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TWO-DIMENSIONAL UNCONFINED SEEPAGE FLOW TOWARD A HIGHWAY CUT SLOPE  

DVODIMENZIONALNI TOK PODZEMNE VODE S PROSTO GLADINO PROTI 

AVTOCESTNEMU VKOPU 

Yebegaeshet T. Zerihun1 

1 David & James – Engineering and Environmental Consultancy, 204 Albion Road, Victoria 3350, Australia  

Abstract 

The unconfined gravity-flow system near a free-outflow boundary such as a highway cut slope was 

investigated by using a higher-order numerical model. Unlike the Dupuit–Forchheimer equation, which is 

applicable mainly to a hydraulic flow problem, the proposed model accounts for the effects of the vertical 

component of the flow for a full treatment of the problem of plane phreatic flow. The model equations were 

numerically solved by means of a finite-difference scheme. Their accuracy was then verified using the 

solutions of the full two-dimensional potential-flow method and rigorous mathematical approaches, revealing 

that for a face slope flatter than 70º, the differences between the solutions of the model and the earlier 

approaches for the relative seepage-face height were nearly negligible. The comparison results also 

demonstrated the substantial effects of the slope of the downstream face on this height and the seepage 

discharge. Furthermore, the accuracies of the model predictions for the phreatic-surface profile and the 

distributions of the piezometric head at different vertical sections are much better than the earlier method, 

which approximates the trapezoidal-shaped aquifer by its equivalent rectangular one. Such a satisfactory 

performance may be attributed to the model’s higher-order correction factor for the effects of the phreatic-

surface curvature and steep slope. 

Keywords: unconfined seepage flow, phreatic surface, artificial cut, seepage discharge, non-hydrostatic 

groundwater flow, seepage-face height. 

Izvleček 

Z numeričnim modelom višjega reda je bil raziskan gravitacijski tok pri prosti gladini v bližini meje prostega 

odtoka, kot je na primer vkop avtoceste. Za razliko od Dupuit–Forchheimerjeve enačbe, ki se uporablja 

predvsem za hidravlični tok, predlagani model upošteva vplive vertikalne komponente toka za celovito 

obravnavo problema ravninskega toka vode pri prosti gladini. Enačbe modela toka so bile numerično rešene s 

pomočjo diferenčne sheme. Natančnost rešitve je bila preverjena ob upoštevanju dvodimenzionalnega toka in 

s strogimi matematičnimi pristopi. Za naklone vkopa, ki je položnejši od 70º, so razlike v višini vode na 

precejnem robu med rešitvami tega modela in prejšnjimi pristopi skoraj zanemarljive. Primerjava rezultatov 
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je prav tako pokazala na znatne vplive naklona vkopa na višino vode na precejnem robu in odtok. Poleg tega 

je natančnost modelne napovedi za potek gladine podzemne vode in porazdelitev hidravličnih višin na 

različnih navpičnih odsekih veliko boljša od prejšnje metode, ki vodonosnik trapezne oblike upošteva kot 

ekvivalentni pravokotni vodonosnik. Zadovoljivo rešitev je možno pripisati modelnemu korekcijskemu 

faktorju višjega reda za učinke ukrivljenosti gladine podzemne vode in strmega pobočja. 

Ključne besede: precejanje pri prosti gladini, gladina podzemne vode, vkop, odtok, nehidrostatsko precejanje, 

višina vode na precejnem robu. 

 

1. Introduction 

The analysis of unconfined saturated flow began 

with the work of Dupuit (1863), who developed a 

simple but useful model of groundwater flow by 

considering only the horizontal flow conditions and 

ignoring the processes occurring in the vertical 

direction. The Dupuit approach assumed that the 

horizontal length scale of a typical unconfined 

aquifer is much larger than the vertical length (Bear 

et al., 1968, p. 191). As a result, the energy losses 

associated with the horizontal flow process 

dominate the total losses within the saturated 

aquifer. The Dupuit approach was later generalized 

by Forchheimer (1886, 1914). It is obvious that the 

Dupuit–Forchheimer (DF) approach is applicable 

mainly to a hydraulic flow problem where the 

streamlines are nearly horizontal. In the case of an 

unsaturated-saturated gravity-flow system near the 

free-outflow boundary such as a stream bank or a 

highway cut slope, the vertical component of the 

flow cannot be ignored. For this flow situation, the 

DF approach does not predict the presence of a 

seepage-face boundary at the groundwater-surface 

water interface (see, e.g., Muskat, 1946, p. 362). 

