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0  INTRODUCTION

High-speed rotating machines are widely spread 
in modern technology. Rotors and shafts are key 
components responsible for transmission of torque 
and rotation in the majority of power, electric and 
drilling systems [1] and [2]. In particular, these include 
gas turbines, compressors, separators, centrifugal 
pumps and textile machines, e.g. see [2] and [3].

Systems with fluid-filled cavities are an 
important class of rotating machines. Among them are 
elastic fluid turbines, fluid gyroscopes, centrifuges, 
and separators. A rotor with fluid-filled cavities is a 
non-conservative mechanical system [4] due to self-
oscillation caused by the presence of fluid [5] and [6]. 
At supercritical speeds fluid converts rotor rotation 
energy into its transverse vibration energy resulting in 
instability [7] and [8]. Analysis of experimental data 
shows that fluid in rotor cavities is often the main 
cause of unstable regimes [9] and [10]. The underlying 
physics is that the fluid centrifugal acceleration is 
opposite to the pressure gradient leading to violation 
of equilibrium [11] and [12].

In addition to the above mentioned role of 
fluid, rotor dynamics is also affected by a few other 
parameters, e.g. see [13] and [14], including the 
variation of inertial characteristics, nonlinearity and 
stiffness of supports and shafts, rotor disbalance and 
asymmetry [15], specific properties of a lubrication 
layer in case of plain bearings [16] and, especially, 

performance of rolling bearings [17] and [18], internal 
and external damping, and some others.

Modern design and calculation of the vibration 
characteristics of rotating machines require treatment 
of the whole mechanical “rotor-fluid-foundation” 
system. Many theoretical and applied considerations 
on the subject concentrate on vibration of rotor and 
fluid only, neglecting foundation motion. Such 
assumption may considerably affect the accuracy 
of evaluation of the overall dynamic and kinematic 
behaviour of the system [19]. Experimental analysis 
clearly indicates the importance of taking into account 
foundation vibration along with the development of 
methods for its reduction [20] and [21].

Nowadays, the rotating machines widely used 
in industry mostly operate with rolling bearings [22] 
and [23]. Although plain bearings with liquid or gas 
lubrication have some advantages in comparison 
with rolling bearings, they have not yet found major 
industrial applications. The reason is that a lubrication 
layer induces high-amplitude self-oscillation in the 
system leading to a quick bearing failure [16] and [24]. 
In this case stresses in bearings are the result of the 
pressure in liquid films [25].

The increase in rotation speeds has natural 
restrictions due to the mechanical properties of rotating 
machines. At relatively low speeds design consists, 
as a rule, sufficient balancing. Ideally, dynamic 
stresses between the rotor and bearing supports and 
consequently induced vibrations disappear provided 
that the rotor principal inertia axis coincides with its 
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axis of rotation. In this case, some of the important 
bearing properties, including nonlinear deformability, 
are ignored [18]. However, at higher speeds the effect 
of bearing nonlinear deformability becomes essential.

Rotor dynamics in the case of nonlinear elastic 
supports, e.g. rolling bearings, has not been fully 
studied. A rolling bearing can be modelled as a rigid 
body support which is a hinge for a single row ball 
bearing and a clamped end for a support equipped 
with a pair of double row bearings. This simplified 
approach, however, does not produce a sufficiently 
accurate solution of the original engineering problem. 
The practice needs more general mathematical models 
incorporating far more specific features of rolling 
bearings, such as geometric uncertainties and gaps 
as well as their variation at exploitation [26] and [27], 
nonlinear stiffnesses [28] and [29], centrifugal forces, 
sophisticated behaviour of bearing rings, gyroscopic 
phenomena [30], friction in lubrication layers, variable 
thickness of lubrication layers along contact surfaces 
[16], etc.

In this paper, we investigate the nonlinear 
dynamics of a rotor with a fluid-filled cavity. The 
rotor is assumed to be supplied with rotation bearings 
and elastically supported by a foundation. The studied 
system models vertical centrifuges widely used for 
separation of various heterogeneous mixtures. The 
increase in rotation speeds along with the demand 
for a high precision performance motivates advanced 
modelling taking into account the deformability of 
rolling bearings. Their nonlinear behaviour seems to 
be essential for rotor dynamics. In particular, radial 
compression arises from deformations of rolling 
bodies along contact surfaces.

