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Abstract

An approach to solve the integer linear programming problem (IP) using the Grobner bases theory
is presented. We consider the basics of commutative algebra on polynomial rings and their ideals
and the multidivision algorithm. Grébner bases were introduced to solve nonlinear polynomial sys-
tems of equations; therefore, we first present the generalization of the Gauss elimination method.
In order to solve a general IP a special ideal depending on the coefficients of the system and num-
ber of constraints in the IP has to be constructed. Finally, a Grobner basis of this ideal, which yields
the solution to IP, must be sought.

Povzetek

V ¢lanku je podan pristop k reSevanju celoStevilskega linearnega programiranja (IP) z uporabo teorije
Grobnerjevih baz. Obravnavamo osnovne elemente komutativne algebre na polinomskih kolobarjih,
njihove ideale in algoritem multi-deljenja. Grobnerjeve baze so bile vpeljane za reSevanje nelinearnih
polinomskih sistemov enacb, zato je v ¢lanku najprej predstavljen primer posplositve Gaussove elimi-
nacijske metode. Pri reSevanju splosnega IP konstruiramo poseben ideal, ki je odvisen od koeficientov
sistema in Stevila enacb v IP. Kon¢no resitev dobimo s pomocjo Grébnerjeve baze tega ideala.
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1 INTRODUCTION

Many modern computer programs, such as Mathematica, Matlab and others, enable solving
the problem of integer (linear) programming (IP). There are several algorithms to solve the
problem of IP; one of the most known and commonly used is the so called ‘Branch and bound
algorithm’. In this paper, we consider another aspect of solving this problem, which is based
on the theory of Grobner bases, which is the basis of the ideal of a polynomial ring in a similar
sense as the vector space (R", +), which has a basis consisting of n linearly independent
vectors (1,0,0,...,0), (0,1,0,...,0), ..., (0,0,0,...,1). These n vectors are called a standard basis of
(R™, +) and in a similar sense theGrobner basis is called a standard basis of the given ideal.

Turning now to the IP, where there are more equations and variables, and a cost function to
be optimized, and taking into account that the main objects of the polynomials of several
variables are monomials, we can use the fact that the exponent of each monomial is actually
a vector. As we will see later, this vector is naturally related to independent variables of IP that
are (basically positive) integers.

There are many different ways of examining the theory of Grobner bases. In the context of
classical algebra, the natural point of view is as follows.

We consider polynomials in variables x;, ..., x, with coefficients a, of a field k. We call
x%=x;1x," a monomial, a, € k a coefficient and a,x;*--x," a term, and a =
(a4, ..., ay) @ multi-index. The set of all polynomials in variables x4, ..., x,, with coefficient in k
is denoted by k[xy,...,x,]. With the usual operations of addition and multiplication,
k[xy, ..., x,] is a commutative ring (i.e. the multiplication in the ring is symmetric). We call a =
a; + -+ a, the full degree of a monomial x*. The degree of a polynomial f, denoted by

deg(f), is the maximum degree of a monomial of f.For any natural number n, the space
k™ ={(ay,...,an): ay, ..., a, € k}

is called n —dimensional affine space. The set of polynomials f;, ..., f; is naturally associated
with a system of equations

fl(xlﬂ 'xn) = Or
(1.1)

fs(xl, ,xn) =0.

The set of all solutions to the above system can be defined as the affine variety, V, determined
by polymomials f, ..., fs:

V(fy, . f5) ={(ay, ..,an) € k™ fi(ay, ...,a,) =0 for 1 < j < s}.

It is clear that there are many families of polynomials defining the same variety. For example,

if i=x-y fo=y—landg, = —x)° g, =y*—2y+1, then V{fy, f) = V(g1, g2)-
To understand the concept of an affine variety better we need the notion of an ideal.
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An ideal in the polynomial ring k[xy, ..., x,] is a subset I of k[xy, ..., x,,] satisfying

i. iff,g€lthenf +g€land
i. iff€landh € k[xq,...,x,] thenhhf € 1.

Let f1, ..., f; be polynomials of k[x;, ..., x,,]. We denote
Fo oo £5) (TS by il By oo B € Ky, o, 0]}

It is easily seen that (fy, ..., f;) is an ideal in k[xq, ..., x,]. Polynomials fi,..., f; are called
generators of this ideal. Ideal I  k[x4, ..., x,,] is finitely generated if there exist polynomials
(fi, -, fs) € k[xq, ..., xn] such that I = (fy, ..., f5), and the set {f, ..., f;} is called a basis of I.