The existence of a seepage face provides the 

necessary transition between the internal phreatic 

surface and the external equipotential boundaries. 

Several investigators (e.g. Hall, 1955; Vauclin et al., 

1979; Billstein, 1998; Chapman and Ong, 2006) 

utilized the physical model tests to better understand 

the characteristics of the unconfined flow near a 

seepage-face boundary. The results of such tests 

were also used to fine tune the performance of 

various types of numerical models. The 

development of a higher-order numerical model 

capable of simulating a seepage-flow scenario, 

where vertical flow component and seepage-face 

formation are significant, is the task of this study. 

In the past, many researchers proposed higher-order 

approaches to analyzing unconfined groundwater-

flow problems. Dagan (1967) was probably the first 

to develop second-order governing equations for 

unsteady groundwater flow by applying a procedure 

expanding in powers of a small parameter. His 

approach accounted for the effects of the vertical 

component of the flow. Based on the assumption of 

a quadratic variation of a piezometric (hydro-

potential) head across a vertical section, Kashef 

(1969) proposed simplified equations for a steady 

unconfined groundwater flow by analyzing the 

hydrodynamic forces within the flow medium. The 

results of the equations for discharge and seepage-

face height were compared with rigorous 

mathematical solutions, demonstrating improved 

accuracy over the DF approach. For a homogeneous 

and isotropic aquifer with a sloping downstream 

face, however, his method provides neither 

analytical nor numerical solutions to the phreatic-

surface profile and the hydro-potential distribution. 

Using a similar assumption for the profile of the 

piezometric head, Knight (2005) proposed 

approximate solutions to the unconfined seepage-

flow problems. Muleshkov and Banerjee (1987) 

employed conformal mapping techniques to obtain 

a solution to the problem of the two-dimensional 

(2D) steady-state seepage flow. However, the 

practical application of their analytical solution is 

restricted by the assumption of infinite flow 

domains. As an alternative, Chapman and Dressler 

(1984) proposed governing equations in a bed-fitted 

curvilinear coordinate system for a transient 

unconfined groundwater flow over curved 

impermeable bedrock. Using the assumption of a 

small bedrock curvature, Chapman and Ong (2006) 

developed a simplified version of the Chapman and 

Dressler flow profile equation for a non-hydrostatic 

shallow groundwater flow. Their equation can be 
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retrieved from the Hilberts et al. (2004) equation by 

considering flow in a constant-width aquifer. Since 

the bedrock curvature is incorporated without 

resorting to higher-order terms in the shallowness 

expansion, the resulting governing equations of 

these studies do not separate the effects of the 

phreatic-surface curvature from the bedrock 

curvature and become identical to the DF equation 

for the case of mild-slope planar bedrock. The 

Picard iteration method, which was originally 

proposed by Matthew (1991) for open-channel 

flow, was employed by Castro-Orgaz and Hager 

(2014) to extend the DF approach. Using the power 

series expansion of the harmonic stream function 

(Boussinesq, 1871; Rayleigh, 1876) and Darcy’s 

law, Di Nucci (2018) developed a higher-order 

differential equation for a curved unconfined flow 

over horizontal impermeable bedrock. Additionally, 

the numerical solutions of this equation for 2D 

seepage flow through a rectangular-shaped dam 

were investigated, and the results of the phreatic-

surface profile showed satisfactory agreement with 

the numerical test data. Zerihun (2018) presented a 

higher-order approach for analyzing curvilinear 

groundwater flow in a constant-width unconfined 

aquifer. His method allowed for the effect of non-

hydrostatic pressure, thereby overcoming the 

limitations of the DF approach. More recently, this 

approach was extended to deal with unconfined 

flows in convergent- and divergent-type hillslope 

aquifers with non-uniform bedrock slopes (Zerihun, 

2020). Although those equations had relatively long 

and complicated non-linear coefficients, they 

yielded reasonably accurate solutions to the 

problems of groundwater flow with a phreatic 

surface. 

