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Dimensionality Reduction Methods

Luigi D’Ambra1, Pietro Amenta2, and Michele Gallo3

Abstract

In case one or more sets of variables are available, the use ofdimensional reduc-
tion methods could be necessary. In this contest, after a review on the link between
the Shrinkage Regression Methods and Dimensional Reduction Methods, authors
provide a different multivariate extension of the Garthwaite’s PLS approach (1994)
where a simple linear regression coefficients framework could be given for several
dimensional reduction methods.

1 Introduction

When the number of variables is very large, as well as, in presence of more than one sets
of them playing a logical asymmetrical role (explanatory and response variables), it may
be advantageous to find for each set a linear combination of variables (latent variables)
having some properties in terms of correlation, covarianceor variance. The criteria for an
appropriate new basis depends, of course, on the application. One way of approaching this
problem is to project the data on the maximum data variation subspace, i.e. the subspace
spanned by the largest principal components (Principal Component Analysis – PCA).
Nevertheless, the study of multivariate predictions couldbe, also, faced with several ap-
proaches, for example, Constrained Principal Component Analysis (CPCA) (D’Ambra
and Lauro, 1982). In customer satisfaction evaluation where the relationships between
expectations and perceptions are taken in account, an analysis could be developed by
looking for the subspace, maximizing the covariance between the projected scores of both
sets. This subspace provides the largest singular values ofthe covariance matrix between
expectation and perception data (D’Ambra et al., 1999). Finally, when the goal is to pre-
dict a dependent variable as well as possible in terms of least square error, an appropriate
model is Reduced Rank Regression (RRR). In general, when thegoal is to predict more
dependent variables by substituting the set of observed explanatory variables with a fewer
sequence of orthogonal latent variables, Dimensional Reduction Methods (DRM) should
be applied. The commonly used DRM methods are Principal Component Regression
(PCR), Canonical Correlation Regression (CCR), RRR and Partial Least Squares (PLS;
Wold, 1966). These methods, together with the shrinkage ones, play an important role in
order to overcome the collinearity problem.
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The paper is organized into 5 sections. In Section 2 the basicnotation is given. Section
3 briefly presents the linkage between the shrinkage regression methods and the dimen-
sional reduction methods. In this Section we also propose anextension of the Principal
Covariates Regression (de Jong and Kiers, 1992) in order to find a continuum among the
DRM method. Main focus of this paper is in Section 4. Following the Garthwaites’ PLS
approach (1994), we show how a simple linear regression coefficients framework could be
given for the considered DRM methods. Last Section includessome conclusive remarks
on the methodology proposed, as well as topics for further research.

2 Notation

Let Q1, . . . , Qk, . . . , QK beK response variable groups observed onN statistical units

and collected in a matrixY ∗ =
[

Y 1 |. . .|Y k |. . .|Y K
]

, of order
(

N,
∑K

k=1 Qk

)

, where

Y 1
(NxQ1)

,. . . ,Y k
(NxQk),...,Y

K
(NxQK) areK different matrices. Thek-th matrix with generic

elementyk
iq (i = 1, . . . , N ; q = 1, . . . , Qk) denotes the value of theq-th criteria vari-

able observed on thei-th statistical unit for thek-th response variable groups. Moreover,
let X(N×J) be a matrix of independent variables withrank (X) = S < min (N, J). The
generic elementxij (i = 1, . . . , N ; j = 1, . . . , J) is the value of thej-th independent vari-
able observed on the samei-th statistical unit. In this paper we assume that all variables
have zero mean as regards the weight diagonal metricD whose general term is1/N . Let
PX = X(XT X)−1XT orthogonal projector onto the subspace spanned by the columns of
X with XT the transpose of matrixX. Finally, letT(S) be an orthogonal matrix of order
(N × S) containingS latent variables so as to obtain the fitted response matrix byŶ(S) =
T(S)(T

T
(S)T(S))

−1T T
(S)Y = XB(S) with LS = XTT(S−1)(T

T
(S−1)XXT T(S−1))

−1T T
(S−1)X.

Let denoteX̃ the standardizedX matrix.