From the definition of an affine variety, we see that to find an affine variety V(fi, ..., f;) € k"
is equivalently as to find the set of solutions of system (1.1). This is a problem that frequently
arises in studies of various phenomena in physical, technical and other sciences. In particular,
in order to study the qualitative behaviour of dynamics system

J'Cl = fl(xl,xZ, ...,xn) = 0, """’CS = f:s-(xl, xz, ...,xn)

we first have to determine singular points of the system, which are the points where all
polynomials f3, ..., fs vanish. Thus, we again arrive at a problem of the form (1.1), [6,7,10].

The problem of finding solutions of system (1.1) is very difficult. It can happen that system (1.1)
has infinitely many solutions, which means that it is impossible to find (all) solutions
numerically. Even if system (1.1) has a finite number of solutions it is still very difficult and
often impossible to find all of them numerically without applying methods of computational
algebra.

In the next section, we describe the concept of Grébner bases, which is closely related to the
multivariable division algorithm. We consider the main properties of Grobner bases and
connect them to the solution of system (1.1). In the third section, we study the main topic of
this paper, the integer programming problem (IP) via the theory of Grobner bases. We
demonstrate the application of the theory of Grébner bases theory to IP on two examples. In
the first example, we consider a case of IP without a cost function (i.e. just a problem to find

integer solutions to AX = B), while in the second example we search for the solutions to a
general IP (with a given cost function).

2 GROBNER BASIS AND NONLINEAR SYSTEMS OF EQUATIONS

Until the mid-1960s, when Bruno Buchberger, [2], invented the theory of Grébner bases, no
method for solving a general (nonlinear polynomial) system (1.1) was known. What is
nowadays called Buchberger's algorithm (and Grébner basis) is actually the cornerstone of
modern computational algebra. In this section, we first briefly describe the notion of a Grébner
basis, which will be used to obtain the variety of an ideal generated by polynomials f;, ..., fs,
i.e. to obtain the solution of system (1.1). Since a Grébner basis of I depends on a term ordering
on monomials of k[x, ..., x,,], we define monomial (term) order.
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A monomial order < on k[xy, ..., x,,] is a total order < on N§ with the following two properties:

(i) any nonempty subset of monomials has a least element (under <),
(ii) if x® < xP then x%xY < xPxY for every monomial x?.

The most common monomial ordering is shown in the following example.

Let us consider xZx8x3° , x3x2x3, x2xJx5 € R[x, x5, x3] and say, x; is ‘more important’ than
X, (and x3) and x, is ‘more important’ than x5. Then:

x3xdxg > xfxgxg > xFx5x30.
This monomial order is called a lexicographic (monomial) order. More precisely, x® < x# if and
only if the first coordinates a;and f; in a and 8 from left, which are different, satisfy a; < f5;.
There are many other standard monomial orders, like (graded) reverse lexicographic, (graded)
reverse lexicographic, etc. [4]. To avoid the, we can emphasize the name of the monomial
order. For example <, stands for the lexicographic order.

As soon as the monomial order is chosen, we can speak of the so-called leading monomial
(LM), leading term (LT) and leading coefficient (LC) of the polynomial. The leading term is
defined with the largest (with respect to fixed order) monomial.

Forexample, if f = —xZx8x3° + 2x3x2x3 + 3x?x3x% and the order is lexicographic with x; >
X, > x5, the leading term of f is LT(f) = 2x3x2x3, whilst the leading coefficient is LC(f) =
2 and the leading monomial LM (f) = x3x2x3.

Finally, note that any vector ¢ € R" defines an monomial order <z in R[xy, ..., x,] in the
following way:
or

and @ <oy B,

where ¢ - @ stands for the standard dot product ¢ - @ = Y}; ¢;a;. This monomial term order <;
defined by vector ¢ is usually called weighted (monomial) order.

For example, if ¢ = (1,5,10), we have xxix? <z xix2x3 since ¢+ a = (1,5,10) - (5,1,2) =
30 and E-E = (1,5,10) - (1,0,3) = 31 (and 30 < 31). Note, that for <; the leading term of

g = 2x7x3x? — 5xixdxd is LT(g) = —5x1x3 while for <, the leading term of (the same) g
is LT(g) = 2x?xix3.

