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11 Small Representation Principle
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Abstract. In a previous article [2] Don Bennett and I looked for, found and proposed a game
in which the Standard Model Gauge Group S(U(2) x U(3)) gets singled out as the “winner”.
This “game” means that the by Nature chosen gauge group should be just that one, which
has the maximal value for a quantity, which is a modification of the ratio of the quadratic
Casimir for the adjoint representation and that for a “smallest” faithful representation. In
a recent article [1] I proposed to extend this “game” to construct a corresponding game
between different potential dimensions for space-time. The idea is to formulate, how the
same competition as the one between the potential gauge groups would run out, if restricted
to the potential Lorentz or Poincare groups achievable for different dimensions of space-
time d. The remarkable point is, that it is the experimental space-time dimension 4, which
wins.

Our “goal quantity” to be maximized has roughly the favouring meaning that the
Lie-group in question can have the “smallest” possible faithful representations. This idea
then suggests that the representations of the Standard Model group to be found on the
(Weyl)Fermions and the Higgs Boson should be in the detailed way measured by our “goal
quantity” be the smallest possible. The Higgs in the Standard Model belongs remarkably
enough just to the in such a way “smallest” representation. For the chiral Fermions there
are needed restriction so as to avoid anomalies for the gauge symmetries, and in an earlier
work[14,12] we have already suggested that the Standard Model Fermion representations
could be considered being the smallest possible. We hope in the future to show that also
taking smallness in the specific sense suggested here would lead to the correct Standard
Model representation system.

So with the suggestion here the whole Standard Model is specified by requiring
SMALLEST REPRESENTATIONS! Speculatively we even argue that our principle found
suggests the group of gauge transformations and some manifold(suggestive of say general
relativity).

Povzetek. V prejsnjem ¢lanku [2] sva z Donom Bennettom iskala, nasla in predlagala igro,
v kateri se umeritvena grupa S(U(2) x U(3)) standardnega modela izkaZe kot “zmagov-
alka”. Ta “igra” pomeni, da je Narava izbrala umeritveno grupo z maksimalno vrednostjo
koli¢ine, ki je nekoliko spremenjeno razmerje med kvadratom Casimirja za adjungirano
upodobitev in le tega za “najmanso” zvesto upodobitev. V nedavnem ¢lanku [1] sem pred-
lagal razsiritev te “igre” s konstrukcijo ustrezne igre med razli¢nimi moZnimi razseznostmi
prostor-casa. Tokrat bi tekmovale Lorentzove in Poincarejeve grupe za razli¢ne razseZnosti d
prostor-Casa. IzkaZe se, da v tej igri zmaga prav opaZena razseZnost 4 . Nasa “ciljna koli¢ina”,
ki jo Zelimo maksimizirati, v grobem pomeni, da ima iskana Liejeva grupa “najmanso”
moZno zvesto upodobitev. Ali, da ima v primeru upodobitev grup standardnega modela za
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(Weylove) fermione in Higgsov bozon “ciljna koli¢ina” najmanj$o vrednost. Higgsov delec
v standardnem modelu pripada prav upodobitvi, ki je v zgornjem smislu “najmanjsa”. Za
kiralne fermione moramo zahtevati omejitve, ki poskrbijo, da se izognemo anomalijam
umeritvenih simetrij. V prejsnjem delu [14,12] smo Ze predlagali “ciljno koli¢ino”, ki zago-
tovi zmago upodobitvam za fermione standardnega modela. Upati je, da v tem prispevku
definirana “ciljna koli¢ina” prav tako zagotovi zmago upodobitvam standardnega modela.
V skladu z nasim predlogom bi torej lahko izpeljali grupe standardnega modela iz zahteve
za NAJMANJSO UPODOBITEV! Postavljamo tedaj spekulativno trditev, da nase nacelo
predlaga grupo umeritvenih transformacij in mnogoterost (kar namiguje na splo$no teorijo
relativnosti).

11.1 Introduction

In two earlier articles[2,1] Don Bennett and I proposed a quantity depending on a
group - thought of as the gauge group(group in the sense of O’Raifeartaigh [3] -
which were found to take its largest value on just the Standard Model gauge group
S(U(2) x U(3)). My article [1] were to tell that the same quantity applied to the
Lorentz or by some crude technology to essentially the Poincare group selected
as the number of dimensions winning the highest quantity just the experimental
number of dimensions 4 for space time. (The prediction of the d=4 dimensions
from various reasons have been considered in e.g. [4-7]. N.Brene and I have
earlier proposed another quantity to be extremized to select the Standard Model
group, namely that it is the most “skew”[8] (i.e. it has the smallest number of
automorphisms, appropriately counted). But in this article we shall discuss a “goal
quantity”that being maximized as it shall, rather may mean crudely that the group
can have as small representations as possible.

To define this wonderful group dependent quantity, which can in this way
select as the highest scoring group the by Nature chosen Standard Model group,
and the by Nature chosen space time dimension 4, let us think of a general Lie
group written by means of a cross product of a series of simple Lie groups H; (take
the Hi’s to be the covering groups at first) and a series of real number R factors in
this cross product

I
Geover = <>< iHi> X R]- (111)

Here the I is the number of, different or identical, as it may be, H;-groups, which
are supposed to be simple Lie groups, while R denotes the Abelian group of real
numbers under addition.The number of Abelian dimensions in the Lie algebra
is called J. A very general group is obtained by dividing an invariant discrete
subgroup D of the center out of this group G¢over. Denoting this general - though
assumed connected - group as G we can indeed write it as

G= Gcover/D- (112)

Of course Gover is the covering group of G and the groups H; (i=1,2, ... I-1,I) are
its invariant simple Lie groups.

The main ingredient in defining our goal quantity is the ratio of the quadratic
Casimirs[10] Ca/CF of the quadratic Casimir Ca for the adjoint representation
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divided by the quadratic Casimir C¢ a representation chosen, so as to make
the quadratic Casimir Cr of T so small as possible though still requiring the
representation F to be faithful or basically to be non-trivial. Here I now ought to
remind the reader of the concept of a quadratic Casimir operator:

The easiest may be to remember the concept of quadratic Casimir first for
the most well known example of a nonabelian Lie group, namely the group of
rotations in 3 dimensions SO(3) (when you do not include reflection in a point
but only true rotations) for which the covering group is SU(2). In this case the
quadratic Casimir operator is the well known square of the angular momentum
operator

=R (11.3)

Now our goal quantity, which so nicely points to both the Standard Model
group and the dimension of space time, is given as the dg’th root of the product
with one factor from each invariant simple group Hi, namely (Ca /C¢)4i (C¢/Ca is
related to the Dynkin-index [11]) and some factors ef\ / e% for each of the ] Abelian
factors. (Here the dimension of the simple groups H; are denoted d;, while the
dimension of the total group G or of Gover is denoted dg.) Our goal quantity in
fact becomes

“goal quantity” (11.4)
1/dg
J 2
Ca 4, €
- I1 (?A)f‘ * I (effg)j . (115)
simple groups i : Abelian factorsj

To fully explain this expression I need to explain what means the “charges” er for
the “small” representation (essentially F) and e for the analogon ! to the adjoint
representation: Of course the reader should have in mind that the Abelian groups,
the R subgroups, have of course no adjoint representations in as far as the basis in
the Lie algebra of an Abelian group is only transformed trivially. In stead of defin-
ing these “charges” — as we shall do below — by first defining a replacement for

the adjoint we shall define these factors [ | IAb elian factors j (% ); from the Abelian

factors in the Lie algebra by means of the system of allowed and not allowed repre-

I
sentations of the group G = Geover/D = X iHi | x RI> /D. Each irreducible

representation of this G is characterized in addition to its representations under
the simple Lie groups H; also by a “vector” of “charges” representing the phase
factors exp(id1e,1 +id2€r2 + ... +-i0ye,j), which multiply the representation vector
under an element (81,53, ...,8;) € R/, i.e. in the Abelian factor of G. The easiest
may be to say that we consider the whole lattice system of allowed “vectors”

! We might define an analogon of the adjoint representation for also a set of ] properly
chosen R-factors of G by assigning the notion of “analogon to the adjoint representation”
to that representation of one of the R-factors, which has the smallest charge, ea called,
allowed for a representation of R/(R N D), where R stands for the R-factor considered,
and RN D for the intersection of the to be divided out discrete group D with this Abelian
factor R.
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{(er1,€r2y ..., &r)[rallowed by G} of sets “charges” allowed by the group G, and
then compare with corresponding set in which we only consider those representations
1, which represent the simple non-abelian groups only trivially:

{(er1,€r2, ..., &r5)[r allowed by G,

and with the representation of the H;’s being only trivial}.