3 Shrinkage regression and dimensional reduction meth-
ods for multivariate analysis

In literature many shrinkage regression methods have been proposed. PCR, PLS, RRR
and Continuum Regression (CR) are only some among the most famous ones (Stone and
Brooks, 1990; Frank and Friedman, 1993; Brown, 1993; Brooksand Stone, 1994). These
methods should be used when a large singular value is associated to two or more inde-
pendent variables with ”large” variance decomposition portions. These variables may
determine collinearity problems with unrealistic and shaky ordinary least square coeffi-
cientsbOLS = (XT X)−1XT yk

q (k = 1, . . . , K, q = 1, . . . , Qk).
An approach to solve the collinearity problem consists in replacing the factor(XTX)−1

in expression ofbOLS with a better-conditioned matrixG. In the PCR, the matrixG
is given from a spectral decomposition ofXT X: XT X =

∑s
j=1 λjvjv

T
j whereS <

min (N, J) is the rank ofX. Differently, PLS looks for a vectorc (‖c‖ = 1) such that
the scalar productyTXc is maximal andb ∝ c. This leads to consider the predictor
bPLS ∝ XT yk

q replacing(XT X)−1 with a better-conditioned matrixG ∝ Ip. Finally,
Hoerl (1962) and Hoerl and Kennard (1970) recommend the use of the ridge regression
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with bRR = (XT X + δIp)
−1XT yk

q andδ ≥ 0. In Table 1 all the conditioned matrices for
the different techniques are given.

Table 1: Several conditioned matricesG.

General solutionb = GXT yk
q

OLS PCR PLS RRR Ŷ
Conditioned matrix G

G = (XT X)−1 G =
∑

j λ−1
j vjv

T
j G ∝ Ip G ∝ (XTX + δIp)

−1 G = A

Predictor b
(XT X)−1XT yk

q (
∑

j λ−1
j vjv

T
j )XT yk

q ∝ XTyk
q (XT X + δIp)

−1XT yk
q AXT yk

q

When there is only one dependent variable (yk
q for eachk = q = 1) the OLS, PLS

and PCR could be considerated like a particular case of the CR(Stone and Brooke, 1990).
The coefficientb is determined by simple regression ofy on a one dimensionalXc, where
the coefficient vectorc is chosen by maximising different criteria: the squared correlation
coefficientr2(y, Xc), the covarianceCov(y, Xc) and the varianceV ar(Xc), respectively.

Stone and Brooke (1990) suggest a general principle to determine the coefficient vec-
tor c, for a fixed continuum solution parameterγ ≥ 0. The coefficientc is obtained by
the maximization ofT (γ, c) = (yTXc)2 |Xc|2(γ−1) ∝ r2(y, Xc) |Xc|2 subject to the con-
strain‖c‖ = 1. Where forγ = 0, γ = 1 andγ → ∞we have the continuum solution
among OLS, PLS and PCR, respectively. Many of these shrinkage regression methods
can be seen in a more general multivariate framework based ona common objective func-
tion for the DRMs (Abraham and Merola, 2001). All the DMRs objective functions are
measures of association between couples of unit norm latentvariables, which are lin-
ear combinations of the dependent variables (uj = Y kdj) and of the independent ones
(tj = Xaj).

These measures are expressed in term of squared covariance between the latent vari-
ablestj anduj as well as their variance, respectively (Table 2).

WhenXT X is almost singular, it is possible to highlight that the “PCRsmooth” cri-
teria of this matrix can be used in other approaches obtaining mixed DRMs. In same time
the “PCR smooth” criteria can be obtained by mixed DRMs approaches (i.e. in CPCA we
can obtain as solution matrixY kTX(

∑

j λ−1
j vjv

T
j )XT Y k which is equivalent to the PCR

one).

Table 2: Objective functions of the DRMs.