Now, we describe the procedure of multi-division of a polynomial by an ordered set of
polynomials, that is to divide f € k[xy, ..., x,] by an ordered set F = {f, ..., f;}, which means
to express f in the form

f=afitq@fet++qfs+r, (1.2)
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where the quotients g4, ..., g and the reminder r are polynomials of k[x;, ..., x,,], and
either r = 0 or deg(r) < deg(f). In this case (1.2) means that f is reduced to r modulo F,
and we write

F

f-r.

The process of multi-division depends on the monomial order and the order of the polynomials
in the set F ={f},...,fs }. So, we have to fix the monomial order first to perform the
multidivision. For the precise introduction to multivariable division algorithm see e.g. Adams
& Luostaunau (1994), Cox et al. (2007), and Romanovski & Shafer (2009). We demonstrate the
division process by the following example.

Let us divide f = x%2y + xy? + y? by the ordered set of polynomials F = {f}, >} = {xy —
1,y? — 1} using lexicographic order with x > y.

g : T+y
gz 1 r_
fimy—1 VETPTR
fa:y?—1
Yy —x
zy +z+y?
zyt —y
r+y*+y
Y4y -
y* -1
y+1
1 5 x4y
0 - z4+y+1

Figure 1: The scheme of multivariable division procedure

On the first step, the leading term LT(f;) = xy divides the leading term LT(f) = x2y. Thus,
we divide x2y by xy, leaving x and then subtract x - f; from f. Next, we repeat the same
process on x y2 + x + y2. We divide f by LT(f;) = xy again. Note that neither LT(f;) = xy
nor LT(f,) = y? divides LT(x + y? +y) = x. However, x + y? + y is not the remainder
since LT(f,) divides y2. Thus, if we move x to the remainder column, we can continue with
the process. If we can divide by LT(f;) or LT(f,), we proceed as usual, otherwise, we move
the leading term of the intermediate dividend (the polynomial under the radical sign) to the
remainder column. We continue dividing in such a way. Now the polynomial under the radical
isy2 + y. Itis not divisible by LT (f;) but we can divide it by LT(f) yielding 1 and the subtract
1+ y? from y? + y. The obtained polynomial under the radical is y + 1 and neither LT (f;) nor
LT(f,) is divisible by LT(y + 1) = y. Therefore, we move y to the remainder column and
obtain 1, which is also moved to the remainder column. Thus, the remainder is x + y + 1 and
this concludes the example. Thus, we can write f in the form
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f=x*y+xy?+y?2=(x+y) - (xy—-D+1-O?*-D+x+y+1

In contrast, if we change the order of polynomials f; and f, in F, i.e. if we divide f by the
ordered set F = {f5, f1}, we obtain

f=x2y+xy?+y?=x-(xy—-D+(x+1) -@*—-1+2x+ 1
Obviously, this multivariable division is very sensitive on the order of f;, f,. The order affects
the multi-quotients q4,q,, as well as the remainder r. Dividing the polynomial f with the
(ordered) set F = {f}, f>}, one can simply write: f = {{ql,qz}, r} insteadof f = q. /1 + qof> +
r. Using this notation, in the first case, we have f = {{x +y,1L,x+y+ 1} and in the second
case we have f = {{x,x + 1}, 2x + 1}. Figure 2 shows the last results obtained by the

MATHEMATICA computer algebra system. The multi-quotients and the remainder are also
changed if we use another monomial order.

In[*}= PolynomialBeduce [x*2 vy +xy*2 +y*2, {xy-1, v*2 -1}, {x, v1]

Outlil= {{x+¥, 11, 1+x+¥]}

In[2}= PolynomialBeduce [x*2 vy +xy*2 + y*2, {y*2-1, xy -1}, {x, v1]

Owt2}= {{1l+x, x}, 1+2x]

Figure 2: Results obtained by MATHEMATICA for the case above

Now, we present the basic definitions and properties of Grobner bases. For any ideal, I we
define (LT(I)) = (LT(f): f € I\ {0}) = (LM(f): f € I \ {0}). A Grobner basis of an ideal
I c k[xy,, ..., x,] is a finite subset G = {g1, ..., g} of I such that

(LT(D) = (LT (g1), -, LT(g0))-

It is a special generating set for ideal (f}, ..., f;,) for which the multivariable division algorithm
for a given f returns the remainder r = 0 if and only if f € (g4, ..., g;),[4].

