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Alfréd Rényi Institute of Mathematics, Budapest, H-1364, Hungary, and
Moscow Institute of Physics and Technology

Received 22 March 2019, accepted 9 March 2020, published online 20 October 2020

Abstract

In a graph G, a geodesic between two vertices x and y is a shortest path connecting x
to y. A subset S of the vertices of G is in general position if no vertex of S lies on any
geodesic between two other vertices of S. The size of a largest set of vertices in general
position is the general position number that we denote by gp(G). Recently, Ghorbani et
al. proved that for any k if n ≥ k3 − k2 + 2k − 2, then gp(Knn,k) =

(
n−1
k−1
)
, where

Knn,k denotes the Kneser graph. We improve on their result and show that the same
conclusion holds for n ≥ 2.5k − 0.5 and this bound is best possible. Our main tools are a
result on cross-intersecting families and a slight generalization of Bollobás’s inequality on
intersecting set pair systems.
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1 Introduction
A recently studied extremal problem [4, 6, 12] in graph theory is the following. In a graph
G, a geodesic between two vertices x and y is a shortest path connecting x to y. We say that
a subset S of the vertices of G is in general position if no vertex of S lies on any geodesic
between two other vertices of S. The size of a largest set of vertices in general position
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is the general position number which we denote by gp(G). Our graph of interest in this
paper is the Kneser graph Knn,k whose vertex is

(
[n]
k

)
, the set of all k-element subsets of

the set [n] = {1, 2, . . . , n} and two k-subsets S and T are joined by an edge if and only
if S ∩ T = ∅. Ghorbani et al. [10] determined gp(Knn,2) and gp(Knn,3) for all n and
showed that for any fixed k if n is large enough, then gp(Knn,k) =

(
n−1
k−1
)

holds.

Theorem 1.1 ([10]). Let n, k ≥ 2 be integers with n ≥ 3k − 1. If for all t, where
2 ≤ t ≤ k, the inequality kt

(
n−t
k−t
)
+ t ≤

(
n−1
k−1
)

holds, then gp(Knn,k) =
(
n−1
k−1
)
.

For fixed k and t = 2 the above inequality is satisfied when n ≥ k3 − k2 + 2k − 1
holds. We improve on this and the main result of this note is the following.

Theorem 1.2. If n, k ≥ 4 are integers with n ≥ 2k + 1, then gp(Knn,k) ≤
(
n−1
k−1
)

holds.
Moreover, if n ≥ 2.5k − 0.5, then we have gp(Knn,k) =

(
n−1
k−1
)
, while if 2k + 1 ≤ n <

2.5k − 0.5, then gp(Knn,k) <
(
n−1
k−1
)

holds.

The threshold n ≥ 2.5k − 0.5 comes from the fact that diam(Knn,k) ≤ 3 holds if and
only if this inequality is satisfied. The proof of Theorem 1.1 uses the following general
result of Anand et al. [2] that characterizes vertex subsets in general position.

Theorem 1.3 ([2]). If G is a connected graph, then a subset S of the vertices of G is in
general position if and only if all the components S1, S2, . . . , Sh of G[S] are cliques in G
and

• for any 1 ≤ i < j ≤ h and si, s′i ∈ Si, sj , s′j ∈ Sj we have d(si, sj) = d(s′i, s
′
j) =:

d(Si, Sj) (where d(x, y) denotes the distance of x and y in G),

• d(Si, Sj) 6= d(Si, Sl) + d(Sl, Sj) for any 1 ≤ i, j, l ≤ h.

In Kneser graphs a clique corresponds to a family F ⊆
(
[n]
k

)
of pairwise disjoint sets.

There is no edge between different components of any general position set S. It follows
that if F1,F2, . . . ,Fh correspond to the components of G[S], then for any Fi ∈ Fi and
Fj ∈ Fj with i 6= j we have Fi ∩ Fj 6= ∅. Families with this property are called cross-
intersecting. So the upper bound in Theorem 1.2 will follow from the next result unless
n = 2k + 1 in which case we will need some further reasonings.

Theorem 1.4. Let n ≥ 2k + 2, k ≥ 4 and let F1,F2, . . . ,Fh ⊆
(
[n]
k

)
such that

• Fi ∩ Fj = ∅ for all 1 ≤ i < j ≤ h,

• Fi ∩ F ′i = ∅ for all pairs of distinct sets Fi, F ′i ∈ Fi for any i = 1, 2, . . . , h,

• Fi ∩ Fj 6= ∅ for any 1 ≤ i < j ≤ j and any Fi ∈ Fi, Fj ∈ Fj

hold. Then we have
∑h
i=1 |Fi| ≤

(
n−1
k−1
)
.

Note that the first condition cannot be omitted as otherwise we could repeat some fam-
ilies that consist of a single set.

