
i
i

“proc15” — 2015/12/9 — 10:51 — page 1 — #17 i
i

i
i

i
i

BLED WORKSHOPS
IN PHYSICS
VOL. 16, NO. 2

Proceedings to the 18th Workshop
What Comes Beyond . . . (p. 1)
Bled, Slovenia, July 11–19, 2015

1 Aspects of String Phenomenology in Particle
Physics and Cosmology

I. Antoniadis ?

LPTHE, UMR CNRS 7589 Sorbonne Universités, UPMC Paris 6,
75005 Paris, France
and Albert Einstein Center, Institute for Theoretical Physics,
Bern University, Sidlerstrasse 5, 3012 Bern, Switzerland

Abstract. We describe the phenomenology of a model of supersymmetry breaking in
the presence of a tiny (tunable) positive cosmological constant. It utilises a single chiral
multiplet with a gauged shift symmetry, that can be identified with the string dilaton (or
an appropriate compactification modulus). The model is coupled to the MSSM, leading to
calculable soft supersymmetry breaking masses and a distinct low energy phenomenology
that allows to differentiate it from other models of supersymmetry breaking and mediation
mechanisms.

Povzetek. Avtor obravnava lastnosti modela za zlom supersimetrije, ko majhno pozitivno
kozmološko konstanto prilagaja fenomenološkim lastnostim. Obravnava primer kiralnega
multipleta, ko postane umeritvena simetrija dilatacijska simetrija strune (uporabiti pa je
mogoče tudi kak drug model kompaktifikacije). Model poveže s standardnim modelom
z minimalno supersimetrijo, kar omogoči izračun mas pri mehki zlomitvi supersimetrije.
Model uspešno opiše fenomenološke lastnosti polj, kar ga loči od ostalih modelov za
zlomitev supersimetrije.

1.1 Introduction

If String Theory is a fundamental theory of Nature and not just a tool for studying
systems with strongly coupled dynamics, it should be able to describe at the
same time particle physics and cosmology, which are phenomena that involve
very different scales from the microscopic four-dimensional (4d) quantum gravity
length of 10−33 cm to large macroscopic distances of the size of the observable
Universe ∼1028 cm spanned a region of about 60 orders of magnitude. In particular,
besides the 4d Planck mass, there are three very different scales with very different
physics corresponding to the electroweak, dark energy and inflation. These scales
might be related via the scale of the underlying fundamental theory, such as string
theory, or they might be independent in the sense that their origin could be based
on different and independent dynamics. An example of the former constrained
and more predictive possibility is provided by TeV strings with a fundamental
scale at low energies due for instance to large extra dimensions transverse to a
? E-mail: ignatios.antoniadis@polytechnique.edu
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2 I. Antoniadis

four-dimensional braneworld forming our Universe [1]. In this case, the 4d Planck
mass is emergent from the fundamental string scale and inflation should also
happen around the same scale [2].

Here, we will adopt the second more conservative approach, assuming that all
three scales have an independent dynamical origin. Moreover, we will assume the
presence of low energy supersymmetry that allows for an elegant solution of the
mass hierarchy problem, a unification of fundamental forces as indicated by low
energy data and a natural dark matter candidate due to an unbroken R-parity. The
assumption of independent scales implies that supersymmetry breaking should
be realized in a metastable de Sitter vacuum with an infinitesimally small (tunable)
cosmological constant independent of the supersymmetry breaking scale that
should be in the TeV region. In a recent work [3], we studied a simple N = 1

supergravity model having this property and motivated by string theory. Besides
the gravity multiplet, the minimal field content consists of a chiral multiplet with a
shift symmetry promoted to a gauged R-symmetry using a vector multiplet. In the
string theory context, the chiral multiplet can be identified with the string dilaton
(or an appropriate compactification modulus) and the shift symmetry associated
to the gauge invariance of a two-index antisymmetric tensor that can be dualized
to a (pseudo)scalar. The shift symmetry fixes the form of the superpotential and
the gauging allows for the presence of a Fayet-Iliopoulos (FI) term, leading to a
supergravity action with two independent parameters that can be tuned so that
the scalar potential possesses a metastable de Sitter minimum with a tiny vacuum
energy (essentially the relative strength between the F- and D-term contributions).
A third parameter fixes the Vacuum Expectation Value (VEV) of the string dilaton
at the desired (phenomenologically) weak coupling regime. An important con-
sistency constraint of our model is anomaly cancellation which has been studied
in [5] and implies the existence of additional charged fields under the gauged
R-symmetry.

