qr) x J simple linear regressions of each generit column of thek-th
matrix Y* against eaclr; (D’Ambra et al., 1998, 2001). We can wri)e, Q; matrices
XB, (g=1,...,%, Q) with B, diagonal matrix containing thé weighted regression
coefficientsbj?’ . In order to analyze the common structure of thgsgQ, matrices we
consider the MCOA approach with generic metbig.

Briefly, MCOA is a technique that enables the simultaneoadysis of 7 tables. Ac-
cording to theZ subsets op, variables(g = 1,...,Z), MCOA considersZ statistical
triplets: (X,, M,, D) with M, positive defined symmetrical matrix (metric) aig, of
dimensiongp, x p,) and(NN x p,), respectively. It optimizes the variance within each
table and the correlation between the scores of each indilitdble and synthetic scores
providing a reference structure. MCOA first searches forta)fsewg-normalizedugl)
vectors, maximizing the projected varianceXgf on u(gl) and an auxiliaryD-normalized
vectorv"), maximizing the projected varianceﬁfgr onv, such that the squared covari-

ance between them is optimizedax Zgzzl Ty (XgMgu(gl) |v(1>>2 , Wherer, represents a
weight assigned to eacki,. This weight can be uniform, the {Dnverse of global inertia or
the inverse of the greatest eigenvalue of each table.

The first order solutiona(gl)’s andv( are given by a PCA of the weighted table
X = [r12X,]...|7}/* X 4] according to the eigen decomposition of the makik) QX (V'
with Q = diag(M;, ... MZ) In similar way, for the solution of order 2, MCOA searches
for M, normalizedu( vectors and an auxiliaryp-normalized vectop® by using the
same optimization criterion with the additional orthogbnanstralntSu(l) Mguf) =

vWTDy® = 0. Solutions of order 2 are given by the first order PCA solutibrthe
juxtaposed residual matrig, — X, PV || X, — X, PV with PV the M, orthogonal
projection operator onto the subspace spanned by the vé@tofhe successive solutions
are found in similar way.

By applying the MCOA approach tothe = >, Q, matrices(g = 1,...,> ", Q),
first order solutionm( 's ando? are then glven by a PCA of the welghted taplé) =
M2 X B2, XBs, ] = XM with M = [r, 2By |7rZ Bs:,q,]. The first
order solutlons are given by the eigen decomposmon of thEir

XWQXWIT = x MQMTXT

with Q = diag(Mj, ..., Ms-, o,). Solutions of order 2 are given by the first order PCA
solution of the juxtaposed residual matrix

X(Q):[XB1 X B P, 1)T| |XBZ Qr — XBZkapgz)j;?k’]

We remark that if\/, = I then the first solution of PCA ok () is equivalent to the
same solution of a PCA of matriX with diagonal metric containing the weighted sums
of the explained variances by each If M, = diag(1/y]y,) andf; = =]z, then this
approach is equivalent to a PCA on the mafXiwith diagonal metric" =, B,M,B])
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of the weighted sums of the coefficients of determinatipnX (3 =, B,M,B] ) X". We
highlight that this approach can be considered as an asymeaietxtension of MCOA of
K response variable group¥ (k = 1, ..., K) respect to a set of predictive variabl&s

Moreover, the weighted sum of the explained variances bjugacan be used as
weight within the Garthwaite’s univariate approach as waslwithin the Multiple Coin-
ertia Analysis. In this sense, it is interesting to note thie played by the coefficient
regressiomn? within the different proposed approaches as well as it'y éashow that all
the proposals are linked by transition formula. Obviouslis approach works also with
a single dependent variahbjeas well as with a single group of variabl& (= 1).

This proposal provides a suitable conditioned matrieesithin the shrinkage regres-
sion methods too (see Table 1). The approach based ogjrj;the sum of orthogonal
projections onto single rank subspaces spanned by tBeleads also to consider the
covariance between thg’s and theg,’s. In this case, we haverv(X, V) = AXTYy™
where A is a matrix of orderJ x J) whose general element is the weighted paired re-
gression coefficient among thes: a; j» = ficov(xj, xy) /var(zy), (7,7 = 1,...,J).

If we refer to theg-th column ofY*, we obtained the predictcbﬁ?’“ = AXTyf;. In
this way we can consider the matritas an alternative conditioned matrix for collinearity
problem in Table 1. We remark that this approach tries to gek the relationships among
the predictor variables which are loosed in simple linegression.

5 Conclusions

The main aim of this paper is to find the linkage between séwen#tidimensional tech-
niques like MCOA, PLS, OMCOA-PLS, COA, OMCOA, Multiblock 18 and General-
ized CPCA, within a simple linear regression framework. & same time new method-
ological proposals are done.

These results are particularly important when the matriexplicative variables has a
rank lower thamnin (N, J) that could lead to problems of stability. Another advantafje
this approach is that it can be performed without specidlsadtware.

An extension of this framework, to several matrices of exgilve and dependent vari-
ables, will appear in a next paper. An extension to categbviariables is also under
investigation.
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