This study was undertaken to address some of the 

above deficiencies by developing an alternative 

numerical model for a 2D unconfined groundwater 

flow. The field of interest is the problem of a steady-

state phreatic flow through a homogeneous aquifer 

with a slanting side cut, which is commonly 

encountered along highways and railways (see 

Figure 1). For this type of flow problem, 

approximate analytical solutions based on a 

complex potential-flow theory (e.g. Polubarinova-

Kochina, 1962, pp. 301-308; Kacimov and 

Obnosov, 2012) and the results of the empirical 

methods (e.g. Kozeny, 1931; Casagrande, 1937; 

Fukuchi, 2018) are available. From the 

computational point of view, however, the 

evaluation of some of the resulting formulas is not 

straightforward. In comparison, the proposed model 

is simple to use and has a higher-order correction 

term for the effects of the phreatic-surface 

curvature. As a result, it allows the treatment of 

complex unconfined flow behaviors that may 

influence the predictions of seepage discharge, 

phreatic-surface profiles, and seepage-face height, 

and obviates the deficiencies of some of the existing 

models. The model’s capacity for analyzing the 

salient features of a non-hydrostatic seepage-flow 

problem is also investigated by comparing its 

numerical solutions with the results of the full 2D 

potential-flow method and rigorous mathematical 

approaches. The complete solutions of the 

unconfined flow problem considered here are 

relevant for assessing the long-term stability of the 

slope of a highway cut section. In the following 

sections, the derivation of the governing equations 

and the development of the numerical solution 

procedure based on a finite-difference 

approximation will be presented. 

 

Figure 1: A steeply sloping side cut along the 

curved section of a highway (Photograph courtesy 

of ROADEX Network, Finland). 

Slika 1: Strm vkop vzdolž zakrivljenega odseka 

avtoceste (fotografija z dovoljenjem ROADEX 

Network, Finska). 
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2. Governing equations  

The flow problem under consideration is a 

groundwater flow in an unconfined aquifer over 

curved impermeable bedrock with a steep slope. 

Figure 2 shows a schematic of the groundwater-

flow problem in a Cartesian coordinate system, 

where x  is horizontal in the streamwise direction; 

y  is vertically upward; and z  is horizontal in the 

lateral direction. The following assumptions are 

made to derive the equations using the Matthew 

(1991) step-wise iterative approach: (1) the 

variations of flow parameters in the transverse 

direction are ignored; (2) the aquifer is isotropic and 

homogeneous; and (3) the capillary fringe effects 

are ignored. 

 

Figure 2: Definition sketch of curvilinear 

groundwater flow with a phreatic surface. 

Slika 2: Definicijska skica krivolinijskega toka 

podzemne vode z gladino podzemne vode. 

The first approximation corresponds to the lowest-

order equation of an unconfined groundwater flow 

in a sloping aquifer. For such a gradually-varied 

flow, the expression for the piezometric or hydraulic 

head is given by (Zerihun, 2018) 

 ( )
( )

,
1

,, Y
HH

tx +


+


−
=


  (1a) 

 ,
Y

Yy

−

−
=


   (1b) 

where   refers to the phreatic-surface elevation; H  

is the saturated thickness of the aquifer; y  is the 

elevation of a point in the flow field; Y  is the 

bedrock elevation; ( ) /py +=  is the piezometric 

head or the potential function; p  is the pressure;   

is the unit weight of the fluid;   is the 

dimensionless vertical height; t  is the time; and 
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Applying Darcy’s law to Equation (1a) results in 
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where u  is the velocity in the streamwise x -

direction, and K  is the average hydraulic 

conductivity of a saturated aquifer. In the above and 

succeeding equations, the subscript x  denotes 

partial differentiation with respect to the horizontal 

x -axis. Subsequent corrections can be applied to 

Equation (2) using the following Cauchy–Riemann 

conditions (Bear, 1988, p. 234): 

 ,
yx

Ku



−=




−=


  (3) 

 ,
xy

Kv



=




−=


  (4) 

where   is the stream function, and v  is the 

vertical velocity. For simplifying the algebraic 

manipulation, the vertical height above the bedrock 

( )Yyh −=  is used hereafter (see Figure 2). Based 

on this simple approach, Equation (3) is integrated 

with the aid of Equation (2) to give the following 

first-order approximation for the stream function:  
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where 1  is a function of integration. Imposing the 

boundary condition at the bedrock ( )0=  results in 

01 = . Differentiating Equation (5) with respect to 

x  yields an equation for the vertical velocity as 

follows: 
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Substituting the above equation into Equation (4) 

and integrating the resulting expression with respect 

to h  gives the following higher-order 

approximation for the potential function: 
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where 2  is a function of integration. According to 

Matthew (1991), two approaches can be utilized to 

determine the expressions for this function. The first 

one is by imposing the dynamic boundary condition 

at the phreatic surface, ( ) 01 ==p , which results 

in the following equation for  : 
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This higher-order equation accounts for the 

curvilinear nature of the phreatic flow in the vertical 

plane, and hence it can accurately describe the 

distribution of the piezometric head across the 

saturated depth. The second approach applies the 

boundary conditions of the stream function at the 

bedrock and phreatic surface. For this purpose, 

Equation (7) is first inserted into Equation (3) and 

then differentiated with respect to x . This results in 

a higher-order approximation for the horizontal 

velocity component as follows: 

 

.

