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Abstract

A Cayley graph on a group G has a natural edge-colouring. We say that such a graph is
CCA if every automorphism of the graph that preserves this edge-colouring is an element
of the normaliser of the regular representation of G. A group G is then said to be CCA if
every connected Cayley graph on G is CCA.

Our main result is a characterisation of non-CCA graphs on groups that are Sylow
cyclic and whose order is not divisible by four. We also provide several new constructions
of non-CCA graphs.
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1 Introduction
All groups and all graphs in this paper are finite. Let G be a group and let S be an inverse-
closed subset of G. The Cayley graph of G with respect to S is the edge-coloured graph
Cay(G,S) with vertex-set G and, for every g ∈ G and s ∈ S, an edge {g, sg} with colour
{s, s−1}. Its group of colour-preserving automorphisms is denoted Autc(Cay(G,S)). Let
Aut±1(G,S) = {α ∈ Aut(G) : sα ∈ {s, s−1} for all s ∈ S}. It is easy to see that
GR o Aut±1(G,S) 6 Autc(Cay(G,S)), where GR is the right-regular representation
of G.

Definition 1.1 ([5]). The Cayley graph Cay(G,S) is CCA (Cayley colour automorphism)
if Autc(Cay(G,S)) = GR o Aut±1(G,S). The group G is CCA if every connected
Cayley graph on G is CCA.

In other words, a Cayley graph is CCA if and only if the colour-preserving graph au-
tomorphisms are exactly the “obvious” ones. The terminology we use for this problem
largely comes from [5]. Other papers that study this problem include [2, 3, 4, 8].

Note that Cay(G,S) is connected if and only if S generatesG. It is also easy to see that
GR o Aut±1(G,S) is precisely the normaliser of GR in Autc(Cay(G,S)). In particular,
Cay(G,S) is CCA if and only if GR is normal in Autc(Cay(G,S)), c.f. [5, Remark 6.2].

In Section 2, we introduce some basic terminology and recall a few previous results
on the CCA property. In Section 3, we consider wreath products of permutation groups,
and produce conditions that are sufficient to determine when such a product is a non-CCA
group. This generalises results from [5]. In Section 4, we give some new constructions for
non-CCA graphs.

Finally, in Section 5, we obtain a characterisation of non-CCA groups whose order is
not divisible by four, in which every Sylow subgroup is cyclic. This generalises the work
of [3], which dealt with the case of groups of odd squarefree order.

2 Preliminaries
The identity of a group G is denoted 1G, or simply 1 if there is no risk of confusion. We
denote a dihedral group of order 2n by Dn, while Q8 denotes the quaternion group of order
8 with elements {±1,±i,±j,±k} and multiplication defined as usual.

We now state some preliminary results and introduce some terminology related to Cay-
ley graphs. Let Γ be a graph and let v be a vertex of Γ. The neighbourhood of v is denoted
by Γ(v). If A is a group of automorphisms of Γ, then the permutation group induced by
the vertex-stabiliser Av on the neighbourhood of v is denoted AΓ(v)

v .

Lemma 2.1 ([5, Lemma 6.3]). The vertex-stabiliser in the colour-preserving group of au-
tomorphisms of a connected Cayley graph is a 2-group.

Definition 2.2. Let G be a group, let Γ = Cay(G,S) and let N be a normal subgroup of
G. The quotient graph Γ/N is Cay(G/N,S/N), where S/N = {sN : s ∈ S}.

Lemma 2.3 ([3, Lemma 3.4]). Let A be a colour-preserving group of automorphisms of
Cay(G,S), let N be a normal subgroup of A and let K be the kernel of the action of A
on the N -orbits. If N 6 G, then A/K is a colour-preserving group of automorphisms
of Γ/N .
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Lemma 2.4. Let Γ = Cay(G,S), let A be a colour-preserving group of automorphisms
of Γ, let N be a normal 2-subgroup of A and let K be the kernel of the action of A on the
N -orbits. If Kv 6= 1, then S contains an element whose order is a power of 2 that is at
least 4.

Proof. Let v0 = v. Since Kv0 6= 1, KΓ(v0)
v0 6= 1 and there exists k ∈ Kv0 and a neighbour

u0 of v0 such that uk0 6= u0. Let u1 = uk0 . Note that Ku1
6= Kv0 hence there exists

` ∈ Ku1
such that v`0 6= v0. Let v1 = v`0. Repeating this process, we get a monochromatic

cycle C = (u0, v0, u1, v1, ...) of length at least 3. By construction, ui ∈ uK0 = uN0 and
vi ∈ vK0 = vN0 for all i. In particular, |C ∩ vN0 | ∈ {|C|, |C|/2}. Since each vertex of Γ lies
in a unique monochromatic cycle of a given colour, C is a block for A. On the other hand,
vN0 is also a block for A and thus so is C ∩ vN0 . It follows that |C ∩ vN0 | divides |N | which
is a power of 2. This implies that |C| is also a power of 2. Since |C| > 3, |C| is divisible
by 4 and the result follows from the fact that C is monochromatic.