Method Object function Solution matrix
PCA max(aT

j XT Xaj) XT X

CCR max[(aT
j XT Y kdj)

2/(‖tj‖
2 ‖uj‖

2)] (XT X)−1XT Y k(Y kT Y k)−1Y kT X

RRR max[(aT
j XT Y kdj)

2/ ‖tj‖
2] (XT X)−1XT Y kY kTX

CPCA* max(dT
j Y T PXY dj) Y kT X(XTX)−1XT Y k

SIMPLS max(aT
j XT Y kdj)

2 (I − Lj)
−1XT Y kY kT X

*with the constraintsaT
j aj = dT

j dj = 1, aT
j XT Xai = 0, j > i.
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3.1 A different approach to Principal Covariates Regression

In literature there is a trade-off between the RRR and the PCRaims: the former tries to
maximize the variance of the criterion variables retained by the predictors latent subspace
while the latter tries to maximize only the variance of the predictors with PLS considered
as a compromise. A similar continuum can be obtained with an extension of the Principal
Covariates Regression (PCovR) or “Weighted maximum overall redundancy” (de Jong
and Kiers, 1992; Abraham and Merola, 2001). In order to find a low-dimensional sub-
space of the predictor space spanned by the columns ofX accounting for the maximum
variation ofX andY k, we propose to consider the model







T = XW
X = TZX + EX

Y k = TZY k + EY k

(3.1)

whereT contains scores on S components,W is theJ × S matrix of component weights
with ZX andZY k loading matrices, of order(S ×J) and(S ×Qk), containing the regres-
sion parameters that relate the predictors and the responsevariables to the components
in T , respectively. Following de Jong and Kiers (1992), we propose to maximise the
following least-squares loss function

α ‖X − TZX‖
2 + µ

∥

∥XT Y k − ZT
XZY k

∥

∥

2
+ (1 − α − µ)

∥

∥Y k − TZY k

∥

∥

2
(3.2)

with T T T = I and T T EX = T T EY k = 0. The least-squares solutions are given

by the firstS eigenvectors of matrix
[

αXXT + (1 − α − µ)Ŷ kŶ kT + µXXTY kY kT
]

if X spans the complete space andT contains scores on all components withŶ k =
X(XTX)−XT Y k. W may be computed by regression ofT on X, if XT X has not full
rank, otherwise, withW = X−T whereX− is any generalized inverse ofX. We intro-
duce two parameters (α andµ), both varying between 0 and 1, so thatµ tells how much
the model is PLS like and(1 − α − µ) determines its Multiple Linear Regression (MLR)
nature. We highlight some special cases:

• for α = 0 andµ = 0 if S = min[rank(X), rank(Y k)] than the solution leads to
MLR, with an emphasis on fittingY k, otherwise to RRR if

S < min[rank(X), rank(Y k)]

• for α = 1 andµ = 0 the solution puts an emphasis on reconstructingX with a PCA
of X or with PCR if we use the principal components as predictors for Y k;

• for α = 0 andµ = 1 the solution leads to Partial Least Squares ofX andY k;

• finally, for µ = 0 and for any admissible value forα, we have the original PCovR
solution. In case ofα = 1/2, the authors find a compromise situation comparable
to PLS regression (de Jong and Kiers, 1992).
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4 Simple Linear Regression Coefficients approach to DRM

In order to investigate the dependence structure betweenX and theY k, we define the

matrix Ŷ ∗ =
[

Ŷ 1 |. . .| Ŷ k |. . .| Ŷ K
]

of order
(

N,
∑K

k=1 Qk

)

. The genericq-th column

of thek-th matrixY k is given byŷk
q =

∑J
j=1 fjxj bk

jq whereŷk
q is given by the weighted

sum of simple linear regression considering slope coefficient bk
jq = fj

(

xT
j xj

)−1
xT

j yk
q

with weightsfj and intercept equal to zero. For this weight Garthwaite (1994) suggests
fj = 1/J or fj = xT

j xj according to different weighting policies.