2

2

22

2
2

x
Y

H
KY

Y
H

KHY

Y
H

KHY

Y
HKH

x
Ku

x
x

x

x
x

xx

xx
xx

x

xxx
xxx




+








+


+









+


−









+


−









+


=




−=










 (9) 

Integration of Equation (9) with respect to h  leads 

to the desired higher-order approximation for the 

stream function, i.e. 
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where 3  is also a function of integration. The 

expressions for 3  and x 2  are obtained by 

applying the boundary conditions ( ) 00 ==  and 

( ) q−==1 , respectively, and are given by: 
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where q  is the discharge per unit width. 

Substituting the above equations into Equation (10) 

and simplifying the resulting expression yields the 

following equation: 
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By making use of Equation (12) in Equation (9), an 

expression for the distribution of the horizontal 

velocity is obtained as follows: 
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Similar to the results of previous studies (e.g. 

Chapman and Dressler, 1984; Di Nucci, 2018; 

Zerihun, 2018, 2020), this equation includes terms 

that account for the effects of the vertical curvature 
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of the streamline. Substituting Equation (8) in 

Equation (3) and equating the resulting expression 

to Equation (14) yields the following flow profile 

equation for an unconfined groundwater flow: 
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The above equation implicitly incorporates not only 

the effects of non-uniform horizontal velocity and 

non-hydrostatic pressure distributions but also the 

effect of a steep bedrock slope for accurately 

modeling the problems of a groundwater flow with 

a phreatic surface. Thus, it differs from previous 

equations (e.g. Castro-Orgaz and Hager, 2014; Di 

Nucci, 2018) developed by the Boussinesq (1871) 

or Matthew (1991) approach. For a 2D unconfined 

saturated flow on a vertical plane, the depth-

averaged mass-conservation equation reads as 

(Bear, 1988, p. 376): 
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where   is the effective porosity of the aquifer, and 

R  is the rate of vertical recharge. For a curvilinear 

groundwater-flow problem, the variation of the 

phreatic-surface profile can be predicted by 

combining the above depth-averaged continuity 

equation with Equation (15). Additionally, the 

present approach gives complete solutions for the 

rate of seepage flow, height of the seepage surface, 

and hydro-potential distribution within the saturated 

region. In the case of phreatic flows with 

streamlines nearly parallel to the sloping planar 

bedrock, Equation (15) reduces to: 
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which is a Boussinesq-type equation developed by 

Childs (1971) and was adapted by Chapman (1980) 

for analyzing the phreatic-surface profiles. For 

horizontal bedrock, this equation degenerates to the 

DF equation for steady groundwater flow with no 

recharge. Because of the non-linear characteristics 

of Equations (15) and (16), closed-form solutions 

are not possible except in highly simplified cases. In 

this study, a numerical approach based on the finite-

difference approximations was employed to solve 

the equations. Using such a relatively simple 

numerical technique, the applicability of the 

proposed equations is systematically investigated 

for the test cases of non-hydrostatic seepage flows 

towards artificial cuts ( 1= ). Such transient types 

of flow problems may be approximately analyzed 

by a quasi-steady flow approach, ignoring the 

aquifer’s storage capacity and the time lag between 

the inflow and outflow peak discharges. 

 

3. Seepage through unconfined aquifers of 

finite base width  

Figure 3 displays a typical longitudinal profile of an 

artificial cut with horizontal impermeable bedrock. 

The cut bottom coinciding with the bedrock is taken 

as a datum for the measurements of elevation (

0=Y ). For a steady accretion-free flow, Equation 

(15) may be rewritten in the form: 

 .
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Integrating the above expression with respect to x  

yields: 
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4
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H
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where 4  is an integration constant and can be 

determined from the specified flow depth at the 

upstream end section ( 0=j ) as a boundary 

condition. In practice, this section coincides with a 

groundwater divide or with a section where the 

horizontal Darcy velocity is almost negligible. 

Thus, the expression for 4  becomes: 

 .
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Zerihun Y.: Two-dimensional unconfined seepage flow toward a highway cut slope – Dvodimenzionalni tok podzemne 

vode s prosto gladino proti avtocestnemu vkopu  

Acta hydrotechnica 36/65 (2023), 95–109, Ljubljana 

101 

 

Figure 3: Definition sketch for unconfined seepage 

flow toward a highway cut slope. 