The challenge of the problem in question is also 
due to a strong coupling between the rotor and fluid 
motions affecting vibration frequencies and causing 
instability. The equations analysed in the paper 
govern rigid body fluid interaction. High-speed rotor 
modelling assumes evaluating the influence of the 
phenomena mentioned above in order to arrive at the 
most optimal problem formulation by preserving only 
its key features.

1  STATEMENT OF THE PROBLEM

Consider a symmetric vertical rotor of mass m with 
a cylindrical cavity of radius R partially filled with 
an ideal fluid, see Fig. 1. The angular speed of the 
rotor Ω0 = const is considered to be greater than the 
associated critical speed. Let the rotor together with 
fluid perform rigid body rotation under dynamic 
equilibrium. We also assume static imbalance of the 

rotor, denoting it by e. The analysed system rests 
on rolling bearings. Elastic deformations arising in 
bearings are supposed to have both radial and axial 
components, demonstrating essential nonlinearity. 
The radial compliance of bearings is considered to 
occur due to the deformability of rolling elements and 
raceways along contact zones.

The equations of static equilibrium of a bearing 
may be derived from the Hertz theory. The nonlinear 
bearing stiffness is taken as K c c( )δ δ δ= +0 1

3 , where 
δ is the minimal distance between the inner and outer 
rings of the bearing. The restoring force in radial 
bearings is obtained by a power series approximation. 
The outer ring is attached to a foundation of mass M 
resting on an elastic support with a linear stiffness 
coefficient c2.

y

z

x

c2 c2

χ0 χ0

χ

c0(x− x1) + c1(x− x1)
3

Ω0

Fig. 1.  Rotor with rolling bearings resting on an elastic foundation

Specify a Cartesian coordinate system Oxyz 
assuming that, in equilibrium, the geometric centre of 
the rotor and the centre of mass of the foundation both 
lie on the Oz axis. Below x and y are the coordinates 
of the rotor center, while x1 and y1 are the coordinates 
of the center mass of the foundation. We also use the 
notations c0 and c1 for rolling bearing stiffnesses, and 
χ and χ0 stand for the coefficients of external damping.

We suppose that the rotor performs a plane-
parallel motion, and the foundation has no rotation 
around coordinate axes. In this case, the equations of 
motion can be written as:
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where Fx and Fy are the components of the fluid 
reaction force given by:

 F Rh P t dx r R= +=∫ | cos( ) ,Ω0

0

2

ϕ ϕ
π

 (2)

 F Rh P t dy r R= +=∫ | sin( ) .Ω0

0

2

ϕ ϕ
π

 (3)

Here h is the height of the cavity and P is the fluid 
pressure along the wall of the rotor.

The equations of fluid motion can be written as, 
e.g. see [6],

 

∂
∂
− =

= −
∂
∂

− + − +

∂
∂

+ =

=

u
t

P
r

x t y t

t
u

2

1

2

0

0 0

0

Ω

Ω Ω

Ω

υ

ρ
ϕ ϕ

υ

 cos( ) sin( ),

−−
∂
∂

+ + − +
1

0 0ρ ϕ
ϕ ϕ

r
P x t y t sin( ) sin( ).Ω Ω  (4)

The continuity equation at ρ = const is:
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The boundary conditions take the form: the 
impenetrability condition:

 u r R| ,= = 0  (6)

the condition on a free fluid surface:
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t
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In the formulae above, u and υ are radial and 
circumferential components of fluid velocity, ρ is 
fluid density, r0 is the free surface radius, r and φ are 
cylindrical polars.

2  SOLUTION OF EQUATIONS OF MOTION

First, solve the equations of fluid motion Eqs. (4) 
to (7) using the stream function Φ and the velocity 

potential ψ. In this case, the components of fluid 
velocity become:

  u
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Then, on introducing the expressions for u and υ 
from Eq. (8) into the Eq. (4), we obtain:
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Furthermore, the continuity equation can be 
rewritten as:

 ∆Φ = 0,  (10)

where Δ is the Laplace operator specified in cylindrical 
polar coordinates.