In a more recent work [6], we analyzed a small variation of this model which
is manifestly anomaly free without additional charged fields and allows to couple
in a straight forward way a visible sector containing the minimal supersymmetric
extension of the Standard Model (MSSM) and studied the mediation of super-
symmetry breaking and its phenomenological consequences. It turns out that an
additional ‘hidden sector’ field z is needed to be added for the matter soft scalar
masses to be non-tachyonic; although this field participates in the supersymmetry
breaking and is similar to the so-called Polonyi field, it does not modify the main
properties of the metastable de Sitter (dS) vacuum. All soft scalar masses, as well
as trilinear A-terms, are generated at the tree level and are universal under the
assumption that matter kinetic terms are independent of the ‘Polonyi’ field, since
matter fields are neutral under the shift symmetry and supersymmetry breaking
is driven by a combination of the U(1) D-term and the dilaton and z-field F-term.
Alternatively, a way to avoid the tachyonic scalar masses without adding the extra
field z is to modify the matter kinetic terms by a dilaton dependent factor.

A main difference of the second analysis from the first work is that we use
a field representation in which the gauged shift symmetry corresponds to an
ordinary U(1) and not an R-symmetry. The two representations differ by a Kähler
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1 Aspects of String Phenomenology in Particle Physics and Cosmology 3

transformation that leaves the classical supergravity action invariant. However, at
the quantum level, there is a Green-Schwarz term generated that amounts an extra
dilaton dependent contribution to the gauge kinetic terms needed to cancel the
anomalies of the R-symmetry. This creates an apparent puzzle with the gaugino
masses that vanish in the first representation but not in the latter. The resolution
to the puzzle is based to the so called anomaly mediation contributions [7,8] that
explain precisely the above apparent discrepancy. It turns out that gaugino masses
are generated at the quantum level and are thus suppressed compared to the scalar
masses (and A-terms).

1.2 Conventions

Throughout this paper we use the conventions of [9]. A supergravity theory is
specified (up to Chern-Simons terms) by a Kähler potential K, a superpotential
W, and the gauge kinetic functions fAB(z). The chiral multiplets zα, χα are enu-
merated by the index α and the indices A,B indicate the different gauge groups.
Classically, a supergravity theory is invariant under Kähler tranformations, viz.

K(z, z̄) −→ K(z, z̄) + J(z) + J̄(z̄),
W(z) −→ e−κ

2J(z)W(z), (1.1)

where κ is the inverse of the reduced Planck mass, mp = κ−1 = 2.4 × 1015 TeV.
The gauge transformations of chiral multiplet scalars are given by holomorphic
Killing vectors, i.e. δzα = θAkαA(z), where θA is the gauge parameter of the gauge
group A. The Kähler potential and superpotential need not be invariant under this
gauge transformation, but can change by a Kähler transformation

δK = θA [rA(z) + r̄A(z̄)] , (1.2)

provided that the gauge transformation of the superpotential satisfies δW =

−θAκ2rA(z)W. One then has from δW =Wαδz
α

Wαk
α
A = −κ2rAW, (1.3)

whereWα = ∂αW and α labels the chiral multiplets. The supergravity theory can
then be described by a gauge invariant function

G = κ2K + log(κ6WW̄). (1.4)

The scalar potential is given by

V = VF + VD

VF = eκ
2K
(
−3κ2WW̄ +∇αWgαβ̄∇̄β̄W̄

)

VD =
1

2
(Ref)−1 AB PAPB, (1.5)

where W appears with its Kähler covariant derivative

∇αW = ∂αW(z) + κ2(∂αK)W(z). (1.6)
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4 I. Antoniadis

The moment maps PA are given by

PA = i(kαA∂αK − rA). (1.7)

In this paper we will be concerned with theories having a gauged R-symmetry, for
which rA(z) is given by an imaginary constant rA(z) = iκ−2ξ. In this case, κ−2ξ is
a Fayet-Iliopoulos [10] constant parameter.