Matrix Ŷ ∗ =
[

Ŷ 1 |. . .| Ŷ k |. . .| Ŷ K
]

can be also expressed as

Ŷ ∗ = XFB =
∑J

j=1
fjPxj

Y ∗

with MX = diag(xT
1 x1, . . . , x

T
J xJ), F = diag(f1, . . . , fJ), B = M−1

X XT ∗Y andPxj
=

xj

(

xT
j xj

)−1
xT

j . The dependence structure betweenX andY ∗, in a best approximation
subspace, could be displayed on the principal axets so as

min
ts

J
∑

j=1

K
∑

k=1

Qk
∑

q=1

∥

∥fjPxj
yk

q − fjtst
T
s Pxj

yk
q

∥

∥

2
(4.1)

subject to constraintstTs ts = 1 andtTs′ts = 0 for s′ 6= s. This leads us to the extraction of
the eigenvaluesλs and eigenvectorsts associated to the eigen-system̂Y ∗Ŷ ∗T ts = λsts.

Table 3: Special cases of the proposed approach.(†) First solution.

Variance Criteria Covariance Criteria

• PCA(Ŷ ∗) is equivalent • Cov
(

Y ∗a, Ŷ ∗b
)

is equivalentto

Multiple PCR(X) PLS (Y ∗, X̃)
(†) MCOA (Ŷ 1, . . . , Ŷ K) PLS(X, Y ∗)with X metric equal toM
(†) COA (Ŷ 1, . . . , Ŷ K ,Ŷ ∗)
(†) OMCOA–PLS(̂Y 1, . . . , Ŷ K ,Ŷ ∗) •

∑K
k=1 Cov2

(

Ŷ ∗a, Ŷ kdk

)

is equivalent to OMCOA–PLS

The analysis of̂Y k andX, based on the above mentioned criteria, lead to well known
techniques and interesting properties (Table 3), where MCOA stands for Multiple Coiner-
tia Analysis (Chessel and Hanafi, 1996); COA stands for Concordance Analysis (Lafosse
and Hanafi, 1997); OMCOA stands for Orthogonal Multiple Coinertia Analysis (Vivien,
1999), and finally OMCOA–PLS is the acronym for Orthogonal Multiple Coinertia Anal-
ysis – Partial Least Squares (Vivien and Sabatier, 2000).

This approach highlights an equivalence between the variance and covariance criteria
in Table 3. Moreover, this can be also showed following two different approaches: the
former (B matrix approach)is based on the matrixB of regression coefficients. An uncen-
tred PCA on matrixB is equivalent to PLS (Y ∗, X̃) as well as the uncentred PCA onB′
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leads to COA, OMCOA, OMCOA–PLS, Multiblock–PLS (Wangen andKowalski, 1988)
and Generalized Constraint Principal Component Analysis (Generalized CPCA; Amenta
and D’Ambra, 2001). The latter (Crossed regression approach) can be performed by us-
ing the(

∑K
k=1 Qk) × J simple linear regressions of each genericq-th column of thek-th

matrix Y k against eachxj (D’Ambra et al., 1998, 2001). We can write
∑

k Qk matrices
XBg (g = 1, . . . ,

∑

k Qk) with Bg diagonal matrix containing theJ weighted regression
coefficientsbg

j . In order to analyze the common structure of these
∑

k Qk matrices we
consider the MCOA approach with generic metricMg.

Briefly, MCOA is a technique that enables the simultaneous analysis ofZ tables. Ac-
cording to theZ subsets ofpg variables(g = 1, . . . , Z), MCOA considersZ statistical
triplets: (Xg, Mg, D) with Mg positive defined symmetrical matrix (metric) andXg of
dimensions(pg × pg) and(N × pg), respectively. It optimizes the variance within each
table and the correlation between the scores of each individual table and synthetic scores
providing a reference structure. MCOA first searches for a set of Mg-normalizedu

(1)
g

vectors, maximizing the projected variance ofXg onu
(1)
g and an auxiliaryD-normalized

vectorv(1), maximizing the projected variance ofXT
g onv(1), such that the squared covari-

ance between them is optimized,max
∑Z

g=1 πg

(

XgMgu
(1)
g |v(1)

)2

D
, whereπg represents a

weight assigned to eachXg. This weight can be uniform, the inverse of global inertia or
the inverse of the greatest eigenvalue of each table.