From Eq. (9), we determine the expression for 
fluid pressure as:
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In terms of the complex variables:

 x iy z x iy z+ = + =, .and   1 1 1  (12)

Eq. (11) takes the form:

     P
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∂
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In the case of time-harmonic vibrations of the 
rotor and foundation, the complex variables z and z1 
can be presented as, see [4] to [12],

 z A i t B i t= +exp( ) exp( ),Ω0 ω  (14)

 z C i t D i t1 0= +exp( ) exp( ),Ω ω  (15)

where ω is the eigenfrequency.
The harmonic function Φ and the function ψ 

taking into account Eq. (14) become:

 Φ = −R r i t2 ( )exp( ( )),σ ϕ  (16)

 ψ σ ϕ= −R r i t1( )exp( ( )),  (17)

where σ ω= −Ω0.

On substituting the last expression for the stream 
function Φ into Eq. (10), we obtain:

 R r C r C
r2 1

2( ) .= +  (18)

We also get  for the function ψ, see  Eq. (8),
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The constants C1 and C2 can be found from the 
boundary conditions in Eqs. (6) and (7). Then, by 
inserting Eq. (13) into Eqs. (2) and (3) and taking into 
account Eqs. (16) to (19), we obtain a formula for the 
complex force Fr . It is:
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the mass of fluid inside the cavity, and γ characterises 
the relative fluid volume.

It is clear that in Eq. (1) the first and third 
equations are identical to the second and fourth 
equations, respectively. To this end, below we restrict 
ourselves to two equations in x and x1:
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On substituting the real parts of Eqs. (14), (15) 
and (20) into Eq. (21), we obtain, similarly to the 
derivations in [6] and [12], a set of algebraic equations 
in the unknowns A, B, C and D. Then,

C P iP A P iP D P iP B= + + + = +0 1 2 3 4 5( ) ( ) ,and  (22)

with

 P e n
m

P k
m0

0

2

2

2

0

2

0

1
0 0

3

0

2
=

−
= −

µ Ω Ω Ω( )
, ,

 P n kk
m

L
2

0

2

2

2

0

2

0 0

2

0

1 4
=

+ − −µ µ[( ) ]( )
,

Ω Ω Ω

 P k n k
m

L
3

0

2

0 2

2

0

2

0

0

2 1
= −

+ + −µ µ[( ) ( ) ]Ω Ω Ω

 P
n D

D
kk

m

L

4

2

2

2 2 3

4

0

2

1

1 4

=
− +









 −µω ω µ ω( )

,  and

 
P

D
D
k n k

m

L

5

3

4

0

2

2

2 2

0

2 1

= −
+ + −µ µ ω ω ω[( ) ( ) ]

.

In the above µL Lm
m

=  and

 

m n k
m n k
D
D

1 2

2 2 2

0

2 2

0 2

2

0

2 2

0

2

0

2

3

2

0 0

2

4

4

2

= − +

= − +

= − −

( ) ,

( ) ,

,

ω ω

σ σ

Ω Ω

Ω Ω

44

2

0 0

2

4 5

2= − −
= +
γσ σΩ Ω ,

( ) .D P iP B  (23)

From the last formulae, we obtain algebraic 
equations for A and B, i.e. 
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Now, we determine B2 from the first equation in 
Eq. (24) and substitute it into the second equation. As 
a result, we obtain a third order equation for A which 
can be easily solved, for example, using the Cardano 
formula. Finally, we have the constants C and D from 
Eq. (22). The derived formulae for A, B, C and D are 
typical for nonlinear systems demonstrating a specific 
relation between coefficients.

The developed approach can be extended to a 
cavity filled with viscous fluid. It might be expected 
that the nonlinear elastic properties of bearings should 
not considerably affect the motion of a viscous fluid.  
In fact, the ideal fluid approximation assumed in the 
paper has been implemented only because this results 
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in a relatively simple formulae useful for potential 
engineering applications.