For a group H , let H2 := 〈x2 | x ∈ H〉. The following lemma is inspired by an
argument contained within [5, Theorem 6.8].

Lemma 2.5. Let Γ = Cay(G,S) be connected, let A be a colour-preserving group of
automorphisms of Γ that is normalised by G and let v be a vertex of Γ. If Av has a
subgroup U such that U 6 (Av)

2 and no other subgroup of Av is isomorphic to U , then
U = 1. In particular, Av is isomorphic to neither Z2n for n > 2 nor isomorphic to D2n

for n > 3.

Proof. Since A is colour-preserving, AΓ(v)
v is an elementary abelian 2-group. Since U 6

(Av)
2, it follows that U fixes all the neighbours of v. Let s ∈ S. Since A is normalised

by G, we have Us 6 A and, by the previous observation, Us 6 Av . As Av has a unique
subgroup isomorphic to U , we must have U = Us. Since this holds for every s ∈ S, U is
normalised by G. As G is transitive and U fixes v, this implies that U = 1.

The second part of the lemma follows from the first. Indeed, ifAv is isomorphic to Z2n

for n > 2 or to D2n for n > 3, then (Av)
2 is non-trivial and is the unique cyclic subgroup

of its order.

3 Wreath products
Proposition 3.1. Let H be a permutation group on a set Ω, let G be a group and let
X = G oΩ H . If

(i) there is an inverse-closed generating set S for G and a non-identity bijection
τ : G → G such that τ fixes 1, and τ(sg) = s±1τ(g) for every g ∈ G and ev-
ery s ∈ S, and

(ii) either H is nontrivial or τ 6∈ Aut(G),

then X is non-CCA.

Proof. Let m = |Ω| and write Ω = {1, . . . ,m} such that, if H is nontrivial, then 1 is not
fixed by H .

Write X = H n (G1 × · · · × Gm). Note that, if g ∈ Gi and h ∈ H , then gh ∈ Gih .
Without loss of generality, we may assume that 1G /∈ S. Let Si be the subset of Gi
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corresponding to S, let T = (H − {1H}) ∪ S1 ∪ · · · ∪ Sm and let Γ = Cay(X,T ). Note
that T generates X hence Γ is connected. We will show that Γ is non-CCA.

Define τ ′ : X → X by τ ′ : hg1g2 · · · gm 7→ hτ(g1)g2 · · · gm, where gi ∈ Gi and
h ∈ H . Let v be a vertex of Γ and let s ∈ T . We will show that τ ′(sv) = s±1τ ′(v) and
hence τ ′ is a colour-preserving automorphism of Γ. Write v = hg1 · · · gm with h ∈ H
and gi ∈ Gi. Let g = g1 · · · gm. Note that τ ′(v) = τ ′(hg) = hτ ′(g). If s ∈ H , then
τ ′(sv) = τ ′(shg) = shτ ′(g) = sτ ′(v). Suppose now that s ∈ Si for some i ∈ Ω. If
ih 6= 1, then

τ ′(shg) = τ ′(g1 · · · shgih · · · gm) = τ(g1)g2 · · · shgih · · · gm =

= shτ(g1)g2 · · · gm = shτ ′(g).

If ih = 1, then sh ∈ S1 ⊆ T and

τ ′(shg) = τ ′(shg1 · · · gm) = τ(shg1)g2 · · · gm = (sh)±1τ(g1)g2 · · · gm = (sh)±1τ ′(g).

Either way, we have

τ ′(sv) = τ ′(hshg) = hτ ′(shg) = h(sh)±1τ ′(g) = s±1hτ ′(g) = s±1τ ′(hg) = s±1τ ′(v).

This completes the proof that τ ′ is a colour-preserving automorphism of Γ. It remains
to show that τ ′ is not a group automorphism of X . (Note that τ ′ fixes 1X , so if τ ′ ∈
XR o Aut±1(X,T ), then τ ′ ∈ Aut(X).)

If H is nontrivial, then, since 1 is not fixed by H , there exists h ∈ H such that 1h 6= 1.
Let g be an element of G1 that is not fixed by τ . We have τ ′(gh) = τ ′(hgh) = hgh = gh
but τ ′(g)τ ′(h) = τ(g)h. Since g 6= τ(g), τ ′ is not an automorphism of X .

If H is trivial and τ 6∈ Aut(G), then there exist g1, g2 ∈ G such that τ(g1g2) 6=
τ(g1)τ(g2). Applying τ ′ to the corresponding elements of G1 shows that τ ′ is not an
automorphism of X . This completes the proof.

We now obtain a few corollaries of Proposition 3.1.

Corollary 3.2. Let H be a permutation group on a set Ω and let G be a group. If G is
non-CCA, then G oΩ H is non-CCA.

Proof. Since G is non-CCA, there exists a colour-preserving graph automorphism τ of a
Cayley graph Cay(G,S) such that τ(1G) = 1G but τ does not normalise GR. Since τ is
colour-preserving, τ(sg) = s±1τ(g) for every g ∈ G and every s ∈ S. Finally, since τ
does not normalise GR, we have τ 6∈ Aut(G) and the result follows from Proposition 3.1.