1.3 The model

The starting point is a chiral multiplet S and a vector multiplet associated with a
shift symmetry of the scalar component s of the chiral multiplet S

δs = −icθ , (1.8)

and a string-inspired Kähler potential of the form −p log(s+ s̄). The most general
superpotential is either a constant W = κ−3a or an exponential superpoten-
tial W = κ−3aebs (where a and b are constants). A constant superpotential is
(obviously) invariant under the shift symmetry, while an exponential superpo-
tential transforms as W → We−ibcθ, as in eq. (1.3). In this case the shift sym-
metry becomes a gauged R-symmetry and the scalar potential contains a Fayet-
Iliopoulos term. Note however that by performing a Kähler transformation (1.1)
with J = κ−2bs, the model can be recast into a constant superpotential at the cost
of introducing a linear term in the Kähler potential δK = b(s+ s̄). Even though in
this representation, the shift symmetry is not an R-symmetry, we will still refer
to it as U(1)R. The most general gauge kinetic function has a constant term and a
term linear in s, f(s) = δ+ βs.

To summarise,1

K(s, s̄) = −p log(s+ s̄) + b(s+ s̄),

W(s) = a,

f(s) = δ+ βs , (1.9)

where we have set the mass units κ = 1. The constants a and b together with
the constant c in eq. (1.8) can be tuned to allow for an infinitesimally small cos-
mological constant and a TeV gravitino mass. For b > 0, there always exists a
supersymmetric AdS (anti-de Sitter) vacuum at 〈s + s̄〉 = b/p, while for b = 0

(and p < 3) there is an AdS vacuum with broken supersymmetry. We therefore
focus on b < 0. In the context of string theory, S can be identified with a compact-
ification modulus or the universal dilaton and (for negative b) the exponential
superpotential may be generated by non-perturbative effects.

1 In superfields the shift symmetry (1.8) is given by δS = −icΛ, where Λ is the superfield
generalization of the gauge parameter. The gauge invariant Kähler potential is then
given by K(S, S̄) = −pκ−2 log(S + S̄ + cVR) + κ−2b(S + S̄ + cVR), where VR is the gauge
superfield of the shift symmetry.
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1 Aspects of String Phenomenology in Particle Physics and Cosmology 5

The scalar potential is given by:

V = VF + VD

VF = a2e
b
l lp−2

{
1

p
(pl− b)2 − 3l2

}
l = 1/(s+ s̄)

VD = c2
l

β+ 2δl
(pl− b)2 (1.10)

In the case where S is the string dilaton, VD can be identified as the contribution
of a magnetized D-brane, while VF for b = 0 and p = 2 coincides with the tree-
level dilaton potential obtained by considering string theory away its critical
dimension [11]. For p ≥ 3 the scalar potential V is positive and monotonically
decreasing, while for p < 3, its F-term part VF is unbounded from below when
s + s̄ → 0. On the other hand, the D-term part of the scalar potential VD is
positive and diverges when s+ s̄→ 0 and for various values for the parameters
an (infinitesimally small) positive (local) minimum of the potential can be found.

If we restrict ourselves to integer p, tunability of the vacuum energy restricts
p = 2 or p = 1when f(s) = s, or p = 1when the gauge kinetic function is constant.
For p = 2 and f(s) = s, the minimization of V yields:

b/l = α ≈ −0.183268 , p = 2 (1.11)
a2

bc2
= A2(α) + B2(α)

Λ

b3c2
≈ −50.6602+O(Λ), (1.12)

where Λ is the value of V at the minimum (i.e. the cosmological constant), α is
the negative root of the polynomial −x5 + 7x4 − 10x3 − 22x2 + 40x+ 8 compatible
with (1.12) for Λ = 0 and A2(α), B2(α) are given by

A2(α) = 2e
−α −4+ 4α− α2

α3 − 4α2 − 2α
; B2(α) = 2

α2e−α

α2 − 4α− 2
(1.13)

It follows that by carefully tuning a and c, Λ can be made positive and arbitrarily
small independently of the supersymmetry breaking scale. A plot of the scalar
potential for certain values of the parameters is shown in figure 1.1.