Slika 3: Definicijska skica za precejanje pri prosti 

gladini proti pobočju vkopa avtoceste.  

In the above equation, the subscript 0  denotes flow 

parameters at the upstream end section. As 

discussed before, a numerical approach is the only 

way of obtaining a solution to Equation (19) for 

such a curvilinear potential-flow problem. The 

spatial derivative term of this equation is discretized 

using the four-point finite-difference equation 

(Bickley, 1941), which results in the following 

expression after some mathematical manipulation: 
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 (21) 

where x  is the size of the step. With the aim of 

minimizing the numerical error due to spatial 

discretization, the step size is varied between 2 and 

4% of the horizontal length of the model domain. 

For computational nodes near the downstream end, 

the derivative term is discretized with the three-

point backward finite-difference approximation. 

Using the Newton–Raphson method with a 

numerical Jacobian matrix, the non-linear form of 

the algebraic equations is transformed into a linear 

one. The resulting implicit set of linear equations is 

then solved by means of the lower-upper (LU) 

decomposition method. A relative change in 

solution criterion with a tolerance of 610−  is used 

for examining the convergence of the numerical 

solutions. More details regarding the applied 

numerical scheme can be found in Zerihun (2018). 

3.1 Seepage discharge  

Using the Darcy law, a general expression for the 

rate of seepage flow toward a highway cut slope 

with horizontal impermeable bedrock can be 

obtained as follows (Hantush, 1962; Polubarinova-

Kochina, 1962, pp. 281-282; Kashef, 1969; 

Zerihun, 2018): 
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 (22) 

As noted by Casagrande (1937) and Muskat (1946, 

p. 291), the terminal end of the phreatic-surface 

profile is tangent to the downstream face of the 

aquifer at the exit point B (see Figure 3). Using such 

a qualitative characteristic of the profile of the 

groundwater flow, the horizontal component of the 

phreatic-surface velocity at B was determined by 

applying the Darcy law. Utilizing this known 

velocity, Equation (22) was integrated between the 

vertical sections at 0=j  and nj =  to give an 

expression for the seepage flux through a 

trapezoidal-shaped aquifer (for details, see the 

Appendix). The resulting equation for the seepage 

discharge reads as:  

 ,
)cot(2

22
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Kq  (23) 

 ,sin
3

2
1 2 −=   (24) 

where   is the slope of the downstream face; BH  

is the depth of the saturated aquifer at nj = ; and L  

is the base width of the aquifer. Equation (23) is 

structurally similar to the discharge equation 

presented by Kashef (1969) after analyzing the 

hydrodynamic forces within the flow medium. This 

equation is directly coupled with Equation (19) for 

a complete numerical solution of the unconfined 

seepage-flow problem. 

In the absence of tailwater, the maximum seepage 

discharge (Polubarinova-Kochina, 1962, p. 308; 

Kashef, 1969) can be obtained by differentiating 

Equation (23) with respect to BH  and equating the 

resulting expression to zero as follows: 
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 .0cot2cot 2
0

2 =+−  HHLH mSmS  (25) 

For a physically realistic solution, the discriminant 

of the above quadratic equation must be positive. 

Furthermore, its analytical solution satisfies the 

necessary condition 0HHB   and can be expressed 

as a non-dimensional form as follows: 
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where ( )LH /0=  is the relative upstream depth of 

the saturated aquifer; mSH  is the maximum height 

of the seepage face for a downstream dry-bed 

condition; and m  is the relative maximum 

seepage-face height. Using the above equation, an 

expression for 2
0H  as a function of L  and   is 

obtained. Inserting this expression into Equation 

(23) leads to the following equation for the 

maximum seepage discharge: 

 ,tan mSm KHq =   (27) 

where mq  is the maximum seepage discharge. 

Combining Equations (23) and (27) results in an 

expression for the relative seepage discharge as 

follows: 
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where R  is the relative seepage discharge, and 

( )0/ HHB=  is the relative saturated depth of the 

aquifer at nj = . Using the definition of   in 

Equation (26), the resulting expression after 

simplification becomes: 
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where m  is the ratio of the maximum seepage-face 

height to the downstream saturated depth in the 

presence of tailwater. As mentioned before, 

rigorous mathematical approaches have been 

previously employed to analyze unconfined seepage 

flows. For estimating the discharge, Pavlovsky 

(1931) (Polubarinova-Kochina, 1962, p. 306) 

proposed an approximate equation, which is not a 

function of the downstream saturated depth, as 

follows: 