The remainder of the paper is organized as follows: Section 2 contains the proof of
Theorem 1.4 and in Section 3 we list some open problems along with some remarks.
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2 Proofs
Proof of Theorem 1.4. Let F1,F2, . . . ,Fh ⊆

(
[n]
k

)
satisfy the conditions of the theorem.

As the Fi’s are families of pairwise disjoint sets, each of them are of size at most n/k and
we may assume that |F1| ≤ |F2| ≤ · · · ≤ |Fh| =: t ≤ n/k. If t = 1, then F = ∪hi=1Fi
form an intersecting family and therefore by the celebrated theorem of Erdős, Ko and Rado
[5] we have

∑h
i=1 |Fi| = h ≤

(
n−1
k−1
)
.

Suppose next that t ≥ 2 holds. Then we claim h ≤
(
n−1
k−1
)
−
(
n−k−1
k−1

)
+ 1. Indeed, let

us fix one set Fi from each Fi for i = 1, 2, . . . , h− 1 and two sets Fh, F ′h ∈ Fh. Hence if

• | ∩h−1i=1 Fi| ≥ 2, then h− 1 ≤
(
n−2
k−2
)
<
(
n−1
k−1
)
−
(
n−k−1
k−1

)
,

• ∩h−1i=1 Fi consists of a single element x, then either Fh or F ′h cannot contain x and as
all Fi’s meet both Fh and F ′h we must have h− 1 ≤

(
n−1
k−1
)
−
(
n−k−1
k−1

)
,

• ∩h−1i=1 Fi = ∅, then {F1, F2, . . . , Fh−1, Fh} is intersecting with no common elements,
and a result of Hilton and Milner [11] states that families with this property can have
size at most

(
n−1
k−1
)
−
(
n−k−1
k−1

)
+ 1, so we obtain h ≤

(
n−1
k−1
)
−
(
n−k−1
k−1

)
+ 1.

Let mi denote the number of j’s such that |Fj | ≥ i holds. Then clearly we have

h∑
i=1

|Fi| = h+

t∑
j=2

mj ≤ h+
(n
k
− 1
)
m2. (2.1)

To boundm2 we apply Bollobás’s famous inequality [3] that states that if {(A1, B1)}li=1

are pairs of disjoint sets such that for any 1 ≤ i 6= j ≤ l we have Ai ∩ Bj 6= ∅, then∑l
i=1

1

(|Ai|+|Bi|
|Ai|

)
≤ 1 holds. For any 1 ≤ i ≤ m2 we can pick two sets Fi, Gi ∈ Fh−m2+i.

Then we can define 2m2 pairs {(Aj , Bj)}2m2
j=1 such that for 1 ≤ j ≤ m2 we have Aj =

Fj , Bj = Gj and A2m2−j = Gj , B2m2−j = Fj . As the Fi’s are cross-intersecting fami-
lies of disjoint sets, therefore the pairs {(Aj , Bj)}2m2

j=1 satisfy the conditions of Bollobás’s
inequality and we obtain 2m2

(2kk )
≤ 1 and thus m2 ≤ 1

2

(
2k
k

)
=
(
2k−1
k−1

)
. Putting together (2.1)

and the bounds on h and m2 we obtain

h∑
i=1

|Fi| ≤
(
n− 1

k − 1

)
−
(
n− k − 1

k − 1

)
+ 1 +

n− k
k

(
2k − 1

k − 1

)
.

Therefore it is enough to prove
(
n−k−1
k−1

)
> n−k

k

(
2k−1
k−1

)
. Observe that(

n−k
k−1
)(

n−k−1
k−1

) =
n− k

n− 2k + 1
≥ n− k + 1

n− k
=

n−k+1
k

(
2k−1
k−1

)
n−k
k

(
2k−1
k−1

) ,

therefore if
(
n0−k−1
k−1

)
> n0−k

k

(
2k−1
k−1

)
holds for some n0, then

(
n−k−1
k−1

)
> n−k

k

(
2k−1
k−1

)
holds for n ≥ n0. Putting n0 = 3k + 2 the above inequality is equivalent to

k

k−2∏
i=0

(2k + 1− i) > (2k + 2)

k−2∏
i=0

(2k − 1− i)
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which simpifies to
k(2k + 1)2k > (2k + 2)(k + 2)(k + 1).

This holds for k ≥ 5 and a similar calculation shows that if k = 4, then the desired
inequality holds if n ≥ 17 = 4k + 1.

In all missing cases, except for k = 4, n = 16, we have n < 4k, therefore we have
mj = 0 for all j ≥ 4. So for the remaining pairs n and k, we need to strengthen our bound
on m2 + m3. We will need the following lemma, a slight generalization of Bollobás’s
result.