3  FREE NONLINEAR VIBRATIONS OF THE ROTOR  
WITH CAVITY PARTIALLY FILLED WITH FLUID

Consider a rotating system neglecting imbalance and 
concentrating on nonlinear vibrations of a rotor with 
a partially fluid filled cavity resting on an elastic 
foundation. The equations of motion neglecting 
imbalance take the form:
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where the former notations are adapted and the force 
Fr is expressed as [12]:
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As above, we seek the solution in the form:

 x B i t= exp( ),ω  (27)

 x D i t1 = exp( ).ω  (28)

On substituting Eqs. (27) and (28) into Eq. (25) 
and using the same procedure as in the previous 
section, we obtain:
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Here τ = ω / n0 and s = Ω0 / n0 are dimensionless 
eigenfrequency of the system and rotor angular speed, 
respectively.

It follows from the second equation in Eq. (25) 
that:
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The formulae for B and D can be derived from the 
last equation and Eq. (29), respectively. They are:
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Fig. 2.  Rotor amplitude B = B(τ,s) at γ = 15.24, taking into 
account damping

Fig. 3.  Foundation amplitude D = D(τ,s) at γ = 15.24, taking into 
account damping
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Below, we use the same notation for the modulae 
of these complex-valued quantities, i.e.

 B B B≡ ( ) + ( )Re Im ,
2 2  (30)

 D D D≡ ( ) + ( )Re Im .
2 2  (31)

It is clear that the free vibration amplitudes of the 
rotor B and the foundation D depend on the vibration 
frequency ω of the nonlinear system in question. 
The formulae above enable calculating amplitude vs 
frequency graphs at a fixed angular speed of the rotor.

4  NUMERICAL RESULTS

Let us study the rotor and foundation amplitudes 
determined in the previous section. In Figs. 2 to 
11 graphs demonstrating unstable self-oscillation 
zones of the rotor (B) and foundation (D) versus the 
parameters τ and s are presented for various values 
of the quantity γ characterizing the relative fluid 
volume in the cavity. A substantial increase in the 
self-oscillation amplitude, which is bounded due to 
external damping, is observed.

For a small fluid volume in the rotor cavity 
(γ =15.24 (r0 = 0.93R) in Figs. 2 and 3) we obtain 
two zones of unstable self-oscillation of the rotor 
and foundation. Note that over the angular speed 

Fig. 4.  Rotor amplitude B = B(τ,s) at γ = 4.56, taking into account 
damping

Fig. 5.  Foundation amplitude  D = F(τ,s) at γ = 4.56, taking into 
account damping

Fig. 6.  Rotor amplitude B = B(τ,s) at γ = 2.6, taking into account 
damping

Fig. 7.  Foundation amplitude D = D(τ,s) at γ = 2.6, taking into 
account damping



Strojniški vestnik - Journal of Mechanical Engineering 62(2016)6, 351-362

357Nonlinear Vibrations of a Rotor-Fluid-Foundation System Supported by Rolling Bearings

interval 0.3 < s < 0.9 the rotor and foundation 
amplitudes monotonically increase. In this case, the 
eigenfrequency belongs to the range 0.25 < τ < 0.85. 
When s varies from 0.9 to 1.1, the rotor and foundation 
amplitudes decay quite rapidly, approaching zero 
values. For the studied fluid volume, third instability 
zone does not appear over the interval 0.3 < s < 1. 
When the angular speed s increases from 0.5 to 
0.85, the first two zones displace towards greater 
eigenfrequencies, namely 0.41 < τ < 0.85. Over the 
interval 0.9 < s < 1.2 and in the vicinity of τ = 0.85 there 
is only one instability zone with small self-oscillation 
amplitudes.

Further increase in the angular speed (s > 1.2) 
results in three instability zones, see Figs. 6 and 7. 
In these figures rotor and foundation amplitudes are 
small; in doing so, they first grow slowly and then 
slowly decay beginning from the value s = 2.8. In this 
case, the eigenfrequencies associated with unstable 
regimes increase in s.

The third instability zone gradually disappears as 
the fluid volume in the cavity increases. For example, 
at γ = 4.56 (r0 = 0.8R), see Figs. 4 and 5, the third 
zone appears at s > 1. Large rotor B and foundation D 
amplitudes occur over the interval 0.3 < s < 1. In this 
case, the first instability zone belongs to the intervals 
0.3 < s < 1 and 0.45 < τ < 0.85, while the second one is 
over the interval 0.3 < s < 0.6. The eigenfrequencies 
beginning with τ = 1.4 gradually decay approaching 
the value τ = 0.6. Next, over the interval 0.6 < s < 1, 
the eigenfrequencies slowly increase. At s > 1.2 three 
instability zones occur. However, the related rotor and 
foundation amplitudes are rather small.