 .
cot11 22

0





−+
=

KH
q   (30) 

For 90 , Mikhailov (1952) systematically 

simplified the complex equation developed by 

Falkovich (Polubarinova-Kochina and Falkovich, 

1951) and introduced a relatively simple equation as 

follows: 

 ,
6cot

4

 −+
= BKH

q   (31) 

where   is a constant, and its value depends on the 

magnitude of cot . At the maximum seepage 

discharge, equating Equation (30) to Equation (31) 

and simplifying the resulting expression yields: 
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which differs from Equation (26) by the additional 

parameter  . Equations (30) and (32) are employed 

here to assess the performance of the proposed 

equations. 
 

3.2 Effects of the downstream slope  

As a part of this study, the effects of the 

downstream-face slope on the salient features of the 

unconfined seepage flow are examined. Figure 4a 

compares the predictions of Eq. (26) with the results 

of Eq. (32) for the relative maximum seepage-face 

height. As can be seen, the results of the proposed 

equation agree reasonably well with the results of 

the previous equation. For 70 , some 

discrepancies can be seen between the results of the 

two equations, with a maximum absolute error of 

3.6%. Considering the approximate nature of the 

simplified version of the previous equation, the 

performance of the proposed equation is 

satisfactory. For a constant  , increasing the slope 

decreases the relative seepage-face height. This 

effect is significant for 45  and 10.0 . For 

a steeper slope, the variation of the relative seepage-

face height with   is more gradual. 
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Figure 4: (a) Variation of the relative seepage-face height m  with the slope of the downstream face  ; and 

(b) normalized seepage discharge N  as a function of the relative upstream saturated depth  . The results 

of Equations (26) and (23) in (a) and (b), respectively, are indicated by lines of different styles and colors. 

Slika 4: (a) Sprememba relativne višine precejanja m  z naklonom dolvodne meje  ; in (b) normaliziranega 

odtoka N  kot funkcije relativne gorvodne zasičene globine  . Rezultati enačb (26) in (23) v (a) oziroma (b) 

so označeni s črtami različnih slogov in barv. 

 

The effect of the slope of the downstream face on 

the normalized seepage discharge ( )0/ KHqN =  is 

also examined, and the result is depicted in Figure 

4b. The results of Equation (23) are favorably 

compared with the results of Equation (30). The 

computed maximum absolute error does not exceed 

3.4% for numerical results with   values within the 

considered range. For 30.0 , the effect of the 

face slope on the normalized discharge is 

insignificant. For a relatively higher value, 

however, increasing the slope decreases the 

normalized discharge. This is due to the effect of   

on the geometric characteristics of the phreatic-

surface profile. The overall results revealed that the 

slope of the downstream face significantly affects 

both the relative seepage-face height and the 

normalized seepage discharge. 

Likewise, the effect of the downstream-face slope 

on the relative seepage discharge is assessed using 

Equation (28). As shown in Figure 5, the reduction 

in seepage discharge decreases as   increases. For 

a larger face slope, the relative discharge varies 

more gradually with m/1 . Consequently, the drop 

in discharge is relatively small. For an artificial cut 

section with a flatter downstream-face slope, the 

converse is true. Apparently, the presence of 

tailwater affects the height of the seepage face ( SH

) and thus the relative discharge. The seepage-face 

height decreases with increasing tailwater depth (

mSS HH  ). As 1→m , the seepage discharge 

approaches the maximum value that corresponds to 

the condition of no tailwater. These results are 

consistent with previous results reported by 

Polubarinova-Kochina (1962, p. 308) for 

unconfined seepage flow through a triangular-

shaped dam. 

 

3.3 Phreatic-surface profile and piezometric 

head distributions  

In this section, the model’s accuracy is investigated 

by simulating unconfined seepage flow through a 

trapezoidal-shaped dam with vertical upstream and 

slanted downstream faces ( 45= ). For this 

problem, the slope of the phreatic surface ( 0=xH ) 

and the saturated depth were prescribed as boundary 

conditions at the upstream end section. The 

numerical technique applied here employs an 

iterative solution procedure based on the initial 

guess of the phreatic-surface profile. Using 

Equation (23), the discharge is first computed by 

utilizing the estimated depth of the saturated aquifer 

at nj =  ( mSB HH  ). If the discrepancy between 
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the BH  employed to compute q  and the newly 

predicted BH  is significant, then the iteration 

process is continued until the discrepancy becomes 

insignificant (approximately less than 5 mm). 
 