Corollary 3.3. Let H be a nontrivial permutation group on a set Ω and let G be a group.
If G = B nA, where A is abelian of exponent greater than 2, then G oΩ H is non-CCA.

Proof. Every element of G can be written uniquely as ba with a ∈ A and b ∈ B. Let τ be
the permutation of G mapping ba to ba−1. Clearly, τ fixes 1G but, since A has exponent
greater than 2, τ is not the identity. Let S = (A ∪ B) − {1G}. Note that S is an inverse-
closed generating set for G. Let g ∈ G, let s ∈ S and write g = ba with a ∈ A and b ∈ B.
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If s ∈ B, then τ(sg) = τ(sba) = sba−1 = sτ(ba) = sτ(g). Otherwise, s ∈ A, sb ∈ A
and

τ(sg) = τ(sba) = τ(bsba) = b(sba)−1 = b(sb)−1a−1 = s−1ba−1 = s−1τ(g).

The result then follows from Proposition 3.1, since H is nontrivial.

Corollary 3.4. Let H be a permutation group on a set Ω and let G be a group. If

(i) G has exponent greater than 2,

(ii) H is nontrivial when G is abelian, and

(iii) G has a generating set S with the property that sg = s±1 for every s ∈ S and g ∈ G,

then G oΩ H is non-CCA.

Proof. We can assume without loss of generality that S is inverse-closed. Let τ be the
permutation of G that maps every element to its inverse. For every s ∈ S and g ∈ G, we
have sg = s±1 and thus τ(sg) = g−1s−1 = s±1g−1 = s±1τ(g). Since G has exponent
greater than 2, τ is not the identity. If H is trivial, then G is non-abelian so that τ is not an
automorphism of G. The result then follows from Proposition 3.1.

In view of Corollary 3.4, it would be interesting to determine the groups G such that
G has a generating set S with the property that sg = s±1 for every s ∈ S and g ∈ G.
This family of groups includes abelian groups and Q8. This family is closed under central
products but it also includes examples which do not arise as central products of smaller
groups in the family, for example the extraspecial group of order 32 and minus type.

4 A few constructions for non-CCA graphs
In this section, we will describe a few constructions which yield non-CCA Cayley graphs.
For a group G, let KG denote Cay(G,G−{1}), the complete Cayley graph on G. We will
need a result which tells us when GR < Autc(KG). First we state some definitions.

Definition 4.1. Let A be an abelian group of exponent greater than 2, and define a map
ι : A → A by ι(a) = a−1 for every a ∈ A. The generalised dihedral group over A is
Dih(A) = Ao 〈ι〉.

Definition 4.2. Let A be an abelian group of even order and of exponent greater than
2, and let y be an element of A of order 2. The generalised dicyclic group over A is
Dic(A, y) := 〈A, x | x2 = y, ax = a−1 ∀a ∈ A〉. Let ι be the permutation of Dic(A, y)
that fixes A pointwise and maps every element of the coset Ax to its inverse.

It is not hard to check that ι is an automorphism of Dic(A, y).

Definition 4.3. For α ∈ {i, j, k}, let Sα = {±α} × Zn2 and let σα be the permutation of
Q8 × Zn2 that inverts every element of Sα and fixes every other element.

Theorem 4.4 ([2], Classification Theorem). If G is a group, then GR < Autc(KG) if and
only if one of the following occurs:

1. G is abelian but is not an elementary abelian 2-group, and Autc(KG) = Dih(G),
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2. G is generalised dicyclic but not of the form Q8 × Zn2 , and Autc(KG) = GR o 〈ι〉,
where ι is as in Definition 4.2, or

3. G ∼= Q8 × Zn2 and Autc(KG) = 〈GR, σi, σj , σk〉, where σi, σj , σk are as in Defini-
tion 4.3.

Definition 4.5. Let B be a permutation group and let G be a regular subgroup of B. We
say that (G,B) is a complete colour pair if G is as in the conclusion of Theorem 4.4 and
B 6 Autc(KG).

For a graph Γ, let L(Γ) denote its line graph.

Proposition 4.6. Let Γ be a connected bipartite G-edge-regular graph. If H is a group of
automorphisms of Γ such that:

(i) G 6 H ,

(ii) the orbits of H on the vertex-set of Γ are exactly the biparts, and

(iii) for every vertex v of Γ, either

(a) GΓ(v)
v = H

Γ(v)
v , or

(b) (G
Γ(v)
v , H

Γ(v)
v ) is a complete colour pair,

then H is a colour-preserving group of automorphisms of L(Γ) viewed as a Cayley graph
on G.

Proof. Since G acts regularly on edges of Γ, its induced action on L(Γ) is regular on
vertices. Vertices of Γ induce cliques in L(Γ), which we call special. Clearly, H has
exactly two orbits on special cliques. Moreover, special cliques partition the edges of
L(Γ), and each vertex of L(Γ) is in exactly two special cliques, one from each H-orbit.
Since G 6 H , the set of edge-colours appearing in special cliques from different H-orbits
is disjoint.