In the case of a further increase of the fluid 
volume in the cavity, only two instability zones 
remain. In particular, if a third or half of the cavity is 
fluid filled, i.e. γ = 2.6 (r0 =2R/3) in Figs. 6 and 7, or 
γ = 2.67 (r0 =0.5R) in Figs. 8 and 9, respectively, the 
system performs large amplitude self-oscillation.

At γ = 2.6 (r0 =2R/3) the self-oscillation 
amplitudes over the interval 0.3 < s < 0.5 grow in s, see 
Figs. 6 and 7. The eigenfrequencies associated with 
unstable self-oscillation of the rotor and foundation 
also increase. Over the interval 0.5 < s < 0.6 the 
values of τ rapidly decay, whereas over the interval 
0.6 < s < 1 they increase again along with self-
oscillation amplitudes; in doing so, the latter are rather 
significant.

Over the interval 1 < s < 1.2 the self-oscillation 
amplitudes and eigenfrequencies (or critical 
frequencies) τ corresponding to rotor and foundation 
instability zones experience a sharp decay. Over 
the interval 1.2 < s < 2.5 the rotor and foundation 
perform small amplitude self-oscillation, and critical 
frequencies slowly grow. At s >2.5 the amplitudes 
sharply increase and the eigenfrequencies also rapidly 
grow.

The graphs of the rotor and foundation amplitudes 
B and D versus the dimensionless eigenfrequency τ 
are presented in Figs. 8 and 9 for several values of the 
rotor angular speed s. The effect of external damping 
is incorporated for a half-filled cavity, i.e. at γ = 1.67. 
Inspection of the graphs shows that the maximal 
(minimal) values of the amplitudes B and D displace 
to larger (smaller) τ as s varies from zero to one. In this 

Fig. 8.  Rotor amplitude B = B(τ,s) at γ = 1.67, taking into account 
damping

Fig. 9.  Foundation amplitude D = D(τ,s) at γ = 1.67, taking into 
account damping
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case the minima and maxima of B and D lie over the 
intervals 0.65 < τ < 0.85 and 0.85 < τ < 1.8, respectively.

Over the range 0.6 < s < 0.85, the maxima and 
minima of B and D belong the interval 0.65 < τ < 0.85. 
Next, when s varies from 1 to 1.4, the B and D peaks 
as well as the frequencies τ decrease. For s = 1.7 a B 
maximum is observed at τ = 0.95 and its minimum 
takes place at τ = 1.2. In this case, the D peaks have 
opposite locations. At larger angular speeds, when 
s > 1.7, the B and D maxima and minima grow 
along with the eigenfrequencies τ. For more than a 
half fluid filled cavity amplitudes and frequencies 
behave similarly to the consideration above, see Figs. 
6 to 9. In the latter case, self-oscillation amplitudes 
are lower than before. The second instability zone 

disappears at large fluid volumes in the cavity. At 
a very large relative volume corresponding to the 
value γ = 1.03 (r0 =1R/8) rotor and foundation self-
oscillation amplitudes related to the first instability, 
zone do not vary over a wide range of rotor angular 
speeds (0.3 < s < 1 and s > 1.8), see Figs. 10 and 11. In 
this case, the eigenfrequency is τ = 0.85. The second 
instability zone arises over the intervals 0.3 < s < 0.5 
and 1.4 < s < 1.8. It is characterized by small rotor and 
foundation self-oscillation amplitudes. Thus, self-
oscillation amplitudes are not that significant for small 
fluid volumes in the cavity.

As the fluid volume approaches a third or half of 
the cavity, self-oscillation amplitudes take relatively 
large values, both for small and large angular speeds. 