 

Figure 5: Variation of the relative seepage 

discharge R  with the downstream saturated depth 

ratio m/1  for various values of downstream-face 

slope. 

Slika 5: Sprememba relativnega odtoka R  z 

razmerjem dolvodne zasičene globine m/1  za 

različne vrednosti naklona dolvodne meje.  
 

The computational result of the present model was 

compared with the result of the finite-element 

numerical model (Lacy and Prevost, 1987) and the 

result of an approximate method that replaces the 

trapezoidal longitudinal section with an equivalent 

rectangular one (Kashef, 1969). According to this 

method, the locus of the phreatic surface is 

determined by: 
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where wH  is the tailwater depth, and eB  is the 

width of the equivalent rectangular longitudinal 

section. The equation for the width of this section is 

 .
2

cotB
e

H
LB −=   (35) 

As shown in Figure 6a, the result of the present 

model correlated reasonably well with the result of 

the finite-element numerical model with a mean 

relative error of 2.9%. Compared to these results, 

the approximate method underestimated the 

phreatic-surface elevations in the flow region near 

the sloping downstream face ( 40.0/ 0 Hx ). 

Consequently, the exit point of the line of seepage 

and the curvature of the phreatic surface were not 

accurately predicted. The result of the test 

confirmed that the present model is capable of 

accurately simulating the flow pattern in the region 

where the streamline curvature and inclination are 

significant. 

The results of the proposed model for the 

piezometric head distributions at vertical sections 

18.0/ 0 =Hx , 38.0/ 0 =Hx , and 60.0/ 0 =Hx  

were also compared with the solutions of the Kashef 

(1969) approximate method, which describes the 

vertical profile of the piezometric head by:   

 ( ) ,2 bb H −+=   (36) 

where b  is the piezometric head at the bedrock and 

can be determined from the following equation: 

 .1
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As shown in Figure 6b-d, the piezometric head at 

the bedrock decreases as the distance from the 

upstream end section increases. This is due to the 

effect of the vertical component of the flow, which 

is significant at a section near the discharge face. 

Similar to its result for the phreatic-surface profile, 

the approximate method did not accurately simulate 

the distributions of the piezometric head. It 

underestimated the head at different levels, 

especially at a vertical section near the discharge 

face where a maximum discrepancy of 9.4% 

occurred. Compared to the results of the present 

model and the numerical data of Lacy and Prevost 

(1987), the conventional DF approach, which is 

based on an approximation of the hydrostatic 

pressure distribution, overestimated the 

distributions of the piezometric head throughout the 

computational domain, i.e., 0.1/ = .
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Figure 6: (a) Normalized phreatic-surface profile for curvilinear seepage flow ( 47.0=N ). The normalized 

piezometric head distributions at vertical sections 18.0/ 0 =Hx , 38.0/ 0 =Hx , and 60.0/ 0 =Hx  are shown 

in (b), (c), and (d), respectively. 

Slika 6: (a) Normaliziran profil gladine podzemne vode za ukrivljene tokovnice ( 47.0=N ). Porazdelitve 

normalizirane hidravlične višine na navpičnih odsekih 18.0/ 0 =Hx , 38.0/ 0 =Hx  in 60.0/ 0 =Hx  so 

prikazane v (b), (c) oziroma (d).  

 

4. Summary and conclusions 

The problem of a steady-state phreatic flow through 

a homogeneous and isotropic aquifer with a slanting 

downstream face was investigated using a non-

hydrostatic model. The proposed model 

incorporates a higher-order correction term, which 

accounts for the effects of the vertical component of 

the flow. Hence, it allows the treatment of complex 

unconfined flow behaviors that may influence the 

predictions of seepage discharge and seepage-face 

height, and overcomes the shortcomings of some of 

the existing models (e.g. Kashef, 1969; Chapman 

and Ong, 2006). A numerical approach based on the 

finite-difference approximations was employed for 

the solutions of the model equations. The model’s 

capacity for analyzing the important features of the 

seepage-flow problem was investigated by 

comparing its numerical results with the solutions 

of the full two-dimensional potential-flow method 

and rigorous mathematical approaches. 

The following conclusions are drawn from this 

study: 

1. The solutions of the proposed equations for 

the relative seepage-face height and the 

normalized seepage discharge qualitatively 

agreed with the results of the previous 

simplified equations. The result of the 

comparison is quite promisimg when 

considering the complex nature of the 

problem of seepage flow, where the vertical 

velocity plays a significant role. Overall, 

the investigation results confirmed that the 
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slope of the downstream face significantly 

affects both the relative seepage-face height 

and the normalized seepage discharge. 