Let v be a vertex of Γ and let C be the corresponding special clique of L(Γ). Note that
H

Γ(v)
v is permutation isomorphic to HC

C , while GΓ(v)
v
∼= GCC

∼= GC . Since G is vertex-
regular on L(Γ), GC is regular on C and thus C can be viewed as a complete Cayley
graph on GC . If (G

Γ(v)
v , H

Γ(v)
v ) is a complete colour pair, Theorem 4.4 implies that HC

C is
colour-preserving. If GΓ(v)

v = H
Γ(v)
v , then since G is colour-preserving, so is HC

C . Since
G acts transitively on the special cliques within an H-orbit and G is colour-preserving, it
follows that H is colour-preserving.

Remark 4.7. In the proof of Proposition 4.6, we only use one direction of Theorem 4.4,
namely that if G appears in Theorem 4.4, then GR < Autc(KG). The converse is not used
here, but it can help to identify situations where Proposition 4.6 can be used to construct
non-CCA graphs.

Example 4.8. Let Γ be the Heawood graph and let H be the bipart-preserving subgroup of
Aut(Γ). Note thatH ∼= PSL(2, 7) andH contains an edge-regular subgroupG isomorphic
to F21, the Frobenius group of order 21. Moreover, for every vertex v of Γ, we have
G

Γ(v)
v
∼= Z3 whileHΓ(v)

v
∼= D3 and (Z3,D3) is a complete colour pair. By Proposition 4.6,
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H is a colour-preserving group of automorphisms of L(Γ) viewed as a Cayley graph on
G. Since G is not normal in H , it follows that L(Γ) is a non-CCA graph and so F21 is a
non-CCA group.

Example 4.8 was previously studied in [3] and [5], under a slightly different guise.

Example 4.9. Let A ∼= Q8 × Zm2 and B = Autc(KA) = 〈AR, σi, σj , σk〉. Then A is not
normal in B, and by Theorem 4.4(3), (A,B) is a complete colour pair. Let n = |A| and let
Kn,n be the complete bipartite graph of order 2n. Let G = A×A and let H = B×B. By
Proposition 4.6, H is a colour-preserving group of automorphisms of L(Kn,n) viewed as a
Cayley graph on G. Since A is not normal in B, G is not normal in H hence L(Kn,n) is a
non-CCA graph and so G is a non-CCA group.

For a graph Γ, let S(Γ) denote its subdivision graph.

Corollary 4.10. Let Γ be a connected G-arc-regular graph. If H is a group of automor-
phisms of Γ such that:

(i) G 6 H , and

(ii) (G
Γ(v)
v , H

Γ(v)
v ) is a complete colour pair for every vertex v of Γ,

then H is a colour-preserving group of automorphisms of L(S(Γ)) viewed as a Cayley
graph on G.

Proof. Let Γ′ = S(Γ). We show that Proposition 4.6 applies to Γ′. Clearly, Γ′ is bipartite
and G acts on it faithfully and edge-regularly. It is also obvious that, in its induced action
on Γ′, H must preserve the biparts of Γ′. Finally, let x be a vertex of Γ′. If x arose from
a vertex v of Γ, then we have that AΓ(v)

v is permutation isomorphic to AΓ′(x)
x for every

A 6 Aut(Γ). Since (G
Γ(v)
v , H

Γ(v)
v ) is a complete colour pair, so is (G

Γ′(x)
x , H

Γ′(x)
x ). If

x arose from an edge of Γ, then x has valency 2 and, since G is arc-transitive, GΓ′(x)
x =

H
Γ′(x)
x

∼= Z2 and (G
Γ′(x)
x , H

Γ′(x)
x ) is a complete colour pair.

Example 4.11. Let Γ be the Heawood graph and let H = Aut(Γ). Note that H contains
an arc-regular subgroupG isomorphic to AGL(1, 7). Moreover, for every vertex v of Γ, we
have GΓ(v)

v
∼= Z3 while HΓ(v)

v
∼= D3. By Corollary 4.10, H is a colour-preserving group

of automorphisms of L(S(Γ)) viewed as a Cayley graph on G. Since G is not normal in
H , it follows that Γ is a non-CCA graph and so AGL(1, 7) is a non-CCA group.

Remark 4.12. In fact, AGL(1, 7) is a Sylow cyclic group whose order is not divisible by
four, so Example 4.11 will appear again in our characterisation of non-CCA groups of this
sort, in Section 5. However, the construction we have just presented is very different from
the approach we use in that section.

5 Sylow cyclic and order not divisible by four
We first introduce some notation that will be useful throughout this section. Recall that
PGL(2, 7) has a unique conjugacy class of subgroups isomorphic to AGL(1, 7). The in-
tersection of such a subgroup with the socle PSL(2, 7) is a Frobenius group of order 21
which we will denote F21. We say that a group G is Sylow cyclic if, for every prime p, the
Sylow p-subgroups of G are cyclic.



90 Ars Math. Contemp. 14 (2018) 83–95

Our aim in this section is to characterise both the non-CCA Sylow cyclic groups whose
order is not divisible by four, and the structure of the corresponding colour-preserving
automorphism groups for non-CCA graphs.