In this comparison you ask for a going to an infinitely big region in the J-dimensional
lattice after the ratio of the number of “charge vectors” in the first lattice

{(er1,€r2,..., &;7)[rallowed by G}
relative to that in the second
{(er1,€r2,..., &;7)|r G-allowed with the H;’s represented trivially}.

Then the whole factor under the d¢g’th root sign is the product of the factor
comming from the semisimple part of the group G

Caja (11.6)

“Semisimple factor” = H ( Cr i

simple groups 1
and the ratio of the number of charge combinations at all allowed by the group G
to the number of charge combinations, when the semisimple groups are restricted

to be represented trivially - in the representation of the whole G representing the
Abelian part by the charge combination in question :

“Abelian factor” =

#{(er1, €r2, ..., €,7)Ir allowed by G} 2 1)
#(er1, €r2y ..., ery)[r G-allowed with the Hi’s represented trivially} ) ’

Here # stands for the number of elements in the following set, i.e. the cardinal
number; but it must be admitted that the numbers of these charge combinations
are infinite, and that to make the finite result, which we shall use, we have to
take a cut off and take the limit of the ratio for that cut off going to be a bigger
and bigger sphere finally covering the whole J-dimensional space with the charge
combinations embedded. So strictly speaking we define rather

“Abelian factor” =

. #{(er1, €12,y ey )T allowed by Gloy off by § 2
S—oo #{(€r1, €12, ..., €r7)|r G-allowed with the Hi's represented trivially} .+ off by S '

where S is some large “sphere say” in the J-dimensional space of charge combina-
tions. The symbol S — oo shall be understood to mean that the region S is taken to
be larger and larger in all directions so as to in the limit cover the whole space.

Then our goal quantity to be maximized so as to select the gauge group
supposed to be chosen by nature can be written

“goal quantity” = (“Semisimple factor” * “Abelian factor”)'/ ¢ (11.8)
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Really it is nice to express the quantity “Abelian factor” by means of the
representations allowed by the group, because after all the phenomenological
determination of the Lie-group rather than only the Lie algebra[3] is based on such
a system of allowed representations.

11.1.1 Motivation

Before illustrating the calculation of our “goal quantity” with Standard Model
as the example, let me stress the motivation or interest in looking for such a
function defined on gauge groups or more abstractly somehow on theories and
can be used to single out the by Nature chosen model. A major reason making
such a singling out especially called for is that the Standard Model and e.g. its
group is not in an obvious way anything special! It is a combination of several
subgroups like SU(2), SU(3), and U(1) of groups that cannot all be the obvious
one, since we already use 3. There exist both several groups with lower rank,
say than the 4 of the Standard Model group, and of cause infinitely many with
higher rank. That it truly has been felt, not only by us, but by many physicists
that the Standard Model is a priori not anything obviously special - except for
the fact, that it is the model that agrees with experiment - can be seen from the
great interest in - and even belief in - grand unification theories[19] seeking to find
e.g. an extended gauge group, of which the Standard Model gauge group is then
only the small part, which survived some series of (spontaneous) break downs of
part of the larger group. Let me put some of the predictions of the typical grand
unification model as SU(5) in the perspective: When they are concerned with
representations possible for say the SU(5), there are restrictions for what they can
be for the Standard Model “SU(2) x SU(3) x LL(1)”- and they agree with experiment
-;but then these restrictions are truly a consequence of that the subgroup of SU(5)
having the Lie-algebra (of) SU(2) x SU(3) x U(1) is precisely the group S(LL(2) x U(3)).
Indeed the condition on the possible representations, when there is an SU(5) GUT
theory beyond the Standard Model, is the same condition (11.10) as comes from
S(U(2) x U(3)). There is of course more information in specifying the group than
only the Lie-algebra; but that of course only implies that an a priori not special
group is even less special than an algebra, because there are even more groups
among which to choose than there are algebras. (Of course there are truly infinitely
many both groups and algebras, but for a given range of ranks, say, there are more
Lie-groups than Lie-algebras).

Another hope of explaining, why the Standard Model including its gauge
group is chosen by Nature, is the superstring theories, which predict at the funda-
mental or string level the gauge groups Eg x Eg or SO(32). But from the point of
view of our “goal quantity” - as can be seen below form our tables - especially Eg
and consequently also Eg x Eg (since our “goal quantity” has the property of being
the same for a group G and its cross products with itself any number of times) is
the worst group from the point of view of our “goal quantity”: In fact the nature
of our “goal quantity” construction is so, that we always must have

“goal quantity” > 1. (11.9)
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But Eg according to the table below gives just this 1 for its “goal quantity”
“goal quantity”; ¢ = “goal quantity”, =1

actually because Eg has no smaller representation than its adjoint representation.

The connection to my personal pet-theory (or dream, or program) of Random
Dynamics [13,15,17,16,18,20] is that a priori the present work is ideally phenomeno-
logically - as to be explained in subsection 11.3.3-,i. e. the spirit is to ask nature
and just seek to find what is characteristic for the Standard Model group without
theoretical guesses behind a priori. However, it(= our phenomenological result)
leads to the suggestion that the (gauge)group that wins - gets highest “goal quan-
tity” - is the one that most likely would become approximately a good symmetry
by accident. This would then mean, that in a random model, as is the picture
in Random Dynamics, the group, that is selected by our game, is just the one
most likely to be realized as an approximately good symmetry by accident. So
indeed Random Dynamics could be a background theory for the present work.
So in this sense random dynamics ends up being favoured by the present article,
although we in principle started out purely phenomenologically. (It must be admit-
ted though, that historically the idea appeared as an extract from a long Random
Dynamics inspired calculation - which has so far not been published - by Don
Bennett and myself.) Having approximately gauge symmetries, there is according
to some earlier works of ours and others [16,25,29,30] the possibility that the gauge
symmetry may become exact by quantum fluctuations; really one first writes it
formally as if the remaining small breaking were a Higgsing, and then argue that
quantum fluctuations wash away this “Higgs”effect.

11.1.2 Plan of Article

In the next section 11.2 we shall with the Standard Model group as an example tell
how to calculate the goal quantity, and we deliver in this section 11.2 also some
tables to use for such computations. Then in section 11.3 we discuss the attempt
to also postdict the dimension of space time; for that several slight modifications
are used to in an approximate sense construct a goal quantity like quantity for
even the Poincare group in an arbitrary dimension d for space time. Successively
in section 11.4 we consider, how we can extend our ideas to measure the size of a
representation of the Standard Model group, and then the wonderful result is that
the representation, under which the Higgs fields transform, remarkably enough
turns out to be just the smallest (non- trivial) representation!

The following sections are about work still under development, and in section
11.5 we review an old work making more precise, what is already rather intuitively
obvious: That the fermion representations in the Standard Model are rather “small”
and that that together with anomaly conditions settles what they can be assuming
mass protected fermions only. In the next section 11.6 we point to a way of changing
the point of view so as to say, that, what we predict, is rather than the gauge group
the group of gauge transformations. This may be the beginning to predict also
a manifold structure for the whole gauge theory. Are we on the way to general
relativity? We conclude and resume in section 11.7.
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11.2 Calculation of “Goal quantity” Illustrated with the
Standard Model Group S(U(2) x U(3))

Rather than going into using the structure as a group rather than only the Lie-algebra
structure we just above remarked that we can determine the “Abelian factor” (see
11.8) by studying the system of representation allowed as representations of the
group rather than being just allowed by the Lie-algebra.