Fig. 10.  Rotor amplitude B = B(τ,s) at γ = 1.03, taking into 
account damping

Fig. 11.  Foundation amplitude D = D(τ,s) at γ = 1.03, taking into 
account damping

Fig. 12.  Rotor skeleton curves versus s and γ Fig. 13.  Foundation skeleton curves for several values of s and γ
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For a rotor cavity containing significant fluid volumes, 
there is a single instability zone characterized by the 
constant amplitude and eigenfrequency. The skeleton 
curves B and D of the rotor and foundation are shown 
in Figs. 12 and 13, taking into consideration the 
presence of fluid in the cavity. These figures display 
three critical values of τ corresponding to vertical 
asymptotes of skeleton curves. In the general case, 
they exist at any value of s over the whole range of 
the eigenfrequencies τ. The rotor and foundation 
amplitudes tend to infinity at the critical values, i.e. 
B → ∞, D → ∞. It is clearly seen that the first critical 
frequency lies in the vicinity of τ = 0.11. It virtually 
does not depend on the variation of the angular speed 
s and is very weakly dependent of the relative fluid 
volume γ. This frequency is slightly displaced towards 
greater values of τ as the relative fluid volume grows, 
i.e. γ → 1. In this case, τ ≤ 0.14. The second critical 
frequency grows in s for any fluid volume.

At the same time its increase (γ → 1) leads to a 
decrease of the second critical frequency. The third 
critical frequency mainly arises at low rotor angular 
speeds and quite small fluid volumes as well as at 
high angular speeds and large fluid volumes. The third 
critical frequency disappears when the fluid volume 
decreases, i.e. at γ > 1.03 and s > 1 or at γ < 15.24 and 
s < 1.4.

The increase of the rotor and foundation 
amplitudes B and D at a slow variation of the 
eigenfrequency τ below critical frequencies is very 
specific for all skeleton curves. After the passages 
through critical frequencies rotor and foundation 
amplitudes sharply decay over a narrow range of τ. 
Further increase in τ results in the growth of the 

amplitudes B and D. For the rotor and foundation 
skeleton curves incorporating the effect of fluid, we 

obtain ω
µ

=
+
2

1

2

6

c
M D( )

 with the vertical asymptote 

τ
µ

=
+

n
D02

6

1

1
.

The occurrence of two (or three in the general 
case) peaks of rotor and foundation amplitudes 
(damping is incorporated) and of skeleton curves 
(damping is ignored) at any value of the parameters s 
and γ is caused by fluid vibrations along a free surface 
inside the rotor cavity. The graphs in Figs. 14 and 
15, displaying rotor and foundation skeleton curves, 
illustrate the last observation.

For synchronous precession, i.e. at τ = s, the rotor 
and foundation amplitudes do not depend on the fluid 
volume. In this case, they follow from Eqs. (30) and 
(31) with D6 = 1 + μL.

5 SPECIAL CASES

The analytical solution obtained in the paper enables 
an immediate qualitative insight into practically 
important special setups. Below we study the limiting 
case of an empty rotor and also address the widely 
disputed phenomenon of self-centring. Consider first 
an empty rotor. In this case, the fluid force is zero, i.e. 
Fr = 0. Free vibrations are specified by the coordinates:

 x a t x b t= =cos cos ,ω ωand 1  (32)

where a, b are amplitudes and ω is eigenfrequency. 

Fig. 14.  Rotor skeleton curve neglecting effect of fluid Fig. 15.  Foundation skeleton curve neglecting effect of fluid
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Using the previous notations in the absence of 
imbalance in Eq. (25) and taking into account Eq. (32), 
we find rotor and foundation amplitudes, respectively:

a
n n n n

n n
2

2

2

2 2

0

2

2

2 2

2

2 2
2

1 2

2 2

4 1

3 1
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µ ω(( )3
,  (33)
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n n n

n n
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4 2 2

2

2 2

0

2

2

2 2

1 2

2 2
3

4 1

3 1
=

−( ) − − +( )( ) 
− +( )( )

ω µ ω ω µ ω

µ ω
,  (34)

From the Eqs. (33) and (34) we can determine the 
dependence of the amplitudes on the frequency ω. The 
graphs of a and b versus ω are key curves 
characterizing the system. From the last formulae, it is 
clear that for ω → +( )2 2c m M/  the amplitudes of 
а and b tend to infinity, i.e. a resonance occurs. The 
rotor amplitude a is equal to zero when the frequency 
ω is equal to ω = 2 2c M/ . In this case, the squared 
foundation amplitude becomes b n n2