Theorem 5.1. Let G be a Sylow cyclic group whose order is not divisible by four, let
Γ = Cay(G,S), let A be a colour-preserving group of automorphisms of Γ, let R be
a Sylow 2-subgroup of G and let r be a generator of R. If G is not normal in A, then
G = (F ×H) oR and A = (T × J) oR, where the following hold:

(i) PSL(2, 7) ∼= T E A,

(ii) T ∩G = F ∼= F21,

(iii) J ∩G = H E J E A,

(iv) H is self-centralising in J ,

(v) J splits over H ,

(vi) H is normal in A.

Proof. To avoid ambiguity, for g ∈ G, we write [g] for the vertex of Γ corresponding to g
and, for X ⊆ G, we write [X] for {[x] : x ∈ X}.

Let P be a Sylow 2-subgroup of A containing R. By Lemma 2.1, A[1] is a 2-group. Up
to relabelling, we may assume that A[1] 6 P . Since G is regular, we have A = GA[1] and
|A| = |G||A[1]|. Note that (v) and (vi) follow from the rest of the claims. Indeed, H must
have odd order and, since |A : G| is a power of 2, so is |J : H| and thus J = H o (P ∩J).
As H has odd order and is normal in J , it must be characteristic in J and thus normal in A.

Since |G| is not divisible by 4, it follows thatG has a characteristic subgroupG2 of odd
order such that G = G2 oR. By order considerations, we have A = G2P .

Case 1: There is no minimal normal subgroup of A of odd order.
In this case, we have that soc(A) = T1 × · · · × Tk × B, where soc(A) is the socle of

A, the Tis are non-abelian simple groups, and B is an elementary abelian 2-group. Recall
that A = G2P , that is, A has a 2-complement. Since this property is inherited by normal
subgroups, soc(A) and Ti also have 2-complements for every i. This implies that, for every
i, Ti ∼= PSL(2, p) for some Mersenne prime p (see [7, Theorem 1.3] for example). Now,
|Ti| is divisible by 3 but the Sylow 3-subgroup of soc(A) is cyclic (since |A : G| is a
power of 2 and G is Sylow cyclic) so that k = 1. Let T = T1. Suppose that p > 7 and
hence p > 31. Note that T[1] has index at most 2 in some Sylow 2-subgroup of T which
is isomorphic to D(p+1)/2. It follows that T[1] has order at least (p + 1)/2 and is either
dihedral or cyclic. Since p > 31, this implies that T[1] contains a unique cyclic subgroup
of order (p+ 1)/8, say U , and U is contained in (T[1])

2. By Lemma 2.5, U = 1, which is
a contradiction. It follows that p = 7 and T ∼= PSL(2, 7).

Let O2(A) be the largest normal 2-subgroup of A. If O2(A) = 1, then soc(A) = T ∼=
PSL(2, 7) and A is isomorphic to one of PSL(2, 7) or PGL(2, 7). If A ∼= PSL(2, 7),
then, as F21 is the only proper subgroup of PSL(2, 7) with index a power of 2, G ∼= F21

and the theorem holds. If A ∼= PGL(2, 7), then, for the same reason, G is isomorphic to
either F21 or AGL(1, 7). If G ∼= F21, then A[1] must be a Sylow 2-subgroup of A and thus
isomorphic to D8. In particular, A[1] contains a unique cyclic subgroup of order 4 and this
subgroup is contained in (A[1])

2. This contradicts Lemma 2.5. We must therefore have
G ∼= AGL(1, 7) and again the theorem holds.
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We now assume that O2(A) 6= 1. In particular, the orbits of O2(A) are of equal length,
which is a power of 2 greater than 1. It follows that |O2(A) : O2(A)[1]| = |[1]O2(A)| = 2.
LetK be the kernel of the action ofA on the O2(A)-orbits. By Lemma 2.4,K is semiregu-
lar hence so is O2(A). It follows that |O2(A)| = 2 and O2(A) is central in A. This implies
that B = O2(A), hence soc(A) = T × O2(A). Now, A[1] is a complement for O2(A) in
P , so by Gaschutz’ Theorem (see for example [6, 3.3.2]), O2(A) has a complement in A.

Clearly, O2(A) 6 CA(T ). We show that equality holds. Suppose, on the contrary,
that O2(A) < CA(T ). Since CA(T ) is normal in A, CA(T )/O2(A) must contain a min-
imal normal subgroup of A/O2(A), say Y/O2(A). Since O2(A) has a complement in A,
O2(A) has a complement in Y , say Z. Thus Y = O2(A) × Z and Z is isomorphic to
Y/O2(A) which is a minimal normal subgroup of A/O2(A) and therefore either an ele-
mentary abelian group of odd order, or a product of non-abelian simple groups. It follows
that Z is characteristic in Y and thus normal in A. Since the action of A by conjugation on
Z and on Y/O2(A) are equivalent, we see that Z is a minimal normal subgroup of A. The
only possibility is that Z = T but, since T has trivial centre, this contradicts the fact that
Z 6 Y 6 CA(T ). This concludes our proof that CA(T ) = O2(A) ∼= Z2.