For example the phenomenological feature of the Standard Model, that gives
rise to, that the Standard Model Group indeed must be taken as S(LL(2) x U(3)) [3],
is the restriction on the weak hypercharge y quantization (or rather we prefer to
use the half weak hypercharge y/2) realizing the usual assumption in the Standard
Model about electric charge quantization (Milikan quantization extended with the
well known rules for quarks). This rule become written for the Standard Model:

y/2 + Ly + “triality”/3 = 0(mod1). (11.10)

According to the rule to calculate the Abelian factor we shall in the limit of a
going to infinity big range of y/2-values ask for what fraction of the number of
values possible with the rule (11.10) imposed and the same but only including
representations with the simple groups SU(2) and SU(3) in the Lie algebra of the
Standard Model represented trivially. If we only allowed the adjoint or the trivial
representations of these simple groups, so that I = 0(mod 1) and “triality” =0,
it is quite obvious in our Standard Model example, that the Standard Model rule
(11.10) allows, when the simple representations can be adjusted, all y/2 being an
integer multiplum of 1/6. If we, however, limit the simple groups to have trivial
(or adjoint) representations only, then we can only have y/2 being integer. It is
clear that this means in the limit of the large range S that there are 6 times as many
y/2 values allowed, when the representations of the simple groups are free, as
when it is restricted to be trivial (or adjoint). We therefore immediately find for the
Standard Model Group

“Abelian factor”s (1 (2)xu(3)) = 6> = 36. (11.11)

In order to calculate the factor “Semisimple factor ” (11.6) we must look up
the table for the C /Cr for the simple groups involved, then raise these factors to
the power of the dimension of the Lie-algebras in question, and very finally after
having multiplied also by the “Abelian factor” we must take the root of the total
dimension of the whole group.

11.2.1 Useful Table

Here we give the table to use, our (essentially inverse Dynkin index [11]) ratios
for the simple Lie groups, with the representation F selected so as to provide the
biggest possible ratio C 5 /Cr still keeping F non trivial, or let us say faithful (in a
few cases the choice of this F is not clear at the outset and the user of the table has
to choose the largest number among “vector” and “spinor” after he has provided
the rank n he wants to use) :
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Our Ratio of Adjoint to “Simplest” (or smallest) Quadratic Casimirs C5 /Cr

Ca, _2mn+1)2  2m+1)2 2
E'A“ Cn+2) D211
Ca 2n—1 1
CF vector‘Bn - n =2 E
Ca ~2n—1 16n—38
Cr spinor‘B“ ~ 2niin ni2n-+1)
Ca on+1 4n+T)
E‘C“’n/z+1/4* 2n+1
Ca _2n—1) 4(n-1)
Crvector ™"~ m—1/2 ~ 21
Ca _2mn—1) 16(n—1)
CFspin0r|Dn_ 2112% _n(Zn—H
%|G2:%:2
Ca 9 3
E|F4:g:§
Ca, 12 18
C7F|E6_Zsj_ﬁ
Ca, 18 72 24
C7F|E7_54j 57 = 19
Cal 30,
Cr ™30

For calculation of this table seek help in[27,26].

In the just above table we have of course used the conventional notation for
the classification of Lie algebras, wherein the index n on the capital letter denotes
the rank (the rank n is the maximal number of mutually commuting basis-vectors
in the Lie algebra) of the Lie algebra, and:

e A, isSU(n+1),

(11.12)

(11.13)

(11.14)

(11.15)
(11.16)
(11.17)
(11.18)

(11.19)

(11.20)

(11.21)

(11.22)

e B, is the odd dimension orthogonal group Lie algebra i.e. for SO(2Zn + 1) or
for its covering group Spin(2n + 1),

o C,, are the symplectic Lie algebras.

e D, is the even dimension orthogonal Lie algebra i.e. for SO(2n) or its covering

group Spin(2n),

e while F4, G2, and E,, for n = 6,7, 8 are the exceptional Lie algebras.

The words spinor or vector following in the index the letter F, which itself de-
notes the “small” representation - i.e. most promising for giving a small quadratic
Casimir Cr - means that we have used for F respectively the smallest spinor and
the smallest vector representation.
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11.2.2 End of calculation of the “goal quantity” for the Standard Model
Group

Since the Lie-algebra in addition to the Abelian part (LL(1) usually called) consists
of SU(2) and SU(3) we must look these two simple Lie algebras up in the table
above, finding respectively for the C o /Cr ratios 8/3 and 9/4, which must be taken
to respectively the powers 3 and 8, since the dimensions of the A, = SU(n+ 1)
Lie-groups are “dimension” = (n+ 1)2 — 1, leading to

8 9

xU(3)) = (§)3 : (1)8 =313.277 =1594323/128

= 12455.6484375. (11.23)

“Semisimple factor”g )

Remembering that we got 6 = 3 - 2 for the ratio of numbers of y/2-values, when
all representation obeying (11.10) were counted relative to this number for only
the representations with trivial representations of SU(2) and SU(3), the “Abelian
factor”= 62 = 32 . 22. Then the whole factor, of which to next take the 12th root
(since the total dimensionality of the Standard Model group is 12) becomes

8,9
“Semisimplefactor” - “Abelianfactor” = (§)3(Z)8 236 =277.371

= 448403.34375. (11.24)

Thus we just have to take the 12th root of this quantity to obtain the score or
“goal quantity” for the Standard Model group S(U(2) x U(3))

“goalquantityd ;) uz) = (277312 =3. (%)”‘2 =3 0.985941504

= 2.957824511. (11.25)

Similar calculations give the “goal quantity” for other groups. But it requires
of course either a lot of work or some rules and experiences with calculating such
goal quantities in order to see, which alternative groups are the severe competitors
of the Standard Model group S(LL(2) xLL(3)) that have to have their “goal quantities”
computed in order to establish that the by Nature selected Standard Model group
S(U(2) x U(3)) is indeed the winner in obtaining the highest “goal quantity”
(except for groups being higher powers of the Standard Model group itself).

For example a very near competitor is the group U(2), for which one easily
calculates

“Semisimplefactor(j ;) = (%)3 =27/33 =18.962962963 (11.26)
“Abelianfactor(|,) = 2% =4 (11.27)
“goalquantityfy,, = (2'1/3)/* =233 (5)*

=23/3-1.10668192 = 2.951151786  (11.28)

On the Fig. 11.1 we illustrate the three groups getting the three highest “goal
quantities”. The third group winning so to speak the bronze medal in this com-
petition is Spin(5) x SU(3) x U(1)/“Z/ (where “Z/ stands for a certain with the
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integers modulo 6 isomorphic subgroup of the center of the cross product group;
it arranges a quantization rule for the allowed representations quite analogous
to that of the Standard Model group except, that the weak Lie algebra SU(2) has
been replaced by Spin(5) (which is the covering group of SO(5)), which is very
analogous to the Standard Model group just with SO(5) or rather Spin(5) which is
its covering group replacing the SU(2) in the Standard Model:

S(U(2)xU(3))

2.95782451
GOLD

2.95115179
6 SILVER

SU(3)xSpin(5)x ilhj,z

2.69345184
BRONCE

Fig.11.1. This figure illustrates the three Lie groups getting in our game the highest scores
for our “goal quantity” as were the sportsmen winning gold silver and bronze medals.

11.3 Dimension of Space-time Also

The main point of my progress since last year [2] is to say:

The choice of dimensionality of space time, that nature have made, - at
least 3+1 for practical purpose - can be considered also a choice of a group, - and
even a gauge group, if we invoke general relativity -namely say the Lorentz group
or the Poincare group. So if we have a “game” or a “goal quantity” selecting by
letting it be maximal the gauge group of the Standard Model, it is in principle
possible to ask:

Which among the as Lorentz or Poincare group applicable groups get the
highest “goal quantity” score? Which dimension wins the competition among
Lorentz or Poincare groups?.