0

2

14 3= − ( ) . 
It is clear from the graphs in Figs 14 and 15 

that rotor and foundation amplitudes grow over the 
interval 0 < τ < 0.18 approaching the vertical asymptote 
τ = 0.18  associated with the critical value of the 
eigenfrequency. Next, over the interval 0.18 < τ < 0.25 
the rotor amplitude starts growing as τ increases. 
Then it slowly decays, approaching zero at τ = 1.15. 
At larger values of τ the amplitude increases along a 
parabola branch. The foundation skeleton curve has 
a similar shape. However, it also demonstrates a few 
peculiarities. In particular, it begins at the origin and 
grows approaching the asymptote τ = 0.18. At larger τ 
it slowly decays approaching zero at τ = 1.15. Finally, 
it grows along a parabola branch.

Forced vibrations are caused by an imbalance 
of the system. For the sake of simplicity, we insert a 
phase angle ε into the expression for the force 
me tΩ Ω0

2

0cos +( )ε . The nonlinear forced vibrations 
of an empty rotor are governed by:
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On substituting the formulae:

 x a t x b t= =1 0 1 1 0cos cos .Ω Ω    and     (36)

Into Eq. (35) we finally get:
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The Eq. (38) determines an amplitude-frequency 
characteristic of the rotor motion along Ox axis; a 
similar formula holds for Oy axis. This equation can 
be transformed to a sixth order polynomial in a1. We 
also remark that for n10 > 0 the system is rigid, whereas 
for n10 < 0 it is elastic.

The studied nonlinear system supports multiple 
periodic regimes for the angular speed Ω0 varying 
within certain limits. In this case, the vertical lines 
Ω0 = n2 are the asymptotes of the amplitude-frequency 
characteristic. On introducing the value of the rotor 
amplitude a1 into Eq. (37), we may derive a formula 
for b1(Ω0) expressing the amplitude-frequency 
characteristic of the foundation.

Next, the issue related to self-centering and 
pressure on support will be discussed. The formulae in 
Eqs. (37) and (38) enable to find limiting values of the 
amplitudes a1 and b1, i.e. lim

Ω0

1→∞
=a e , and 

lim
Ω0

1 1 0
→∞

= − ±( ) =b a e µ . In particular, for regular 
precession we get lim

Ω0

1→∞
= −a e , lim

Ω0

1 0
→∞

=b . Hence, at 
an infinite increase of the angular speed the vector 
associated with static imbalance is directed towards 
the origin and tends to displace the rotation axis 
towards the vertical axis Oz. In the latter case, a static 
imbalance of the rotor has no effect. The observed 
self-centering of a rigid rotor on rolling bearings in 
the presence of an elastic foundation is an important 
feature of the system. 

The pressure along the contact zone of the rotor 
and foundation can be evaluated by calculating the 
reaction forces at bearing supports. Let us replace the 
action of the rotor by its reaction forces. As each 
bearing support is subject to the same reaction force, 
the rotor performs the plane-parallel motion. The 
equation of foundation motion is then given by 
Mx c x R x

1 2 1 12 2+ = , resulting in R b c Mx1 1 2 0

2 2= −( )Ω ,

which means that at M c= 2 2 0

2Ω  the radial pressure 
along the contact of the rotor and foundation is zero. 
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Therefore, for a constant operating speed, we may 
define a stiffness coefficient of the elastic foundation 
for which the aforementioned pressure is zero. The 
foundation reaction force acting on the supports is 
R2 = c2 b1, where b1 is the foundation amplitude. It 
tends to zero at an infinite increase in the angular 
speed Ω0, i.e. in the case of self-centering.

6  CONCLUDING REMARKS

A generalized dynamic model of a rotor-fluid-
foundation system taking into account the nonlinear 
stiffness of rolling bearings along with fluid and 
foundation vibrations is developed and investigated.

The obtained results enable optimising the 
parameters of the rotor, foundation, and fluid and 
are of interest for reducing stresses along the contact 
surfaces, forced vibrations amplitudes as well as the 
width of instability zones. There is also room for 
adapting the conditions supporting self-centering of 
the system. 

Suppression of harmful rotor vibrations by 
choosing appropriate system parameters, including 
foundation deformability, is economically efficient 
and has the potential to be implemented in technology. 
In this case, an elastic foundation plays a role of a sort 
of counterbalance.
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