At the minimum of the scalar potential, for nonzero a and b < 0, supersym-
metry is broken by expectation values of both an F and D-term. Indeed the F-term
and D-term contributions to the scalar potential are

VF|s+s̄=α
b
=
1

2
a2b2eα

(
1−

2

α

)2
> 0,

VD|s+s̄=α
b
=
b3c2

α

(
1−

2

α

)2
> 0 . (1.14)

The gravitino mass term is given by

(m3/2)
2 = eG =

a2b2

α2
eα . (1.15)

Due to the Stueckelberg coupling, the imaginary part of s (the axion) gets eaten by
the gauge field, which acquires a mass. On the other hand, the Goldstino, which is
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6 I. Antoniadis

Fig. 1.1. A plot of the scalar potential for p = 2, b = −1, δ = 0, β = 1 and a given by
equation (1.12) for c = 1 (black curve) and c = 0.7 (red curve).

a linear combination of the fermion of the chiral multiplet χ and the gaugino λ gets
eaten by the gravitino. As a result, the physical spectrum of the theory consists
(besides the graviton) of a massive scalar, namely the dilaton, a Majorana fermion,
a massive gauge field and a massive gravitino. All the masses are of the same
order of magnitude as the gravitino mass, proportional to the same constant a (or
c related by eq. (1.12) where b is fixed by eq. (1.11)), which is a free parameter of
the model. Thus, they vanish in the same way in the supersymmetric limit a→ 0.

The local dS minimum is metastable since it can tunnel to the supersymmetric
ground state at infinity in the s-field space (zero coupling). It turns out however
that it is extremely long lived for realistic perturbative values of the gauge coupling
l ' 0.02 and TeV gravitino mass and, thus, practically stable; its decay rate is [5]:

Γ ∼ e−B with B ≈ 10300 . (1.16)

1.4 Coupling a visible sector

The guideline to construct a realistic model keeping the properties of the toy
model described above is to assume that matter fields are invariant under the
shift symmetry (1.8) and do not participate in the supersymmetry breaking. In
the simplest case of a canonical Kähler potential, MSSM-like fields φ can then be
added as:

K = −κ−2 log(s+ s̄) + κ−2b(s+ s̄) +
∑

ϕϕ̄,

W = κ−3a+WMSSM, (1.17)

where WMSSM(φ) is the usual MSSM superpotential. The squared soft scalar
masses of such a model can be shown to be positive and close to the square of
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1 Aspects of String Phenomenology in Particle Physics and Cosmology 7

the gravitino mass (TeV2). On the other hand, for a gauge kinetic function with a
linear term in s, β 6= 0 in eq. (1.9), the Lagrangian is not invariant under the shift
symmetry

δL = −θ
βc

8
εµνρσFµνFρσ. (1.18)

and its variation should be canceled. As explained in Ref. [5], in the ’frame’ with an
exponential superpotential the R-charges of the fermions in the model can give an
anomalous contribution to the Lagrangian. In this case the ‘Green-Schwarz’ term
ImsFF̃ can cancel quantum anomalies. However as shown in [5], with the minimal
MSSM spectrum, the presence of this term requires the existence of additional
fields in the theory charged under the shift symmetry.

Instead, to avoid the discussion of anomalies, we focus on models with a
constant gauge kinetic function. In this case the only (integer) possibility2 is p = 1.
The scalar potential is given by (1.10) with β = 0, δ = p = 1. The minimization
yields to equations similar to (1.11), (1.12) and (1.13) with a different value of α
and functions A1 and B1 given by:

b〈s+ s̄〉 = α ≈ −0.233153

bc2

a2
= A1(α) + B1(α)

Λ

a2b
≈ −0.359291+O(Λ) (1.19)

A1(α) = 2e
αα
3− (α− 1)2

(α− 1)2
, B1(α) =

2α2

(α− 1)2
,

whereα is the negative root of −3+(α−1)2(2−α2/2) = 0 close to −0.23, compatible
with the second constraint for Λ = 0. However, this model suffers from tachyonic
soft masses when it is coupled to the MSSM, as in (1.17). To circumvent this
problem, one can add an extra hidden sector field which contributes to (F-term)
supersymmetry breaking. Alternatively, the problem of tachyonic soft masses can
also be solved if one allows for a non-canonical Kähler potential in the visible
sector, which gives an additional contribution to the masses through the D-term.