As O2(A) has a complement inA, it follows thatA is isomorphic to one of PSL(2, 7)×
Z2 or PGL(2, 7) × Z2. Suppose first that A ∼= PSL(2, 7) × Z2. Since G has even order,
is not normal in A and has index a power of 2, we must have G ∼= F21 × Z2 and the
theorem holds with H = J = 1. Finally, suppose that A ∼= PGL(2, 7)× Z2. In particular,
P = Q × O2(A) where Q ∼= D8. Note that |P : A[1]| = 2 and A[1] ∩ O2(A) = 1 hence
A[1]
∼= P/O2(A) ∼= D8. This contradicts Lemma 2.5.

Case 2: There exists a minimal normal subgroup of A of odd order.
Let N be a minimal normal subgroup of odd order, that is, |N | is a power of some odd

prime p. Let K be the kernel of the action of A on the set of N -orbits. Since the N -orbits
have odd size and K[1] 6 A[1] is a 2-group, K[1] must fix at least one point in every N -
orbit. For each N -orbit B, pick b ∈ G such that K[1] = K[b] and B = [b]N . Now the
kernel of the action of K on [1]N is K([1]N ) =

⋂
n∈N (K[1])

n =
⋂
n∈N (K[b])

n = K([b]N ).

It follows that K([1]N ) fixes every vertex of Γ, and so K acts faithfully on [1]N . Moreover,
N[1] = 1 henceK = N oK[1]. As |A : G| is a power of 2, G contains a Sylow p-subgroup
of A. Since N is normal in A, it is contained in every Sylow subgroup of A, and thus
N 6 G. We therefore have GK = GNK[1] = GK[1]. Since G is Sylow cyclic and N is
elementary abelian, we must have |N | = p.

If K[1] 6= 1, then K[1] must move a neighbour of [1], say [s] for some non-involution
s ∈ S. It follows that K[s] must move [1], necessarily to [s2] since K is colour-preserving,
and thus [s2] ∈ [1]N . Let C be the cycle containing [1] with edge-label {s, s−1}. We have
shown that [1], [s2] ∈ [1]N ∩ C and hence |[1]N ∩ C| > 2. Since [1]N and C are both
blocks for the action of G, the former of prime order, it follows that [1]N ∩ C = [1]N ,
that is [1]N ⊆ C. Since K acts faithfully on [1]N , K[1] acts faithfully on C and thus
|GK : G| = |K[1]| 6 2. It follows that G is normal in GK, GK = G oK[1] and either
K = N ∼= Zp or K ∼= Dp.

Suppose that GK/K is normal in A/K and hence GK is normal in A. We show that
this implies thatG is normal inA, which is a contradiction. This is trivial ifG = GK hence
we assume that |GK : G| = 2 and K ∼= Dp. If G has odd order, then it is characteristic
in GK and thus normal in A. We may thus assume that G has even order. Recall that
G2 is a characteristic subgroup of index 2 in G, hence G2 is normal in GK and, since
|GK : G2| = 4, we have that G2 is characteristic in GK and thus normal in A. Note that
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G and G2 oK[1] both have index two in GK but G2 oK[1] is not semiregular, hence they
are not conjugate in A. In particular, G2 oK[1] and G are distinct index two subgroups of
GK and thus GK/G2 is elementary abelian of order 4. Let X be the centraliser of N in
GK. Since N ∼= Zp, Aut(N) is cyclic hence GK/X is cyclic and X is not contained in
G2. Since N , G2 and GK are normal in A, so is XG2. If XG2 = G, then we are done.
We thus assume that this is not the case. Note that |XG2 : X| = |G2 : CG2(N)| is odd,
hence every Sylow 2-subgroup of XG2 centralises N . Since K[1] has order 2 but does not
centralise N , G2 o K[1] is not contained in XG2. We thus conclude that G, G2K[1] and
XG2 are the three index two subgroups of GK containing G2. One of them is normal in
A, and we have seen that the other two are not conjugate in A. It follows that all three are
normal in A. In particular, G is normal in A, a contradiction.

We may thus assume thatGK/K is not normal inA/K. Again, we use the bar notation
with respect to the mapping A 7→ A/K. By Lemma 2.3, A is a colour-preserving group of
automorphisms of Γ/N . By induction, we have G = (F ×H)oD and A = (T ×J)oD,
where D is a Sylow 2-subgroup of G, PSL(2, 7) ∼= T E A, T ∩G = F ∼= F21, J ∩G =
H E J E A and H is self-centralising in J . Further, since R ∩ K = 1 we may assume
R = D. Note that T/CT (K) 6 Aut(K) is soluble since K is either cyclic or dihedral. As
T/K ∼= PSL(2, 7), it follows that T = KCT (K) and hence CT (K)/Z(K) ∼= PSL(2, 7).
If K ∼= Dp, then Z(K) = 1. Set T0 = CT (K) in this case. Otherwise, Z(K) = N = K ∼=
Zp and, since the Schur multiplier of PSL(2, 7) has order 2, we have CT (K) = N × T0

for some T0. In both cases, T0
∼= PSL(2, 7) and, since both T and K are normal in A, so

is T0, which proves (i). Now, TJ = T0KJ = T0J , both T0 and J are normal in A and
T0 ∩ J = 1 hence A = (T0 × J) o R. Since T0 = T there is F0 6 T0 such that F0 = F .
Since F0 ∩ K = 1 we have F0