We would of course by extrapolation from the gauge group story (= previous
work(with Don)[2] ) expect that Nature should again have chosen the “winner”.
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It is my point now that - with only very little “cheat” - I can claim that indeed
Nature has chosen that dimension d = 4 (presumably meant to be the practical
one, we see, and not necessarily the fundamental dimension, since our quantity
could represent some stability against collapsing the dimension)that gives the
biggest score for the Poincare group! (for the Lorentz groups d =4 and d =3
share the winner place !)

11.3.1 Development of Goal Quantities for dimension fitting.

In the present article we shall ignore anthropic principle arguments for what space
time dimension should be, and seek to get a statement, that the experimental num-
ber of dimensions (4 if you count the truly observed one and take the convention
to include time as one dimension) just maximizes some quantity, that is a relatively
simple function of the group structure of, say, the Lorentz group, and which we
then call a “goal quantity”.

Making a “goal quantity” for Dimension is a Two step Procedure:

o 1) We first use the proposals in my work with Don Bennett to give a number -
a goal quantity - for any Lie group.

¢ 2) We have to specify on which group we shall take and use the procedure
of the previous work; shall it be the Lorentz group?, its covering group ? or
somehow an attempt with the Poincare group ? :

Developing a “Goal quantity” for “predicting”(fitting) the Space Time
dimension

A series of four proposals:

e a. Just take the Lorentz group and calculate for that the inverse Dynkin index
or rather the quantity which we already used as “goal quantity” in the previ-
ous work and above (11.5) Ca/Cr. (Semi-simple Lorentz groups except for
dimension d = 2 or smaller and in fact simple for 3 , 5 and higher).

e b. We supplement in a somewhat ad hoc way the above a., i.e. Co/CF by taking
its 41 th power. The idea behind this proposal is that we think of the Poincare

group instead of as under a. only on the Lorentz group part, though still in

a crude way. This means we think of a group, which is the Poincare group,

except that we for simplicity ignore that the translation generators do not commute

with the Lorentz group part. Then we assign in accordance with the ad hoc rule
used for the gauge group the Abelian sub-Lie-algebra a formal replacement

1 for the ratio of the quadratic Casimirs Ca/Cy - because there is no limit

to how small momenta can be quantized and no natural way to obtain the

charges e, for restricted representations, since we have essentially R as the

Abelian group rather than U(1) or complicated discrete subgroups D being

divided out -: Le. we put “e5 /ef” = “CA/CrlAvetean formar = 1- Next we

construct an “average” averaged in a logarithmic way (meaning that we average
the logarithms and then exponentiate again) weighted with the dimension
of the Lie groups over all the dimensions of the Poincare Lie group. Since
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the dimension of the Lorentz group for d dimensional space-time is a(a-1)

2
d(dz—H +d= d(d+1

while the Poincare group has dimension > ) the logarithmic

averaging means that we get

d(d71]ln(c /C )‘ +ln(1)*d d(d—1) ,d(d+1)
— > A F)lLorentz _ /=7
CXp( d(d+ 1,2 )= (CA/CF”LorentZ
da—1
= (CA/CFll{orent.  (11.29)

That is to say we shall make a certain ad hoc partial inclusion of the Abelian
dimensions in the Poincare groups.

To be concrete we here propose to say crudely: Let the Poincare group have
of course d “Abelian” generators or dimensions. Let the dimension of the
Lorentz group be di o = d(d — 1)/2; then the total dimension of the Poincare
group is dpoi = d + dior = d(d + 1)/2. If we crudely followed the idea
of weighting proposed in the previous article [2] or above (11.5 as if the d
“abelian” generators were just simple cross product factors - and not as they
really are: not quite usual, because they do not commute with the Lorentz
generators - then since we formally are from this previous article suggested to
use the as if number 1 for the Abelian groups, we should use the quantity

dior

(CA/CPITS = (Ca/CrIET (11.30)

Lor Lor

as goal quantity.

Really you can simply say: we put the “Abelian factor ” =1, but still take
the dpoi = d(d + 1)/2th root at the end, by using the total dimension of
the Poincare group dpoi. The crux of taking this “1” is that we do not have
anything corresponding to the division out of a discrete group giving the
restriction like (11.10 in the Poincare case.

c. We could improve the above proposals for goal quantities a. or b. by in-
cluding into the quadratic Casimir C for the adjoint representation also
contributions from the translation generating generators, so as to define a
quadratic Casimir for the whole Poincare group. This would mean, that we
for calculating our goal quantity would do as above but

Replace :Ca — Ca + Cy, (11.31)

where Cy is the vector representation quadratic Casimir, meaning the repre-
sentation under which the translation generators transform under the Lorentz
group. Since in the below table we in the lines denoted “no fermions” have
taken the “small representation” F to be this vector representation V, this
replacement means, that we replace the goal quantity ratio C /Cr like this:

(S)O(d), “no spinors”:

Ca/Cr=CA/Cy = (CA+Cy)/Cr=Ca/Cr+1 (11.32)
Spin(d), “with spinors”:
Ca/Cr — (CaA+Cv)/Cr
= Ca/Cr +(Ca/Cv) 1 (CaA/CF)

= (14 (CA/CPlg spinors) CA/Cr (1133)
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Let me stress though that this proposal c. is not quite “fair” in as far as it is based on
the Poincare group, while the representations considered are not faithful w.r.t. to the
whole Poincare group, but only w.r.t. the Lorentz group

o d. To make the proposal c. a bit more “fair” we should at least say: Since we in
c. considered a representation which were only faithful w.r.t. the Lorentz sub-
group of the Poincare group we should at least correct the quadratic Casimir
- expected crudely to be “proportional” to the number of dimensions of the
(Lie)group - by a factor d“ 7 being the ratio of the dimension of the Poincare
(Lie)group, d +d(d — 1) / 2 to that of actually faithfully represented Lorentz
group d(d — 1)/2. That is to say we should before forming the ratio of the
improved Ca meaning Ca + Cy (as calculated under c.) to Cr replace this Cr

by 4= d“ * Cf, i.e. we perform the replacement:
did—1)/2+d d+1

Inserted into (Ca + Cy)/Cr from c. we obtain for the in this way made more
“fair” approximate “goal quantity”

£’ : rr d ]
goal quantity”| spinor = (CA/Cr+1) % i (11.35)
d—1
" : r 1
goal quantity”l;,, spinor = (1+ (CA/CF)IHO spmor) x Ca/CF % T
(11.36)

This proposal d. should then at least be crudely balanced with respect to how many
dimensions that are represented faithfully.

11.3.2 Philosophy of the goal quantity construction/development

The reader should consider these different proposals for a quantity to maximize
(= use as goal quantity) as rather closely related versions of a quantity suggested
by a perhaps a bit vague ideas being improved successively by treating the from
our point of view a bit more difficult to treat Abelian part (=the translation part of
the Poincare group) at least in an approximate way.

One should have in mind, that this somewhat vague basic idea behind is: The
group selected by nature is the one that counted in a “normalization determined
from the Lie algebra of the group” can be said to have a faithful representation (F)
the matrices of which move as little as possible, when the group element being
represented move around in the group.