The first order solutionsu(1)
g ’s and v(1) are given by a PCA of the weighted table

X̂(1) = [π
1/2
1 X1|...|π

1/2
Z XZ ] according to the eigen decomposition of the matrixX̂(1)Q̃X̂(1)′

with Q̃ = diag(M1, ..., MZ). In similar way, for the solution of order 2, MCOA searches
for Mg-normalizedu(2)

g vectors and an auxiliaryD-normalized vectorv(2) by using the
same optimization criterion with the additional orthogonal constraintsu(1)T

g Mgu
(2)
g =

v(1)T Dv(2) = 0. Solutions of order 2 are given by the first order PCA solutionof the
juxtaposed residual matrix [X1−X1P

(1)T
1 |...|XZ−XZP

(1)T
Z ] with P

(1)
g theMgorthogonal

projection operator onto the subspace spanned by the vectoru
(1)
g . The successive solutions

are found in similar way.
By applying the MCOA approach to theZ =

∑

k Qk matrices(g = 1, . . . ,
∑

k Qk),
first order solutionsu(1)

g ’s andv(1) are then given by a PCA of the weighted tableX̂(1) =

[π
1/2
1 XB1|...|π

1/2
∑

k Qk
XB∑

k Qk
] = XM̃ with M̃ = [π

1/2
1 B1|...|π

1/2
∑

k Qk
B∑

k Qk
]. The first

order solutions are given by the eigen decomposition of the matrix

X̂(1)Q̃X̂(1)T = XM̃Q̃M̃T XT

with Q̃ = diag(M1, ..., M∑

k Qk
). Solutions of order 2 are given by the first order PCA

solution of the juxtaposed residual matrix

X̂(2) = [XB1 − XB1P
(1)T
1 |...|XB∑

k Qk
− XB∑

k Qk
P

(1)T
∑

k Qk
]

.
We remark that ifMg = I then the first solution of PCA of̂X(1) is equivalent to the

same solution of a PCA of matrixX with diagonal metric containing the weighted sums
of the explained variances by eachxj . If Mg = diag(1/yT

g yg) andfj = xT
j xj then this

approach is equivalent to a PCA on the matrixX with diagonal metric(
∑

g πgBgMgB
T
g )
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of the weighted sums of the coefficients of determinationr2
g : X(

∑

g πgBgMgB
T
g )XT . We

highlight that this approach can be considered as an asymmetrical extension of MCOA of
K response variable groupsY k (k = 1, ..., K) respect to a set of predictive variablesX.

Moreover, the weighted sum of the explained variances by eachxj can be used as
weight within the Garthwaite’s univariate approach as wellas within the Multiple Coin-
ertia Analysis. In this sense, it is interesting to note the role played by the coefficient
regressionbg

j within the different proposed approaches as well as it’s easy to show that all
the proposals are linked by transition formula. Obviously,this approach works also with
a single dependent variabley as well as with a single group of variable (K = 1).

This proposal provides a suitable conditioned matricesG within the shrinkage regres-
sion methods too (see Table 1). The approach based on theŷk

q as sum of orthogonal
projections onto single rank subspaces spanned by thexj ’s, leads also to consider the
covariance between thexj ’s and theŷk

q ’s. In this case, we havecov(X, Ŷ ∗) = AXT Y ∗

whereA is a matrix of order(J × J) whose general element is the weighted paired re-
gression coefficient among thex′

js: aj,j′ = fjcov(xj, xj′)/var(xj′), (j, j′ = 1, . . . , J).

If we refer to theq-th column ofY k, we obtained the predictorbŶ k

= AXT yk
q . In

this way we can consider the matrixAas an alternative conditioned matrix for collinearity
problem in Table 1. We remark that this approach tries to get back the relationships among
the predictor variables which are loosed in simple linear regression.

5 Conclusions

The main aim of this paper is to find the linkage between several multidimensional tech-
niques like MCOA, PLS, OMCOA-PLS, COA, OMCOA, Multiblock - PLS and General-
ized CPCA, within a simple linear regression framework. At the same time new method-
ological proposals are done.

These results are particularly important when the matrix ofexplicative variables has a
rank lower thanmin (N, J) that could lead to problems of stability. Another advantageof
this approach is that it can be performed without specialized software.

An extension of this framework, to several matrices of explicative and dependent vari-
ables, will appear in a next paper. An extension to categorical variables is also under
investigation.
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