∼= F0
∼= F21. Further, F = F0K = F0 × K. Since

|GK : G| 6 2, we have that F0 6 G and, since F0 is maximal in T0, we have T0∩G = F0

which is (ii).
Note that |H| is not divisible by 4, hence H = H0 o K[1] for some characteristic

subgroup H0 of H . In particular, H = H0. Now GK = FHR = F0H0K[1]R so
G = F0H0R = (F0 × H0) o R. Since H0 is characteristic in H , it is normal in J .
Recall that K ∩ G = N 6 H0, hence K ∩ F0R = 1. As J ∩ F0R = 1, this implies that
J∩F0R = 1. SinceH0 6 J , we have J∩G = H0(J∩F0R) = H0, which is (iii). Note that
H0/N ∼= H . Since H contains its centraliser in J , we have CJ(H0) 6 HK = H0K[1].
As N 6 H0 and N is self-centralising in K, we have CJ(H0) 6 H0, which is (iv).

This concludes the proof.

We now build on the previous result and give some information about the structure of
the connection set.

Theorem 5.2. Let G be a Sylow cyclic group whose order is not divisible by four, let
Γ = Cay(G,S) be a connected non-CCA graph and let A = Autc(Γ). Using the notation
of Theorem 5.1, write A = (T × J)oR and G = (F ×H)oR. Let r be the generator of
R, let Y = S \ (F ∪ (H oR)) and let

Γ′ = Cay(F oR, (F ∩ S) ∪ {r} ∪ {s2 : s ∈ Y }).

Then

1. Γ′ is connected and non-CCA,
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2. Y ⊆ {fz : f ∈ F, z ∈ Hr, |f | = 3, |z| = 2}, and

3. if Y 6= ∅, then |R| = 2, and T commutes with R.

Proof. Since Γ is non-CCA, G is not normal in A. This yields the conclusion of The-
orem 5.1. As in the proof of that theorem, for g ∈ G, we write [g] for the vertex of
Cay(G,S) corresponding to g and, for X ⊆ G, we write [X] for {[x] : x ∈ X}.

Let P be a Sylow 2-subgroup of A containing R. Up to relabelling, we may assume
that A[1] 6 P and thus P = A[1]R. It follows that [1]PH = [H o R] is a block for
A. As T is normal in A, its orbits are also blocks. One such block is [1]T = [F ]. As
[F ] ∩ [H o R] = [1], we find that the two block systems induced by [F ] and by [H o R]
are transverse.

The action of T on [F ] is equivalent to the action of PSL(2, 7) by conjugation on its 21
Sylow 2-subgroups. In particular, if f ∈ F and T[1] = T[f ], then f = 1. This observation,
together with the previous paragraph, yields that the set of fixed points of T[1] is exactly
[H oR].

We first show (2) and (3). Let s ∈ Y . Note that [Fs] is the orbit of T that contains
s. Since s /∈ H o R, [s] is not fixed by T[1]. Since T is colour-preserving, we have that
[s] 6= [s−1] ∈ [Fs]. It follows that 1 6= s2 ∈ F . In particular, |s2| ∈ {3, 7}. Since A
is colour-preserving, the cycles coloured {s, s−1} form a block system for A. This means
that [〈s2〉] is also a block for A, contained in the block [F ]. Now, PSL(2, 7) on its action
on 21 points does not admit blocks of size 7, therefore |s2| = 3. Since s 6∈ F this implies
|s| = 6. Notice also that [{1, s3}] is a block of A. Thus, [s3] is a fixed point of T[1], so
[s3] ∈ [H o R]. Since |s3| = 2 but |H| is odd, s3 6∈ H hence |R| = 2 and s3 ∈ Hr.
Since H and F centralise each other and s3r ∈ H and s2 ∈ F , it follows that s2 commutes
with r. Note that [1]P = [R] is a block for A. Now, [〈s2〉] is also a block for A, being a
set of vertices of even distance contained in one of the monochromatic hexagons coloured
{s, s−1}. It follows that [〈s2, r〉] is also a block for A, of size 6 and contained in the block
[1]TP = [F oR]. Note that PGL(2, 7) does not have blocks of size 6 in its transitive action
on 42 points. It follows that T oR 6∼= PGL(2, 7), and hence T commutes with R. Writing
f = s4 and z = s3 concludes the proof of (2) and (3).

Let π : G 7→ F oR be the natural projection and let s ∈ Y . By the previous paragraph,
we have s−1 = s2s3 = s2hr, where s2 ∈ F and h ∈ H . It follows that π(s−1) = s2r.
As S is inverse-closed, we have π(Y ) = {s2r : s ∈ Y }. Since 〈S〉 = G, we have
F o R = 〈π(S)〉 6 〈F ∩ S, r, s2r : s ∈ Y 〉 = 〈F ∩ S, r, s2 : s ∈ Y 〉 and thus Γ′ is
connected. Note that [1]ToR = [F o R] hence T o R 6 Autc(Γ

′). Since F o R is not
normal in T oR, Γ′ is not CCA.