Using a Grobner basis, we obtain the uniqueness of the remainder, which was not assured
when we divided by an arbitrary set of polynomials, [2].

We now describe an algorithm for computing a Grobner basis of a polynomial ring. Let f, g be
from k[xy, ..., x,] with LT(f) = ax® and LT(g) = bx?. The least common multiple of x® and
xP, denoted LCM (x%,xF), is the monomial x¥ = x]* --- x™ such that y; = max(a;, ;), 1 <

Jj < n.The so-called S —polynomial of f and g is

XY x¥
Sro =1 T T ¢

Buchcberger's basic observation was the following criterion, [2]. Let I be a nonzero ideal in
k[xi, ..., x,] and let < be a fixed monomial order on k[x4, ..., x,]. Then, G = {91, 92, -.-, g¢ } is
a Grobner basis for I with respect to < if and only if for all i # j

G

Sgi 9; 0
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This criterion is the essence of the famous Buchberger's algorithm, which produces a Grobner
basis for the nonzero ideal I = (fi, ..., f;). Buchberger's algorithm is shown below, [11].

Buchberger's Algorithm

Input: A set of polynomials {f;, ..., i} € k[xq, ..., x,]\{0}.

Output: A Grobner basis G of the ideal (fi, ..., f5).

Procedure: G: = {fi, ..., fs}.

Step 1. For each pair g;,g; € G,i # j, compute the S —polynomial Syi.g; and compute the
remainder r;; of division S, ;. by the set G.

Step 2. Check if all 1; ; are equal to zero . If “yes”, then G is a Grobner basis, otherwise add all
nonzero 1 j to G and return to step 1.

It is proved in [2] that the algorithm terminates and returns a Grobner basis of the ideal I =
Foo for o for)-

Nowadays, all well-known computer algebra systems (MATHEMATICA, SINGULAR, MAPLE,
REDUCE, and others) have routines to compute Grébner bases.

Even if a monomial order is fixed, an imprecision in the computation of a Grobner basis arises
because the division algorithm can produce different remainders for different orderings of
polynomials in the set of divisors. Thus the output of Buchberger's Algorithms is not unique;
neither is it minimal (in the sense that it contains more polynomials then necessary).

A Grobner basis G = {g4, ..., gm} is called minimal if, for all i,j € {1,...,m}, LC(g;) = 1 and
for j # i, LM(g;) does not divide LM(gj). Every nonzero polynomial ideal has a minimal
Grobner basis, [4]. If no term of g; is divisible by any LT(gj) for j # i then the Groébner basis
is called reduced and if we fix a monomial order then every nonzero ideal I < k[xy, ..., x,,] has
a unique reduced Grébner basis with respect to this order.

In Figures 3 and 4, the Grébner basis of the ideal (—x3 + y,x%y — y?) with respect to
lexicographic monomial order with x >y is computed in systems MATHEMATICA and
SINGULAR, [9], respectively. We see that in both cases the result is {y® — v, xy? — y2,x? y —

y2x® —yh

njfl:= GroebnerBasis [{—x3 + ¥V, x ¥ - 5?2}, 1=, '_r,,r}]

z 3 z z z z 3
outsl= {-v° +¥°, -yt e xy, ¥y -y, ®° -y}

Figure 3: Output of Grébner basis in system MATHEMATICA
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SIHGULAR /
A Computer fAlgebra System for Polynomial Computations /  wversion 3-1-
114
by: W. Decker, G.-H. Greuel, G. Pfister, H. Schoenemann Y Jan 2012
FB Mathematik der Universitaet, D-67653 Kaiserslautern kY

ring r1=8, (x,y),1p;
poly f1=-x3+y;

poly F2=x2=y-y2;
ideal I=F1,f2;

ideal G=groebner{l);
> G;

G[1]=y3-y2

G[2]=xy2-y2
G[3]=r2y-y2

G[4]=x3-y

> 1

S A N N S

Figure 4: Output of Grébner basis in system SINGULAR

A reason to use more special systems than MATHEMATICA offers is to compute the Grobner
basis with respect to some special monomial order. In Figure 5 we compute the Grébner basis
of (—x3 + y,x%y — y?) using SINGULAR with respect to the weighted monomial order with
weight vector ¢ = (1,3). Note, that the result G = {x3 —y,y% — x2y} is not the same as