Let us discuss first the addition of an extra hidden sector field z (similar to
the so-called Polonyi field [12]). The Kähler potential, superpotential and gauge
kinetic function are given by

K = −κ−2 log(s+ s̄) + κ−2b(s+ s̄) + zz̄+
∑

ϕϕ̄ ,

W = κ−3a(1+ γκz) +WMSSM(ϕ) ,

f(s) = 1 , fA = 1/g2A , (1.20)

where A labels the Standard Model gauge group factors and γ is an additional
constant parameter. The existence of a tunable dS vacuum with supersymmetry

2 If f(s) is constant, the leading contribution to VD when s + s̄ → 0 is proportional to
1/(s + s̄)2, while the leading contribution to VF is proportional to 1/(s + s̄)p. It follows
that p < 2; if p > 2, the potential is unbounded from below, while if p = 2, the potential is
either positive and monotonically decreasing or unbounded from below when s+ s̄→ 0

depending on the values of the parameters.
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breaking and non-tachyonic scalar masses implies that γ must be in a narrow
region:

0.5 <∼ γ <∼ 1.7 . (1.21)

In the above range of γ the main properties of the toy model described in the
previous section remain, while Rez and its F-auxiliary component acquire non
vanishing VEVs. All MSSM soft scalar masses are then equal to a universal value
m0 of the order of the gravitino mass, while the B0 Higgs mixing parameter is
also of the same order:

m20 = m23/2

[
(σs + 1) +

(γ+ t+ γt)2

(1+ γt)2

]
,

A0 = m3/2

[
(σs + 3) + t

(γ+ t+ γt2)

1+ γt

]
,

B0 = m3/2

[
(σs + 2) + t

(γ+ t+ γt2)

(1+ γt)

]
, (1.22)

where σs = −3+ (α− 1)2 with α and t ≡ 〈Re z〉 determined by the minimization
conditions as functions of γ. Also, A0 is the soft trilinear scalar coupling in the
standard notation, satisfying the relation [13]

A0 = B0 +m3/2 . (1.23)

On the other hand, the gaugino masses appear to vanish at tree-level since
the gauge kinetic functions are constants (see (1.20)). However, as mentioned in
Section 1.3, this model is classically equivalent to the theory3

K = −κ−2 log(s+ s̄) + zz̄+
∑
α

ϕϕ̄,

W =
(
κ−3a(1+ z) +WMSSM(ϕ)

)
ebs , (1.24)

obtained by applying a Kähler transformation (1.1) with J = −κ−2bs. All classical
results remain the same, such as the expressions for the scalar potential and the
soft scalar masses (1.22), but now the shift symmetry (1.8) of s became a gauged
R-symmetry since the superpotential transforms as W −→ We−ibcθ. Therefore,
all fermions (including the gauginos and the gravitino) transform4 as well under
this U(1)R, leading to cubic U(1)3R and mixed U(1) × GMSSM anomalies. These
anomalies are cancelled by a Green-Schwarz (GS) counter term that arises from a
quantum correction to the gauge kinetic functions:

fA(s) = 1/g
2
A + βAs with βA =

b

8π2
(TRA − TGA) , (1.25)

where TG is the Dynkin index of the adjoint representation, normalized to N
for SU(N), and TR is the Dynkin index associated with the representation R of

3 This statement is only true for supergravity theories with a non-vanishing superpotential
where everything can be defined in terms of a gauge invariant function G = κ2K +

log(κ6WW̄) [14].
4 The chiral fermions, the gauginos and the gravitino carry a charge bc/2, −bc/2 and
−bc/2 respectively.
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dimension dR, equal to 1/2 for the SU(N) fundamental. An implicit sum over
all matter representations is understood. It follows that gaugino masses are non-
vanishing in this representation, creating a puzzle on the quantum equivalence
of the two classically equivalent representations. The answer to this puzzle is
based on the fact that gaugino masses are present in both representations and are
generated at one-loop level by an effect called Anomaly Mediation [7,8]. Indeed, it
has been argued that gaugino masses receive a one-loop contribution due to the
super-Weyl-Kähler and sigma-model anomalies, given by [8]:

M1/2=−
g2

16π2

[
(3TG−TR)m3/2+(TG−TR)KαFα+2

TR

dR
(log detK|R ′′),αFα

]

(1.26)
The expectation value of the auxiliary field Fα, evaluated in the Einstein frame is
given by

Fα = −eκ
2K/2gαβ̄∇̄β̄W̄. (1.27)

Clearly, for the Kähler potential (1.20) or (1.24) the last term in eq. (1.26) vanishes.
However, the second term survives due to the presence of Planck scale VEVs
for the hidden sector fields s and z. Since the Kähler potential between the two
representations differs by a linear term b(s + s̄), the contribution of the second
term in eq. (1.26) differs by a factor

δmA =
g2A
16π2

(TG − TR)be
κ2K/2gαβ̄∇̄β̄W̄, (1.28)

which exactly coincides with the ‘direct’ contribution to the gaugino masses due to
the field dependent gauge kinetic function (1.25) (taking into account a rescaling
proportional to g2A due to the non-canonical kinetic terms).

We conclude that even though the models (1.20) and (1.24) differ by a (classi-
cal) Kähler transformation, they generate the same gaugino masses at one-loop.
While the one-loop gaugino masses for the model (1.20) are generated entirely by
eq. (1.26), the gaugino masses for the model (1.24) after a Kähler transformation
have a contribution from eq. (1.26) as well as from a field dependent gauge kinetic
term whose presence is necessary to cancel the mixed U(1)R ×G anomalies due to
the fact that the extra U(1) has become an R-symmetry giving an R-charge to all
fermions in the theory. Using (1.26), one finds:

M1/2 = −
g2

16π2
m3/2

[
(3TG − TR) − (TG − TR)

(
(α− 1)2 + t

γ+ t+ γt2

1+ γt

)]
.

(1.29)
For U(1)Y we have TG = 0 and TR = 11, for SU(2) we have TG = 2 and TR = 7,
and for SU(3) we have TG = 3 and TR = 6, such that for the different gaugino
masses this gives (in a self-explanatory notation):

M1 = 11
g2Y
16π2

m3/2

[
1− (α− 1)2 −

t(γ+ t+ γt)

1+ γt

]
,

M2 =
g22
16π2

m3/2

[
1− 5(α− 1)2 − 5

t(γ+ t+ γt2)

1+ γt

]
,

M3 = −3
g23
16π2

m3/2

[
1+ (α− 1)2 +

t(γ+ t+ γt2)

1+ γt

]
. (1.30)
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1.5 Phenomenology

The results for the soft terms calculated in the previous section, evaluated for
different values of the parameter γ are summarised in Table 1.1. For every γ,
the corresponding t and α are calculated by imposing a vanishing cosmological
constant at the minimum of the potential. The scalar soft masses and trilinear
terms are then evaluated by eqs. (1.22) and the gaugino masses by eqs. (1.30). Note
that the relation (1.23) is valid for all γ. We therefore do not list the parameter B0.

γ t α m0 A0 M1 M2 M3 tanβ tanβ
µ>0 µ<0

0.6 0.446 -0.175 0.475 1.791 0.017 0.026 0.027
1 0.409 -0.134 0.719 1.719 0.015 0.025 0.026
1.1 0.386 -0.120 0.772 1.701 0.015 0.024 0.026 46 29
1.4 0.390 -0.068 0.905 1.646 0.014 0.023 0.026 40 23
1.7 0.414 -0.002 0.998 1.588 0.013 0.022 0.025 36 19

Table 1.1. The soft terms (in terms ofm3/2) for various values of γ. If a solution to the RGE
exists, the value of tanβ is shown in the last columns for µ > 0 and µ < 0 respectively.