Let me at least clarify a bit, what is meant by this statement:

We think by representations as usual on linear representations, and thus
it really means representation of the group by means of a homomorphism of
the group into a group of matrices. The requirement of the representation being
faithful then means, that this group of matrices shall actually be an isomorphic
image of the original group. Now on a system of matrices we have a natural metric,
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namely the metric in which the distance between two matrices A and B is given
by the square root of the trace of the numerical square of the difference

dist = \/tr((A —B)(A —B)*). (11.37)

To make a comparison of one group and some representation of it with another
group and its representation w.r.t. to, how fast the representation matrices move
for a given motion of the group elements, we need a normalization giving us a
well-defined metric on the groups, w.r.t. which we can ask for the rate of variation
of the representations. In my short statement I suggested that this “normalization
should be determined from the Lie algebra of the group”. This is to be taken to
mean more precisely, that one shall consider the adjoint representation, which
is in fact completely given by the Lie algebra, and then use the same distance
concept as we just proposed for the matrix representation \/ tr((A—B)(A—B)*).
In this way the quantity to minimize would be the ratio of the motion-distance in
the representation - F say - and in the Lie algebra representation - i.e. the adjoint
representation. But that ratio is just for infinitesimal motions /Cr/Ca. So if we
instead of talking about what to minimize, inverted it and claimed we should
maximize we would get \/Ca /Cr to be maximized. Of course the square root does
not matter, and we thus obtain in this way a means to look at the ratio CA/Cr as a
measure for the motion of an element in the group compared to the same element
motion on the representation.

It might not really be so wild to think that a group which can be represented
in a way so that the representation varies little when the group element moves
around would be easier to get realized in nature than one that varies more. If
one imagine that the potential groups become good symmetries by accident, then
at least it would be less of an accident required the less the degrees of freedom
moves around under the to the group corresponding symmetry (approximately).
It is really such a philosophy of it being easier to get some groups approximately
being good symmetries than other, and those with biggest Ca /Cr should be the
easiest to become good symmetries by accident, we argue for. That is indeed
the speculation behind the present article as well as the previous one [2] that
symmetries may appear by accident(then perhaps being strengthened to be exact
by some means [16,25]).

11.3.3 Phenomenological Philosophy

But let us stress that you can also look at the present work and the previous one in
the following phenomenological philosophy:

We wonder, why Nature has chosen just 4 (=3+1) dimensions and why Nature -
at the present experimentally accessible scale at least - has chosen just the Standard
Model group S(U(2) x U(3))? Then we speculate that there might be some quantity
characterizing groups, which measures how well they “are suited ” to be the
groups for Nature. And then we begin to seek that quantity as being some function
defined on the class of abstract groups - i.e. giving a number for each abstract
(Lie?) group - of course by proposing for ourselves at least various versions or
ideas for what such a relatively simple function defined on the abstract Lie groups
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could be. Then the present works - this paper and the previous ones[2] and [1] -
represents the present status of the search: We found that with small variations
the types of such functions representing the spirit of the little motion of the “best”
faithful representation,i.e. essentially the largest Ca/CF, turned out truly to bring
Natures choices to be (essentially) the winners.

In this sense we may then claim that we have found by phenomenology, that
at least the “direction” of a quantity like C4 /Cr or light modifications of it is a
very good quantity to make up a “theory” for, why we have got the groups we
got!

Here we bring the table in which we present the calculations of our for the
space-time dimension relevant various “goal quantities”:

Di- |Lorentz |Ratio Ratio c.-quan- g—;} d.-quan-
men-|group, |Ca/Cr Ca/Cr as|tity tity
sion |covering|for spinor |no spinor jmax c) max d)
22 |U®1) -(for- -(for- 4 1/31(4/3
mally 2) |mally 1) =1.33
3 [spin@) [§=267 |1 8 =53[7 [3=267
N N R 1 S E A1
SU(2)x |=2.67 =4.67
Su(2) =2.8
5 [Spin(5) [Z2=24 [3=15 [4 2 13=267
6 |Spin(6) |32 S=16 [22=35]2 [35=25
d spin(@) [Roner =2 = 1/n =[G |6 a
odd T k-
d Spin(d) 1c16((§:12)) 42(2:}) 8d((3c;1:15 )) % 8d((3c(11+_15))
even =244
d |Spin(d) |=16/d |[—2 ~24/d |— 1|=24/d
00 — 0
d Spin(d) |~ 16/d |—2 ~24/d |- 1|=24/d
00 —0

Caption: We have put the goal-numbers for the third proposal ¢ in which I (a
bit more in detail) seek to make an analogon to the number used in the reference [2]
in which we studied the gauge group of the Standard Model. The purpose of c. is
to approximate using the Poincare group a bit more detailed, but still not by making
a true representation of the Poincare group. Le. it is still not truly the Poincare
group we represent faithfully, but only the Lorentz group, or here in the table
only the covering group Spin(d) of the Lorentz group. However, I include in the
column marked “c., max c)” in the quadratic Casimir Ca of the Lorentz group an
extra term coming from the structure constants describing the non-commutativity
of the Lorentz group generators with the translation generators Cy so as to replace
Ca in the starting expression of ours Ca /Cr by Ca + Cy. In the column marked
“d., max d) ” we correct the ratio to be more “fair” by counting at least that because
of truly faithfully represented part of the Poincare group in the representations, I
use, has only dimension d(d — 1)/2 (it is namely only the Lorentz group) while the
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full Poincare group - which were already in c. but also in d. used in the improved
Ca being Co +Cy -isd(d—1)/24+d = d(d+1)/2. The correction is crudely made
by the dimension ratio dim(Lorentz)/dim(Poincare) = (d —1)/(d + 1) given in
the next to last column.

Di- Lorentz |Ratio Ratio c.- d.-
men- |group Cr/Ca |CaA/Cr quantity |quantity
sion |(covering)|for spinor|“no spinor” |maxc) |maxd)
23 u() -(f.: 2) -(f.: 1) 4 4/3=1.33
3 spin(3) |5 =2.67 |1 18 =533[3 =2.67
4 Spin(4) [§=267 |3 =467/ =238
=SUu(2)
xSU(2)
5 Spin(5) [Z=24 [3=15 4 8 =2.6667
6 Spin(6) ﬁz - =16 ?3(1:3347 id:jf%z
d odd |Spin(d) n(%gzrd])z) 2—1/n= A1) FICERY
Teray 2(_ 2/1((1_ . (3d=5] [83d=5)

- T6{d—2 F(n—T —4(8(3d—5) |8(3d=5
deven|Spin(d) |75 2n—1 2ald—14 d(a=1) |a(asn
dodd |Spin(d) |=16/d |—2 ~24/d |~24/d—0
— 00
deven|Spin(d) |=16/d |—2 ~24/d |=~24/d—0
— 00

11.4 The Higgs Representation

A rather simple and successful application of our ideas is to seek the answer to
the question: Why has the Higgs field just got the representation (2,1,y/2 = 1/2)
under the Standard Model group with the Lie algebra factors written in the order
SU(2) x SU(3) x U(1)?

Note that the selection of the gauge group by our “goal quantity” had the
character of being obtained as a ratio - of the quadratic Casimirs C for adjoint
and Cr for another faithful representation or some “replacements” for them in
the Abelian cases - of an adjoint representation parameter to one for another
representationF. Also this other representation F gets basically selected by the same
principle as the selection of the whole gauge group by maximizing our “goal
quantity”, because we also select the representation F from the requirement that our
“goal quantity ” be maximized.

Thus in reality we have hit on a quantity that tends to select both a group and
a smallest Cr representation.

Now strictly speaking most irreducible representations of say the Standard
Model group S(U(2) x U(3)) will not usually be completely faithful. It is rather
so that the various representations F appearing as representations of the simple
subgroups will not be truly faithful, but rather only be faithful for some subgroup
of the S(U(2) x U(3)) group say. If we therefore now shall make some numbers
assigned to the variousnot completely faithful representations which are allowed
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as representations of the Standard Model group S(U(2) x U(3)), it would be most
“fair” to count the ratio of the quadratic Casimir in the “Adjoint” representation
- or better in the group itself - by not using the full say Standard Model Group, but
rather only that part of the group S(U(2) x W(3)) that is indeed faithfully represented on
the representation, which is up to be tested, with a number to specify which representation
should be favoured.

So let us say we have some representation R of say the Standard Model group,
i.e. an allowed one, which of course then also obeys the quantization rule (such as)
(11.10).