<
(1,3)
the Grobner basis with respect to lexicohraphic monomial order G<lex(y>x) ={-x%+
x8 —x3 + y}.
SINGULAR f
A Computer Algebra System for Polynomial Computations /  version 3-1-4
8<
by: W. Decker, G.-M. Greuel, G. Pfister, H. Schoenemann kY Jan 2812
FB Mathematik der Universitaet, D-67653 Kaiserslautern \

> ring r1=8, (x,y),%p(1,3);
ff == predefining ri1 ==
poly fi=-x3+y;

> poly £2=x2xy-y2;

> ideal I=f1,f2;

> ideal gl=groebner{l};

qI;

gI[1]=%3-y

gI[2]=y2-x2y

W

W

Figure 5: Grobner basis G, ,, of (x® —y,—x%y + y?) computed in SINGULAR

Recall that to solve a system of linear equations, an effective method is to reduce it to the form
in which an initial string of variables is missing from some of the equations, that is, the so-
called “row-echelon” form. The next definition and theorem provide a way to eliminate a group
of variables from a system of nonlinear polynomials. Moreover, it provides a way to find all
solutions of a polynomial system in the case that the solution set is finite, or in other words, to
find the variety of a polynomial ideal in the case that the variety is zero-dimensional.

For any ideal I = (fj, ..., fs) © k[xq, X3, ..., X,] the [ —th elimination ideal [; is the ideal of
k[xi41, X142, ..., x| defined by
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Il =1In k[xl+1,xl+2, ...,xn].

In the case of solving a system of nonlinear equations (1.1), this means that I = (f, ..., f5), but
the elements of I; are the equations (polynomials) that follow from f; =0, ..., f; = 0 and
eliminate the variables x4, ..., x;. Concerning the Grobner bases and elimination ideals, we
have the following

Theorem, ([4]). If G = {g4, ..., g;} is @ Grobner basis for [ = (f}, ..., fs) € k[xq, ..., x,] with
respect to lexicographic order with x; > --- > x,,, then for each 0 < [ < n the set

Gl =GN k[xl+1!xl+21 "'!xn]

is a Grobner basis for the [ —th elimination ideal.

Grobner basis theory allows one to find all solutions of a system (1.1) if the system has only a
finite number of solutions. In such case a Grébner basis with respect to the lexicographic order
is always in a “row-echelon” form, as can be seen using the following example, [5]. Consider
the polynomials

fi=x*+yz+x
o=z +xy+z
=y +xz+y.

With respect to the lexicographic order with x > y > z, the Grobner basis of ideal (f;, f>, f3)
is G = {91, 92, 93 9 gs: ge}, Where

gr=x+x*+yz

g2 =xy+z+2z°

g3 =z+xz+yz+2z%+ 2yz?
go=yV+y*—z—yz—2%>—2yz°
gs =22+ 2yz% + 2% + 2yz3

ge = 7% + 323 + 22",

Thus, the system f; = f, = f; = 0 is equivalent to the system

G1=92=93=9s=9gs = 9gs = 0.
For a generic system (1.1), a Grobner basis may have significantly more complex structure than
obtained in this example. However, if the system has only a finite number of solutions (i.e. the
ideal is zero-dimensional), then any reduced Grébner basis {g;, ... ,gn} must contain a
polynomial in one variable, let say, g,(x;). Then, there is a subset of the Grébner basis
depending on this variable and one more variable, say, g, (X, x3), ..., 9: (x4, x3), etc. Thus, we
first solve (perhaps only numerically) the equation g, (x;) = 0. Then, for each solution x; of
91(x1) = 0, we find the solutions of g,(x;,x,) = -+ = g.(x{,x,) = 0, which is a system of
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polynomials in a single variable x,. Continuing the process, we obtain in this way all solutions
to (1.1). Thus, in the case of the finite number of solutions, Grébner basis computations
theoretically provide the complete solution to the problem (see e.g. Section 2.2. of [1] for more
details).