Furthermore, the analysis of the relative 

discharge attested that the seepage 

discharge is strongly influenced by the 

downstream saturated depth ratio. 

2. For an unconfined seepage flow through a 

trapezoidal-shaped aquifer, the present 

model accurately reproduced the profile of 

the phreatic surface. In comparison, the 

Kashef (1969) approximate method 

underestimated the elevations of the 

phreatic surface in the flow region near the 

discharge face ( 40.0/ 0 Hx ). The result 

of the comparison also revealed that the 

accuracy of the model predictions for the 

distributions of the piezometric head at 

different vertical sections is much better 

than the approximate method and the DF 

approach. 

The test results presented in this study demonstrated 

the model’s capability of yielding reasonably 

accurate solutions to the problems of the unconfined 

seepage flow. The good quality of the 

computational results may be attributed to the 

model’s higher-order correction factor for the 

effects of the phreatic-surface curvature and steep 

slope. It is believed that the proposed model can 

serve as a numerical tool for solving engineering 

problems related to the stability analysis of a 

highway cut section and the design of the associated 

side channel. 

 

Appendix: Discharge equation development 

Along the streamline at the phreatic surface, if s  is 

the local coordinate tangent to the phreatic surface 

and   is the angle between the streamline and the 

x -axis at B, then the expression for the Darcy 

velocity becomes (Harr, 1991, p. 68): 
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where Bpu ,  is the horizontal component of the 

phreatic-surface velocity at B. For unconfined 

seepage flow through a trapezoidal-shaped aquifer 

with horizontal bedrock ( 0=== xxxxxx YYY ), a 

general expression for the horizontal velocity at the 

phreatic surface, pu , is obtained from Equations 

(14) and (15) as: 

 ( ),1+−= HHKHu xxxp   (39) 

where xH  is the slope of the phreatic surface, which 

is equal to tan−  at B. Equating Equation (38) to 

Equation (39) gives the following expression: 
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Using the condition of a nearly hydrostatic flow at 

the upstream end section, Equation (22) is 

integrated between the vertical sections at 0=j  

and nj = . The resulting expression becomes: 
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where 0L  is the length of the projection of the 

phreatic-surface profile on the x -axis (see Figure 

3). Substituting Equation (40) into Equation (41) 

and then simplifying the resulting expression gives 

the discharge equation for seepage flow as follows: 
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Notation 

eB  width of the equivalent rectangular-shaped 

aquifer [L] 

g  gravitational acceleration [LT-2] 

h  vertical height above the bedrock [L] 

H  depth of the saturated aquifer [L] 

BH  depth of the saturated aquifer at nj =  [L] 

mSH  maximum height of the seepage face [L] 
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SH  height of the seepage face [L] 

wH  tailwater depth [L] 

xH , xxH , and xxxH  derivatives of the saturated 

depth [-, L-1, L-2] 

0H  saturated depth at the upstream end section 

[L]  

K  hydraulic conductivity [LT-1] 

L  base width of the aquifer [L] 

0L  length of the projection of the phreatic-

surface profile on the x-axis [L] 

p  pressure [ML-1T-2] 

q  seepage discharge per unit width [L2T-1] 

mq  maximum seepage discharge [L2T-1] 

R  rate of vertical recharge [LT-1] 

s  local coordinate tangent to the phreatic 

surface [L] 

t  time [T] 

u  horizontal velocity [LT-1] 

pu  horizontal velocity at the phreatic surface 

[LT-1] 

v  vertical velocity [LT-1] 

yx, , and z  Cartesian coordinates [L] 

Y  bedrock elevation [L] 

xY , xxY , and xxxY  derivatives of the bedrock 

profile [-, L-1, L-2] 

  relative saturated depth at nj =  [-] 

m  relative maximum seepage-face height [-] 

  slope of the downstream face [deg] 

  unit weight of the fluid [ML-2T-2] 

x  step size [L] 

  phreatic-surface elevation [L] 

  effective porosity [-] 

  a constant factor [-] 

  dimensionless vertical height [-] 

  relative upstream saturated depth [-] 

  piezometric head [L] 

b  piezometric head at the bedrock [L] 

N  normalized seepage discharge [-] 

R  relative seepage discharge [-] 

  stream function [L2T-1] 

,, 21   and 3  functions of integration 

[L2T-1] 

4  an integration constant [L2]  

m  ratio of the maximum seepage-face height 

to the downstream saturated depth [-] 
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