Now there is always a kernel K consisting of the elements in the group
S(U(2) x U(3)) or more generally the Lie group G, with which we work, for
which the elements in R are transformed trivialy, it means not shifting to another
element, but only to itself. This kernel K is of course an invariant subgroup of the
full group G. This means that G/K is a well defined factor group in G. Then we
should naturally suggest the “fair” rule that we construct the number according
to which the representation R should be selected as the number we would get by
calculating the “goal quantity ” of ours for the group G /R with though the restriction that
the F should correspond to R.

Let us illustrate this rule proposed by looking at a couple of examples:

If we want to consider one of the representations F giving the maximal Ga/Gr
for one of the simple subgroups, which in Standard Model can only be SU(2) or
SU(3), then for these two groups the F-representations are respectively 2 and
3 (or one could take the equivalent 3 for the SU(3)). But of course say 2 alone
without any y/2 charge would not be allowed by the Standard Model group
S(U(2) x U(3)). Thus we are forced to include an appropriate y/2. Doing that
you can easily find that the relevant factor groups S(U(2) x U(3))/K becomes
in the two cases respectively U(2) and U(3). Actually with smallest y/2 values
allowed in the two cases y/2 = 1/2 (or —1/2) for SU(2) and y/2 = —1/3 for
SU(3) with 3 we get just the same F as is used in our calculations of our “goal
quantity”. This means that quantities to select the representation happens to be
in our two cases just the “goal quantities” for the two groups U(2) and U(3),
namely just the factor groups. We already know that U(2) were the “silver medal
winner” and thus that it should be trivially U(2) related to measuring the size of
the representation 2,1,y/2 = 1/2) which gets selected. This means the winning -
and that means “smallest” representation of the Standard Model (measured by
using the associated factor group for which it is faithful) - representation of the
Standard Model group became this 2,1,y/2 = 1/2). This is just the representation
of the Higgs. So the Higgs representation is predicted this way (as the “smallest”
in our way of counting, closely related to the game we used to tell the gauge group
with) !

11.5 The (chiral) Fermion Representations

It is now the idea to use the very same “goal quantity” as the one, with which we
exercised in deriving the Higgs representation above, to argue for the Fermion rep-
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resentations in the Standard Model - or rather what we in the present philosophy
expect for the choice of Nature - as to what they should be.

Here the situation is somewhat more complicated because the requirement
that there be no gauge- nor gauge gravity anomalies imposes restrictions on the
whole system of representations for the chiral fermions. Assuming that we work
with 3+1 dimensions we can take it as our convention to work with only left
handed spin 1/2 Fermions, because we can let the right handed ones simply be
represented by their CP-analogue left handed ones.

We must therefore first write down the non-anomaly conditions for hav-
ing various thinkable numbers of families for the various representations of the
Standard Model.

Now the use of anomaly conditions together with the assumption of “small
representations” (in some meaning or the other) we already used in some articles
years ago. For instance in “Why do we have parity violation?”[12] Colin Froggatt
and I sought to answer this question by using the principle of small representations
to derive the representations that the Standard Model should have and thus why
they would give parity violation the well known way. Also in [14] we allude to the
principle of small representations (here in the last section). In fact in the section
XIII, called “Hahn-Nambu-like Charges” we sought to derive the system of the
representations of Weyl Fermions (we use a notation there of only counting the
left handed spin 1/2 fermions, letting it be understood that the right handed
components achieved by CP i.e. of the anti particles of course exists but are just
not listed in the way we keep track of the particles in this notation; that is to say
that normally considered right handed Weyl particles are just counted by their
CP-antiparticle, which if left handed). We sought to derive it from the no-anomaly-
conditions and a principle of “small representations”. The latter were not exactly
the same as we seek to develop in the present more recent but in some approximate
sense it were very close to the present idea of a small representation principle,
as we claim the choice of nature of the Standard Model group S(U(2) x U(3))
indicates. Nevertheless the two ideas of a “small representation principle” are so
close that at least I give/gave them the same name “small representations”.

In the section XIII of the Puerto-Rico conference proceedings [14] we use
somewhat special technology to argue thatimposing the conditions for:’

o 1. no chiral anomalies and no mixed anomalies for the gauge charge conserva-
tions,

o 2. together with a small representation principle (formulated using the concept
to be explained of “Hahn Nambu charges”)

o 3. and that the fermions shall be mass protected (i.e. get zero mass due to gauge
(charge) conservation, were it not for the “Higgsing”),

lead to the Standard Model representations spectrum basically (i.e. we get that there
should be a number of families of the type we know, but how many we do not
predict from these assumptions).

The technology used in [14] was to consider only a certain subset of charges -
called there “Hahn-Nambu charges” - of the Cartan algebra of the Standard Model
Lie algebra, or of the Lie algebra for any other gauge grouop being discussed.
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Since the rank of the Standard model (gauge)group is 4, there are of course 4
linearly independent Cartan algebra charges. But now we used in the reference
[14] not linearly independent charges, but rather linear combinations of the Cartan
algebra charges selected to have the special property, that for representations
allowed for the Standard Model group these specially selected Cartan algebra
charges had only the integer values and even in the usual Standard Model system
of representaions took only the values —1,0, or1.

Let me explain the technique of our Costa Rica proceedings paper [14] a bit
more:

Starting from assuming a gauge group with rank four say (but we really
have in mind using a similar discussion on any potential gauge group, so that
we also with those considerations could hope for approaching a derivation of
an answer to why just the Standard Model) and deciding to consider only the
Cartan algebra part, we would basically have assumed effectively an R* gauge
Lie algebra. But as a rudiment of as well the explicite charge quantization rule
resulting from the group structure as from the charge quantizations caused by the
non-abelian Lie algebra structure present before we threw the non-abelian parts
away - only keeping the Cartan algebra - we would have quatization rules for the
Cartan algebra charges. Indeed we would rather obtain an effective gauge group
after this keeping nothing but the Cartan algebra being U(1)* than the here first
mentioned R*. This would mean that in the appropriate basis choice for these
Cartan algebra charges they would all be restricted by the group structure to be
integers. Making sums and/or differences of such “basis” charges restricted to be
integers one can easily write down combinations which again would be restricted
to have only integer charges.

But now the main question of interest in our earlier quantization of certain
Cartan algebra charges were to implement the requirement/assumption of “small
representations” or for Abelian equivalently “small charges”.

We formulated the requirement of such “small charges” via defining a concept
of a “Hahn Nambu charge”. Such a type of charge, which we would denote as
“Hahn Nambu charge”, were by our definition assumed to obey:

o A “Hahn Nambu charge” should be one of the combinations of the Cartan
algebra charges, which precisely were allowed to take on integers - no more
no less - (due to the group structure of the U(1)* say for rank 4).

e But in the actual detailed model one should for the Hahn Nambu charge
only find the charge eigenvalues —1,0, or1. (This assumption is, one may say, an
assumption of small charge values -for the Hahn Nambu charge type - in as
far as the charge value numerically less than or equal to 1 is “small” compared
to the quantization interval assumed just above to be 1).

Then instead of assuming in some other way, that we seek a model with the
smallest possible charge values, we used then in [14] and [12] to say in stead - and
crudely equvalently - that we should arrange so many “Hahn Nambu charges” to
exist in the model to be sought as possible.