3 GROBNER BASIS AND INTEGER LINEAR PROGRAMMING

In previous sections, we considered the process of multi-division and the Grobner bases
theory. Before the formal definition of the integer linear programming problem, note that the

essence of the problem concerns the integer solutions of a linear system AX = b (constraints),
which optimizes the so-called cost function. Therefore, it would be quite convenient if the rows

of the matrix equation A% =h (i.e. the equations) could be presented (in the first
approximation) as exponents of some new variables. In order to make things more

straightforward, let us consider AX = b (where: [A];; = a;; and b= (b4, ..., b)) with the
following restrictions: a;; € Z, b; € Z and ¢ € Rwithi=1,2,..,nand j=12,..,m. We
want to find a solution ¥ = (x, %y, ..., X,) € Z" to

aq1Xq + Aq1pXyp + -+ AnXn = b1
(3.1)

Ama1X1 + Xy + o+ A Xy = by,

which minimizes the cost function c(xy, X5, ..., X,) = Z?:l ¢jxj. We call (3.1) an integer (linear)
program (IP). In the matrix form, we have

minimize ¢ - X, subject to AX = b,

where A € T™™ and b = (by, ..., b)) € Z™. Note that all coefficients (including the solution
vector) are generally allowed to be from the set Z, but for now let the coefficients be limited
to be natural numbers: N.

The main mathematical idea which makes use of Grobner bases when solving IP (3.1) is to
associate new variables X, for k = 1,2,...,m (one variable to each equation) to (3.1) to
represent the k —th equation in (3.1):

+ ot b s
Xt areXz i Gmtn - xk & X, represents the k — th equaition

The use of new variables makes the formulation of system (3.1) much simpler:

a11xX1+aq2x2+ - +apx Am1X1+amaXa++amnx b b,
X111 1ta12x2 in n_”Xmml 1tam2X2 mnXn =X11"'Xmm,

which is equivalent to

(Xf“ ...Xglml)xl e (Xfln ...X;;mn)x" = Xb, (3.1a)
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Note that in (3.1a) the original (integer) variables X, (k = 1, ...,n) adopt the meaning of the
(integer) exponent of Xfl" X,‘:["". Therefore, to each column of (3.1) or equivalently to each
term in the brackets (...) in (3.1a), we associate a new variable Y, = Xf“‘ -+« Xk for each
k=1.2,..,n.

The first step in solving our IP problem is to determine whether a solution exists or not. The
theory of Grobner bases helps to characterize the existence and finally to prove the optimality
of the solutions to IP (3.1).

The crucial idea in solving (3.1) in terms of Grobner bases plays the following ring
homomorphism

O k[Yy, o, Yol = k[Xy, o, Xom),

which associates to any polynomial from the ring k[Y;, ..., Y, ] a polynomial from the ring
k[X1, ..., X1, which is defined by:

DY) = Xytk oo Xpmk, (3.2)

We immediately see that homomorphism (3.2) is in a one-to-one relation with a system of the
form (3.1) (more precisely, the image of every Y}, is bijective related with the k-th column on
the left side of (3.1)); furthermore, according to (3.1a), we have

(Y - e Y) = XD,

Concerning the map @ defined by (3.2) we can assert the following. If we assume that all
coefficient a; ; and b; from (3.1) are non-negative, then a solution X = ¥ € NJ} of (3.1) exists if

and only if the monomial Xfl Xf:{" is in the image under homomorphism ®. This means that
a monomial Y* € k[Y;, ..., Y,] exists for which ®(¥%) = X' --- Xo™, and % € NI is a solution
to (3.1).

Both implications of the above assertion can be proved at once. Let ¥ = (%;, X5, ..., X,,) € N¢

be a solution of (3.1). This means that (3.1a) holds for b =% According to definition of @ this
is equivalent to

(DY)t = (D(Y,)n = lel ... xbm

m

Now, since @ is a homomorphism we have

q;(yl’?l yrfn) — Xfl coo X Pm

m
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and Xfl---X,l;m is in the image under @ and the corresponding original is Yl’?1 ---Yf" €
k[Yy, ..., Y,], and we have shown that this is equivalent to ¥ = (¥, %,, ..., %,) € N§ being

solution to (3.1).