In most phenomenological studies, B0 is substituted for tanβ, the ratio be-
tween the two Higgs VEVs, as an input parameter for the renormalization group
equations (RGE) that determine the low energy spectrum of the theory. Since B0
is not a free parameter in our theory, but is fixed by eq. (1.23), this corresponds
to a definite value of tanβ. For more details see [15] (and references therein). The
corresponding tanβ for a few particular choices for γ are listed in the last two
columns of table 1.1 for µ > 0 and µ < 0 respectively. No solutions were found for
γ . 1.1, for both signs of µ. The lighest supersymmetric particle (LSP) is given by
the lightest neutralino and sinceM1 < M2 (see table 1.1) the lightest neutralino
is mostly Bino-like, in contrast with a typical mAMSB (minimal anomaly media-
tion supersymmetry breaking) scenario, where the lightest neutralino is mostly
Wino-like [16].

To get a lower bound on the stop mass, the sparticle spectrum is plotted in
Figure 1.2 as a function of the gravitino mass for γ = 1.1 and µ > 0 (for µ < 0 the
bound is higher). The experimental limit on the gluino mass forcesm3/2 & 15 TeV.
In this limit the stop mass can be as low as 2 TeV. To conclude, the lower end mass
spectrum consists of (very) light charginos (with a lightest chargino between 250
and 800 GeV) and neutralinos, with a mostly Bino-like neutralino as LSP (80− 230
GeV), which would distinguish this model from the mAMSB where the LSP is
mostly Wino-like. These upper limits on the LSP and the lightest chargino imply
that this model could in principle be excluded in the next LHC run. In order for
the gluino to escape experimental bounds, the lower limit on the gravitino mass is
about 15 TeV. The gluino mass is then between 1-3 TeV. This however forces the
squark masses to be very high (10− 35 TeV), with the exception of the stop mass
which can be relatively light (2− 15 TeV).
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Fig. 1.2. The masses (in TeV) of the sbottom (yellow), stop (black), gluino (red), lightest
chargino (green) and lightest neutralino (blue) as a function of m3/2 for γ = 1.1 and for
µ > 0. No solutions to the RGE were found when m3/2 & 45 TeV. The lower bound
corresponds to a gluino mass of 1 TeV.

1.6 Non-canonical Kähler potential for the visible sector

As mentioned already in Section 4, an alternative way to avoid tachyonic soft
scalar masses for the MSSM fields in the model (1.17), instead of adding the extra
Palonyi-type field z in the hidden sector, is by introducing non-canonical kinetic
terms for the MSSM fields, such as:

K = −κ−2 log(s+ s̄) + κ−2b(s+ s̄) + (s+ s̄)−ν
∑

ϕϕ̄,

W = κ−3a+WMSSM,

f(s) = 1, fA(s) = 1/g
2
A , (1.31)

where ν is an additional parameter of the theory, with ν = 1 corresponding to
the leading term in the Taylor expansion of − log(s + s̄ − ϕϕ̄). Since the visible
sector fields appear only in the combination ϕϕ̄, their VEVs vanish provided
that the scalar soft masses squared are positive. Moreover, for vanishing visible
sector VEVs, the scalar potential and is minimization remains the same as in
eqs. (refbsalpha). Therefore, the non-canonical Kähler potential does not change
the fact that the F-term contribution to the soft scalar masses squared is negative.
On the other hand, the visible fields enter in the D-term scalar potential through
the derivative of the Kähler potential with respect to s. Even though this has no
effect on the ground state of the potential, the ϕ-dependence of the D-term scalar
potential does result in an extra contribution to the scalar masses squared which
become positive

ν > −
eα(σs + 1)α

A(α)(1− α)
≈ 2.6 . (1.32)
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The soft MSSM scalar masses and trilinear couplings in this model are:

m20 = κ2a2
(
b

α

)(
eα(σs + 1) + ν

A(α)

α
(1− α)

)

A0 = m3/2(s+ s̄)
ν/2 (σs + 3) (1.33)

B0 = m3/2(s+ s̄)
ν/2 (σs + 2)

where σs is defined as in (1.22), eq. (1.20) has been used to relate the constants a
and c, and corrections due to a small cosmological constant have been neglected.
A field redefinition due to a non-canonical kinetic term gϕϕ̄ = (s + s̄)−ν is also
taken into account. The main phenomenological properties of this model are not
expected to be different from the one we analyzed in section 1.5 with the parameter
ν replacing γ. Gaugino masses are still generated at one-loop level while mSUGRA
applies to the soft scalar sector. We therefore do not repeat the phenomenological
analysis for this model.
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