In order that the reader shall get an idea what type of charges these “Hahn
Nambu charges” are, let me mention the Hahn Nambu charges of the Standard
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Model:
“HNred” =y/2 + Iws + V3Agrea (11.38)
“HNblue” =y/2 + Iws + V3Agplee (11.39)
“HNyeuOWH = 9/2 + IWS + \/?;}\813 ellow (1140)
100
AZyellow = 0-10 (1141)
000
100
}\Zyellow =10-10 (1142)
000
000
Area=1010 (11.43)
00-1
-100
A2blue = 000 (1144)
001
“Twise weak isospin Iwz” = 2Iws3 (11.45)

Here we have used a notation, wherein the colors are listed in the series
(“red”, “blue”, “yellow” )in columns and rows and defined the variously colorde-
fined Ag-matrices:

2/3 0 0

V3Agrea=| 0 1/3 0 (11.46)
0 0 1/3
1/3 0 0

V3Agpwe = | 0 -2/3 0 (11.47)
0 0 1/3
1/3 0 0

V3Asyettow=| 0 1/3 0 (11.48)
0 0 -2/3

It is easy to check that these 7 “Hahn Nambu charges” are related to each other by
being sums or differences of each other, and also that they are indeed according to
our definition indeed “Hahn Nambu charges” in the wellknown Standard Model.
Indeed you should also see that the first three of them, “HNred”, “HNblue”, and
“HNyellow” are indeed three color choices for what historically Hahn and Nambu
proposed as the electric charge to be used in a QCD including model. Nowadays
we know, that quarks only have electric charges 2/3 or —1/3 fundamental charges,
but the original Hahn Nambu charge were precisely constructed to have only the
integer Millikan charge even for the quarks.

The crux of the calculation, we want to extract from the study of Hahn Nambu
charges in our old works [14,12], is that imposing the no gauge anomaly con-
ditions for the Cartan subalgebra, using the the assumption that we have as
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many “Hahn Nambu charges” as possible still having a mass protected system
of (Weyl)fermions, we are led to a system of representations which is indeed the
usual one when extended to get the non-abelian charges too.

The technique we used in the old paper(s) [14] were in fact to study the
no-anomaly constraint equations moulo 2, which for Hahn Nambu charges, that
never take by assumption/definiton charge values bigger than 1 numerically, close
to be enough.

Actually it turned out that we could first find a system of mass-protected
Weyl-fermions, when the dimension of the Cartan algebra (= the number of linearly
independent Hahn Nambu charges) became at least 4. In that case then we had
indeed to have a system of Weyl fermions, which modulo some trivial symmetries,
had to be the one found experimentally w.r.t. these “Hahn Nambu charges”.

This should be interpreted to say, that requiring maximal numbers of “Hahn
Nambu Charges” in our sense, which is a slightly special way of requiring small
representations together with the assumtions of mass protection and no anomalies,
leads to the Standard Model fermion system.

That is to say we should consider the structure of a family in the Standard
Model to essentially come out of such requirements. In this way we can count the
fermion system/spectrum as largely being a successful result comming out from a
“Small representation principle”!

11.6 Speculations on the Full Group of Gauge Transformations
and Diffeomorphism Symmetry

In the above discussion and in the previous articles in the present series of papers
[2,1] we sought to find a game leading to the “gauge group”. But now we want to
have in mind that the “gauge group” is not truly the most physical and simple
concept in as far as the true symmetry in a gauge theory with “gauge group”G is
really not truly G, but rather a cross product of one copy of G, say G(x) for every
point x in space time. That is to say the true symmetry group of the gauge theory

having the “gauge group” G is rather X G(x) =G x G x --- x G, where in the
cross product it is supposed that we have one factor for every space time point x.

Above we saw that the goal quantity for a group were suggested to be of a
type, that is balanced in such a way, that the score or goal quantity is the same for
a group G and for the cross product of this group with itself G X G x --- x G x G any
number of times.

This means of course, if as we found the Standard Model group S(U(2) x U(3))
wins our game, then in fact any product of this group with itself any number of
times can also be said to get just the same score, and thus it will also win! That
it to say that we might reinterpret our work by saying: It is not truly the gauge
group for the realized gauge theory we predict to be the winner. Rather we could
say that the group that wins is the whole symmetry group of the full quantum
field theory supposed to be realized. The concept of the full gauge symmetry (or
we could say reformulation symmetry) is — we would say — a simpler concept than
the concept of the “gauge group” for which it would have to be specified how this
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gauge group would have to be applied, namely one should construct a group of

all gauge transformations X ,G(x) =G x G x --- x G.

But since this full group gets just the same score as the more complicatedly
defined “gauge group” we could claim that our prediction is, that it is this group
of all the gauge transformations that gets the maximal score.

This would mean in some sense a slight simplification of our assumption.

11.6.1 Could we even predict the manifold?

Very speculatively - and with the success of predicting the dimension in mind - we

could seek to argue that the group of gauge transformations X G(x) =G xGx
-++ X G in some way could be claimed to represent a somewhat larger group than

just this X «G(x) = Gx G x---xGinas far as we even on the same representation
space of a direct sum of the representations F for the different points in space time
could claim to represent also a diffeomorphism group. Since this diffeomorphism
group shuffles around the direct sum of the F-type representations we could claim,
that we managed to represent a group which is really the combination of the
diffeomorphism group and the group of gauge transformations on just the same
space of linear representations as the group of gauge transformations alone gets
represented on as its “record (in our game) representation”. Intuitively this means
that we have got an even bigger group relative to the representation than if we just
represent the Standard Model group S(U(2) x U(3)) on its F's. Thus including such
a diffeomorphism extension sounds like providing a superwinner superseding
the formal winner itself the S(U(2) x U(3)) (or its cross products with itself). So
there is the hope that formulating the details appropriately we could arrange to
get our true prediction become the group of gauge transformations with the gauge
group S(U(2) x W(3)) extended with a diffeomorphism group. If indeed in addition the
dimension d = 4 for space time favoured by our game, because of its gauge group
for general relativity, and thus hopefully the group of diffeomorphisms for just a
four dimensional manifold would get exceptionally high score, it becomes very
reasonable to expect that our game could predict just the right dimension of the
manifold, on which the cross product of the standard model group with itself gets
extended by the diffeomorphism symmetry.

This means that we are very close to have an argument that the most favoured
symmetry group would precisely be the group of Standard Model gauge transfor-
mations extended by just a four dimensional diffeomorphism symmetry.

But if so, it would mean, that we had found a principle, a game, favouring
precisely the group of gauge transformations found empirically.

Well, it must here be admitted a little caveat: The groups we considered
to derive the dimension were the group of Lorentz transformation or Poincare
transformations, and not the full group of linear d-dimensional maps as would locally
correspond to the diffeomorphism symmetry. Thus one should presumably rather
hope for our scheme to lead not to the full diffeomorphism symmetry as part of
the winning symmetry group, but rather only that part of the diffeomorphism
group, which does not shift the metric tensor g,.. It would namely rather be this
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subgroup of the diffeomorphism group that would locally be like the Spin(4) or
SO(4) as we discussed in the dimension fitting.

But somehow this is presumably also rather what we should hope for to have
a successful theory of ours.

“Going for” the Standard Model as were our starting point means that we
really concentrated on only looking for the long wave length or practically accessi-
ble part of whatever the true theory for physics might be. This long wave length
practical section should presumably be defined as what we can learn from few
particle collisions with energies only up to about a few TeV. But in such few particle
practical experiments we should not discover gravity and general relativity. We
should only “see” the flat Minkowski space time and the Standard Model. But that
should then mean that we should not truly “see” diffeomorphism group, but only
some rudiments associated with the metric tensor leaving part of this group.

The ideal picture which we should hope to become the prediction in this low
energy section philosophy should rather be that the geometrical symmetries are
only the flat Poincare group combined with the full gauge group for the Standard
Model.

11.7 Conclusion

The main point of the present article is the suggestion that in a way - that may
have to be made a bit precise in the future/coming further work - a principle
of “small representations” should be sufficient to imply a significant part of the
details of the Standard Model. The real recently most important progress in the
work with Don Bennett [2] is that it seems that even for the selection of the gauge
group itself this selection of “small representations” is so important that the very
group is selected so as to in the appropriate way of counting have the smallest faithful
representations. That is to say the Standard Model gauge group should have been
selected to be the model of Nature precisely, because it could cope with smaller
representations, measured in our slightly specific way, than any other proposal for
the gauge group (except for cross products of the Standard Model group with itself
a number of times). This so successful specific way of measuring the “smallness”
of the representations takes its outset from the (inverted) Dynkin index in the case
of simple Lie groups: Ca/Cr. This is then averaged actually in the way that the
logarithms of it is averaged weighted with the dimensions of the various simple
groups in the cross product (and then we may of course reexponentiate if we
want) and extended to the most natural analogue for the Abelian Lie-algebra parts,
essentially replacing the Ca /Cr by €% /e meaning the charge square ratio for two
representations analogous to the adjoint and the F ones.