This means that % for which Y7 is in the image under @ is an integer solution to system (3.1),
but still we have to handle the problem of the minimality condition of the cost function
(X1, Xgy ey Xp) = Z}‘zl ¢;x;. In order to solve this, we need some additional results. First, if
X1, X3, e, Xp and Y1, Vo, ..., Yy, are elements of a commutative ring k, then for any non-negative
. . ay_ay an a,. ap an .. . .
integers a,, ay,...,a, the polynomial x;'x,? - x," —y, 'y, 2 y," is in the ideal
(X1—¥1, .., Xn—Yn). The proof can be done by mathematical induction on the number of
elements x,, and y,,. Let us simply mention that for n = 1 (the basis for induction) the assertion

is a well-known result

x%—y% = (x —y)(x¥ 1+ x% 2y +- xy® 2 + y¢ 1),
For the rest of the proof, see [12].
Now let K = (Y1—fi, ... Yo—fn) € k[Yy, ...V X1, ... X;n] and f,, € k[Xy, ..., Xp]. If g €
KNk[Y, ..., Y], then g(Yy, ..., V) = X7, (Y; — fu)hy, where h; € k[Yy, ..., Yy, Xy, ..., X ]. Let
® map Y; — f;. Then g(fi, ..., f,)=0, thus ®(g) = 0. In contrast, let ®(g) =0 and let g =
Y Ca Yy Y2 - Yi™ (where finitely many ¢, # 0). Since g(fi, -, f,)=0, we have

g=9-0=g— g(fi, - fn)

_ ayy,an a ay pay a
g_ZCayl YZ ...Ynn_ZCafi B ves nn
a a
— a1y a2 an ay az an
g_zca(yl |CSED SRl M PASRS )
a

which is in the ideal K = (Y;—f3, ..., ¥,—f,), according to the previous result. Thus, Ker(®) =
KNk[Y,, ..., Y,,], and the elements of Ker(®) can (by the elimination theorem) be found in the
following way: first find the Grobner basis of the ideal K = (Y,—f;,..,Y,—f,) in
k[Yy, ..., Y, X1, ..., X;,] with respect to a lex ordering X; > - > X,,>Y; > --- >Y,. Then a
Grobner basis for KNk[Y, ..., ;] will be precisely the polynomials of the Grébner basis of K
that do not have any X variables. Obviously, for a given homomorphism @, any monomial f €
k[Y, ..., Yplis notin the image of ®. Let us denote the Grobner basis of K = (Y, —f1, ..., Vo= fo)
obtained by the elimination theorem by G. According to the above results, we have

feKer(®) & ahek[Y,,..,Y,] s.t. foh,

which is then the key to the solution of IP (3.1) constrained by the cost function
(X1, Xg, ey Xp) = Z;lzl ¢;x;. Finally note that, if take care that the monomial order which is

used to compute the Grébner basis, G, of the ideal K = (Y;—fi, ..., Y,—f,) is compatibile
with the cost function c(xq,x5,...,%,) = Z?=1 ¢jxj and with the corresponding
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cb(ylﬂm Y:n) — cb(ylfl an

and
(X1, X9, oy Xp) < €(Xq, Xy, .., Xp)

4

ylxl y)i‘n <. ylfl yjn

then from Xfl ---X,l:{" Gig Yfl er" one can deduce that ¥ = (¥, X5, ..., X,) € Nj is a solution
to IP (3.1) for which the cost function c(X) = ¢ - X is minimal. The minimality of the solution is
proven by contradiction. If any other solution ¥ = (xq, X5, ..., X,;) is minimal then, since c(¥) =
¢(X) and since the term ordering <. is compatibile with the cost function and with the

corresponding  system we have ®(Y;* = Y;™) = d(¥;" - Y,); implying ®(Y, - v —

: . : . G
Y1 Y, ") = 0,whichmeans ¥;"* ¥, ™ — ¥, 1 = ¥, ™ 250, which contradicts the assumption

that ¥;* - ¥, ™ is already reduced with respect to G

The above results are the basis for Conti & Traverso's well-known algorithm, which is described
below (see ([3]) for more details). However, first we have to consider how to transform (3.1)
which can contain some negative integers; recall that generally a; ; € Z and b; € Z. This can
be generally transformed to an IP with strictly nonnegative (integer) coefficients a; ;, b; by
adding an extra indeterminate W defined by

Xy Xy Xy W =1, (3.3)

which transforms

o ay; —aj; i
XAJ:=X1 Jooox Ve xm

L m
to

agj+a;;j Amjta;j . EYT
X UTTU X0y TRy i =XA1W},

1 L m

22 . . . . . . 7 >2h
where W; = W%i. In a similar way, if there are some negative entries in b, we transform X?
e
to XDWB.