The following result is, in some sense, a converse to Corollary 5.2.

Proposition 5.3. Let G be a Sylow cyclic group whose order is not divisible by four such
that G = (F × H) o R where F ∼= F21, R is a Sylow 2-subgroup of G, and F and
H are normal in G. Let r be the generator of R, let S be a generating set for G, let
Y = S \ (F ∪ (H oR)), let S′ = (F ∩ S) ∪ {r} ∪ {s2 : s ∈ Y }, and let

Γ′ = Cay(F oR,S′).

If

1. Γ′ is connected and non-CCA,
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2. Y ⊆ {fz : f ∈ F, z ∈ Hr, |f | = 3, |z| = 2}, and

3. if Y 6= ∅, then |R| = 2, and F commutes with R,

then Cay(G,S) is connected and non-CCA.

Proof. Since S generates G, Cay(G,S) is connected. Since Γ′ is a connected and non-
CCA Cayley graph on F oR, it follows from Theorem 5.1 that there exists a group T oR
of colour-preserving automorphisms of Γ′, with F 6 T and T ∼= PSL(2, 7).

This yields an action of T on F o R. We extend this action to the vertex-set of
Cay(G,S) in the following way: for t ∈ T and xh ∈ G, with x ∈ F o R and h ∈ H , let
(xh)t = xth.

Notice that if x ∈ F o R, then, since r ∈ S′ is an involution and T o R is colour-
preserving on Γ′, for any t ∈ T we have (rx)t = rxt.

Note that F 6 T ∩ G < T . Since T is simple, it follows that T ∩ G is not normal in
T . We claim that T is a colour-preserving group of automorphisms of Cay(G,S). By the
previous comment, this will show that Cay(G,S) is non-CCA.

Let t ∈ T , let v ∈ G and write v = xh with x ∈ F oR and h ∈ H . We will show that,
for all s ∈ S, we have (sv)t = s±1vt.

Suppose first that s ∈ S′. (This includes the case when s ∈ F .) Since T is colour-
preserving on Γ′, we have (sx)t = s±1xt. Since sx ∈ F oR, we have (sv)t = (sxh)t =
(sx)th = s±1xth = s±1vt, as required.

Suppose next that s ∈ H oR. Write s = h′ri and x = rjf , where h′ ∈ H , f ∈ F and
i, j ∈ Z. Let h′′ ∈ H be such that ri+jh′′ = h′ri+j . Then

(sv)t = (h′ri+jfh)t = (ri+jh′′fh)t = (ri+jfh′′h)t = (ri+jf)th′′h = ri+jf th′′h

= ri+jh′′f th = h′ri+jf th = srjf th = s(rjf)th = sxth = svt,

as desired.
Finally, suppose s ∈ Y . We can write s = fz where f ∈ F , z ∈ Hr, |f | = 3 and

|z| = 2. By (3), we have s3 = z, s2 = f2 and |s| = 6. Since s3 ∈ H o R, the argument
of the previous paragraph shows (s3v)t = s3vt. On the other hand, since s2 ∈ S′, we
have (s3v)t = (s2(sv))t = s±2(sv)t. Combining these gives (sv)t = s3±2vt = s±1vt, as
desired.

We view Theorem 5.2 as a reduction of the CCA problem for groups of the kind ap-
pearing in its statement to the determination of non-CCA graphs on F21 and AGL(1, 7). It
therefore becomes of significant interest to understand the structure of such graphs.

Let x and y be elements of order 7 and 6 in AGL(1, 7), respectively, and let d = (y3)x.
Note that 〈x, y2〉 = F21. Let

S21 = {y±2, (xy2)±1}, S42,1 = {y±2, d} and S42,2 = {y±2, (y±2)d, d}.

Note that Cay(F21, S21) is isomorphic to the line graph of the Heawood graph (see Exam-
ple 4.8), while Cay(AGL(1, 7), S42,1) is isomorphic to the line graph of the subdivision of
the Heawood graph (see Example 4.11).

Proposition 5.4.

1. The graph Cay(F21, S) is connected but not CCA if and only if S is conjugate in
AGL(1, 7) to S21.
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2. The graph Cay(AGL(1, 7), S) is connected but not CCA if and only if S is conjugate
in AGL(1, 7) to one of S42,1 or S42,2.

3. The graph Cay(F21 × Z2, S) is connected but not CCA if and only if S is conjugate
in AGL(1, 7)× Z2 to some inverse-closed subset of

{y±2, (xy2)±1, y±2r, (xy2)±1r, r}

that generates F21 × Z2, where Z2 = 〈r〉.

Proof. This was verified using MAGMA [1]. The proof of the first claim can also be found
in [3, Proposition 2.5, Remark 2.6].

Remark 5.5. It can be checked that Proposition 5.4(3) yields eleven generating sets for
F21 × Z2, up to conjugacy in AGL(1, 7)× Z2.
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