The philosophy that taking outset in Ca /Cr with F, as we did, being chosen so
as to maximize this ratio Ca /Cr can be considered assuming a principle of “small
representations” is obvious. If we consider the adjoint representation quadratic
Casimir Ca for the simple group under investigation as just a normalization -
to have something to compare quadratic Casimirs of other representations to -
maximizing our starting quantity C /Cr means really selecting a (simple) group
according to how small faithful representations F one can find for it. So it is really
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selecting the group with the smallest representations. Here of course then the
concept of the size of the representation has been identified with the size of the
quadratic Casimir, but that is at first a very natural identification and secondly,
that were the one with which we had the success. It is also the quadratic Casimir,
which is connected with natural metric on the space of unitary matrices in the
representations. In fact our outset quantity Ca /Cr becomes the square of the ratio
of the distance the unitary representation matrix moves for an infinitesimal motion
of the group element in the adjoint and in the representation F, wherein by choice
of F this distance is minimal. So our “goal quantity” which is the appropriate
average of the ratio Ca/Cr and its extension to the Abelian parts becomes (es-
sentially) the square of the volume of the volume of the representation space - in
representations of the F’s - and the corresponding representation space using the
adjoint representation or an analogue of adjoint space representation, if Abelian
parts are present. But the crux of the matter is a surprisingly large amount of details
of the Standard Model including its Gauge group is determined from a requirement of
essentially minimizing the quadratic Casimirs of the representations:

o First the gauge group - and here we stress group - S(U(2) x U(3)) of the
Standard Model is selected by for our “goal quantity” (11.5) obtaining the
highest score 2.95782451 which is rather tinnily,0.0067,above the next (silver
medal) (not being just a trivial cross product including the Standard Model
itself), namely U(2) (= standard model missing the strong interactions QCD)
2.95115179.

o The dimension 4 for space time is also selected by the Poincare group getting
the highest score for approximately the same “goal quantity”, which we used
for the gauge group. It must be admitted though that we did not treat the
Poincare group exactly - because it does not have the nice finite dimensional
representations we would like to keep to have as strong similarity with the
gauge group as possible - but instead made the trick of making some crude
corrections starting from the Lorentz group. When using the Lorentz group
dimension d=3 and d=4 stand equal. When we correct in reasonably “fair”
ways the dimension d=4 (the experimental one for practical purposes in our
notation that include the time) wins by having the highest corrected “goal
quantity” for the Lorentz group, corrected to simulate the Poincare group. In
this sense our principle, which is at the end a principle of small representations,
point to the experimentally observed number of dimensions d=4.

o The representation of the Higgs field is when we use our “goal quantity”
inspired way of defining in a very precise way numerically the smallest of
the possible various irreducible representations to be the inverse of the this
“goal quantity” for the factor group G/K = S(U(2) x U(3))/K, for which the
thought upon representation R is faithful. By this we just mean that we define
K as the (invariant) subgroup, the elements of which are represented just by
the unit matrix in the representation R. This we then in principle go through
for all irreducible representations R for the Standard Model and ask for each
possible R: what is the “goal quantity” for the corresponding S(U(2) x U(3))/K
(here K depends on R of course) group. For R = (2,1,y/2 = 1/2) this factor
group S(U(2) x U(3))/K turns out to be just U(2) and score “goal quantity”
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for the representation R = (2,1,y/2 = 1/2) is just that of the group U(2)
because it happens that the F for the SU(2) inside U(2) is just the 2. Thus
the quantity to determine to decide on the representation R = (2,1,y/2 =
1/2) becomes exactly the “goal quantity”, ,, which we knew already were
unbeatable (except if there should have been an irreducible representation
faithful for the whole Standard Model group, but there is not). Thus assuming
that the representation is smallest meaning, since “size” = 1/“goal quantity”
for representations using our scheme, for predict representations the Higgs
which is scalar and has no anomaly problems should be that representation
that won R = (2,1,y/2 = 1/2), and that is precisely the representation of the
Higgs!

The Fermion representations all for mass protected Fermions (meaning that
gauge symmetry would have to be broken, spontaneously by a Higgs presum-
ably) in order for the Fermions to obtain nonzero masses. This makes them
easily make anomalies in the gauge symmetries (charge conservations). In
order that no anomalies really occur relations between the number of species
of Fermions in various representations get severely restricted. Together with
some requirement of “small representations” it looks rather suggestive, that
the Standard Model system of particles in a family comes out just intuitively.
In our article [14] we did an attempt to make the requirement of small repre-
sentations precise in a quite different way than in the present article- but it
were an attempt to assume small representations in some way at least -and
we mainly worked with the Cartan algebra only. But the result was, that the
Standard Model representations came out/were postdicted for the Cartan
algebra at least.

At the end we sought to change the point of view as to what group should be
the one, that shall win the game of getting the largest “goal quantity” from
being the gauge group to be the group of all the gauge transformations. Since it
happens that we had balanced our “goal quantity”so much in order to avoid
making the dimension of the group of much influence the value of this “goal
quantity” had turned out to be exactly the same for a group and its cross
product with itself, ever so many times. Since now the group of all gauge
transformations is basically an infinite cross product of what we usually call
the gauge group, it means that w.r.t. our competition selecting the gauge group
or the group of gauge transformations makes no difference. So if we e.g. should
think that the group of all the gauge transformations is a more fundamental
and well defined concept, we are free to choose our scheme to select that group
of gauge transformations rather than the gauge group.

But if we are very speculatively optimistic we might find some argument that
many cross product factors would occur and hope in the long run to get a kind
of understanding of the gauge symmetry on a whole manifold to optimistically
come out of our game.

Perhaps extension of this point of view to the Lorentz (or crudely Poincare)
group as gauge symmetry should in later work give a better way of arguing
for the dimension of space time d=4, at the same time getting close to general
relativity.



168 H.B. Nielsen

This series of ideas for points resulting from some principle or another, but
presumably best by using our “goal quantity” (11.5), shows that such a type of
principle is close to deriving a lot of the structure of the Standard Model: The
gauge group, in the “group” included some quantization rule (11.10), the space
time dimension, the Higgs representation, the fermion representations, and more
doubtfully some argument that we have gauge symmetry at all.

In conclusion I think that this kind of principle - a precise making of a principle
of “small representations” - could have a very good chance to explain a lot of
the structure of the Standard Model and thereby of the physics structure, we see
today!

11.7.1 Outlook and speculation on finestructure constants

If we take the above results of having success with “goal quantity” related to the
representations F being in fact the representations of the Standard Model group
(y/2=1/2,2,1) and (y/2 = —1/3,1,3) to mean that these two representations
represent the dominant fields (for the gauge field on a lattice say), then it hap-
pens that we got an “important representation” being the direct sum of these
two representations. This sum corresponds to the 5 of the SU(5) in grand unifica-
tion [19]. If we also took it, that the involvement of the natural measure on the
representation space of unitary matrices in the definition of our successful goal
quantity to mean, that we should use this distance measure on the representations
to suggest the strength of the gauge couplings, we would end up with a simulated
SU(5)-unification prediction!

We hope that our scheme might suggest an approximate SU(5)-relation between
the couplings only, because we presumably even would if this should work at
all for our kind of thinking rather at some fundammental/Planck scale than at
an adjustable scale like in conventional Grand Unification. (We hope to return
to our hopes of obtaining approximate SU(5) coupling relations at the Planck
scale in later works in which we should then take into account that there are also
secondary representations in the series of our smallness and that how much they
shuld contribute might be something we at least at first could start fitting and
playing with).
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