The optimal solution of IP (3.1) with some negative integers is, therefore, obtained in the
following way:

e Define W by (3.3), if there are some negative entriesin 4, b

e defineanideal I = {Yl - )_()Al, v Yy — )_()A"} on the polynomial ring

k[Xq, .., Xm, Y1, -.., Y], if there are no negative entries in 4, b
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e defineanideal I = {Yl — XMWy, Yy = XMW, X Xy e Xyt W — 1} on
the polynomial ring k[ X4, ..., X;p, W, Y4, ..., ¥y, ], if there are some negative entries
in A,E

e let G be areduced Grébner basisof [with respect to a monomial order <z, where ¢
is defined by the cost function € * X

e dividing )?EWB (i.e. the generalization of)?B) by G always yields a remainder R €
k[Y;, ..., Y], which because of its minimality (ensured by the multivariable division
algorithm) ensures the optimality of the solution; thus the solution X = (B, .., fr)
to IP (3.1) is obtained by reducing )Z'EWE by G which yields a remainder R =
y113’1 Ynﬁn and thereby the solution X = (B4, ..., B).

The next example will show the method for determining whether system of the form (3.1) has
a non-negative integer solution, and for finding a solution. The method consists of the
following three steps, [12]:
e Compute a Grobner basis G for the ideal K = (Y; — Xf” ---X;:lm’: 1<j<n)
with respect to an elimination order with the X variables greater than Y variables.
e  Find the remainder r of the division of the monomial Xfl X,l,’{" by G.
o Ifr & k[Yy,..., Y], then system (3.1) does not have non-negative integer solutions.
Ifr = lel Y,f”, then (Xq, ..., Xy,) is a solution of system (3.1), [1].
Now, we show how the proposed method works.

Example 1: Let us check if there exist non-integer solutions of system

le+x2 =3
x1 +x2+3X3 :5.

On the first step, we compute a Grébner basis G of an ideal K = (Y; — X2X,,Y, — Xix, Y3 —
X3) with respect to lexicographic order with X; > X, > Y, > Y, > Y;. We obtain
G={-Y,+Y,’Y5, X, Vo' — Y1 %Y3, Xo V) — Yo7, X2 Yo — Y, Vs, Xo° — Yy, =X, 7Y,
+X1Ys, —Y; + Xy Vo, Xi X, — Y.
Then, we divide monomial X3 X3 by G and obtain Y;!Y; Y3 Therefore, the non-negative integer
solution is (x4, x5, x3) = (1,1,1).

Example 2 ([8]): We show how to optimize the cost function with respect to some constraints

AX = B, and the coefficients are now allowed to be also negative integers. Following (3.1), we
have to minimize the cost function

> o

¢c+x =1000x; + x, + x3 + 100x,

subject to
3x; —2x; +x3 —x, = —1
4x1 + xz - X3 == 5.
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The solution to the above example obtained with system SINGULAR is shown in Figure 6. Note

that the weighted term order is used with C = (1000002,1000001,1000000,1000,1,1,100) to
ensure that X1 >X2>W >Y1>Y2>Y3>Y4 and to ensure the weight order
(1000,1,1,100), corresponding to ¢ = (1000,1,1,100). Note that, for example, the

ol ¥b PA
monomials X”Wg and X“2W, are:

XPWy = X71X5 = X7 X5 X3X5 = WXS,

XA2W, = X72X} = X72X52 - X2X2 = W2X3.

The optimal solution ¥ = (1,3,2,0) is obtained from the result of the multivariable division:

G
W1 XS > YLYRY2Yy.

SINGULAR !
A Computer Algebra System for Polynomial Computations /  version 3-
114
by: W. Decker, G.-M. Greuel, G. PFister, H. Schoenemann Y Jan 2812
FB HMathematik der Universitaet, D-67653 Kaiserslautern Y
ring r1=08,{%1,%2,W,¥1,¥2,¥3,Y4),Up (18088862 ,10600801,10680000,1060,1,1,188);
poly F1=Y1-513=X24;
poly F1=¥1-%1"3=%2"k;
poly F2=Y2-X2"3=Y"2;
poly F3=Y3-X172=y;
poly Fu=Y4-X2=l];
poly F5=81xX2*4-1;
ideal I=F1,f2,f3,F4,F5;
ideal gI=groebner{I);
reduce(W=X2"6,q1);
12427324372

R A L P

Figure 6: Computing the optimal solution in system SINGULAR
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