Lemma 2.1. Let {Ai, Bi}αi=1 and {Aj , Bj , Cj}βj=α+1 be pairs and triples of pairwise
disjoint sets such that for any 1 ≤ i < j ≤ α + β we have Xi ∩ Yj 6= ∅ where X and Y
can be any of A,B and C. Then the following inequality holds:

α+β∑
i=1

2(|Ai|+|Bi|
|Ai|

) + β∑
j=1

(
2(|Aα+j |+|Cα+j |

|Aα+j |
) + 2(|Bα+j |+|Cα+j |

|Bα+j |
)

− 2(|Aα+j |+|Bα+j |+|Cα+j |
|Aα+j |

) − 2(|Aα+j |+|Bα+j |+|Cα+j |
|Bα+j |

)) ≤ 1.

Proof. Let us define M to be
⋃α
i=1(Ai ∪ Bi) ∪

⋃β
j=1(Aα+j ∪ Bα+j ∪ Cα+j) and let

us write |M | = m. Just as before, let us introduce a family {Si, Ti}2(α+β)i=1 of disjoint
pairs as Si = Ai, Ti = Bi and S2(α+β)−j = Bj , T2(α+β)−j = Aj for all 1 ≤ i, j ≤
α + β. We count the pairs (π, j) such that π is a permutation of the elements of M and
1 ≤ j ≤ 2(α + β) with all elements of Sj preceding all elements of Tj in π that is
max{πi−1(s) : s ∈ Sj} < min{π−1(t) : t ∈ Tj}. We denote this by Sj <π Tj . For
every fixed j there exist exactly |Sj |!|Tj |!(m−|Sj |− |Tj |)!

(
m

|Sj |+|Tj |
)

permutations π with
Sj <π Tj . On the other hand for any fixed π there exists at most one j with Sj <π Tj .
Indeed, if i 6= j, 2(α + β) − j, then both Si and Ti meet both Sj and Tj , while clearly if
Sj <π Tj , then S2(α+β)−j = Tj 6<π Sj = T2(α+β)−j . These observations would yield
Bollobás’s original inequality, but we haven’t used the existence of the Cj’s. Observe that
if Aj <π Cj , Cj <π Aj , Bj <π Cj or Cj <π Bj , then again by the cross-intersecting
property (π, i) can be a pair counted only if i = j or i = 2(α + β)− j and at least one of
Ai <π Bi ∪ Ci, Bi ∪ Ci <π Ai, Ci ∪ Bi <π Ai, Ci ∪ Ai <π Bi holds. Counting j and
2(α+ β)− j cases together this yields

α+β∑
j=1

2|Aj |!|Bj |!(m− |Aj | − |Bj |)!
(

m

|Aj |+ |Bj |

)

≤ m!−
α+β∑
j=1

2

[
|Aj |!|Cj |!(m− |Aj | − |Cj |)!

(
m

|Aj |+ |Cj |

)

+ |Bj |!|Cj |!(m− |Cj | − |Bj |)!
(

m

|Cj |+ |Bj |

)]
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+

β∑
j=1

2|Aα+j |!(|Bα+j |+ |Cα+j |)!(m− |Aα+j | − |Bα+j |

− |Cα+j |)!
(

m

|Aα+j |+ |Bα+j |+ |Cα+j |

)

+

β∑
j=1

2|Bα+j |!(|Aα+j |+ |Cα+j |)!(m− |Aα+j | − |Bα+j |

− |Cα+j |)!
(

m

|Aα+j |+ |Bα+j |+ |Cα+j |

)
Dividing by m! and rearranging yields the statement of the lemma.

We apply Lemma 2.1 to the families Fh−m2+1, . . . ,Fh with β = m3 and α = m2 −
m3. As all sets in the Fi’s are of size k we obtain

2(m2 −m3)(
2k
k

) +
6m3(
2k
k

) − 6m3(
3k
k

) ≤ 1. (2.2)

As
(
3k
k

)
≥ 3

(
2k
k

)
for k ≥ 3, the left hand side of the above equation is greater than

2(m2−m3)

(2kk )
+ 4m3

(2kk )
= 2(m2+m3)

(2kk )
. Therefore we obtain m2 +m3 ≤ 1

2

(
2k
k

)
=
(
2k−1
k−1

)
. So for

n < 4k we have the bound

h∑
i=1

|Fi| ≤ h+m2 +m3 ≤
(
n− 1

k − 1

)
−
(
n− k − 1

k − 1

)
+ 1 +

(
2k − 1

k − 1

)
. (2.3)

Suppose first that n ≥ 3k holds. Plugging into (2.3) we obtain the upper bound
(
n−1
k−1
)
+1.

To get rid of the extra 1, we need to use the uniqueness part of the Hilton-Milner theorem
[11] that we used to get our bound on h. It states that if k ≥ 4 and an intersecting family
F ⊆

(
[n]
k

)
with ∩F∈FF = ∅ has size

(
n−1
k−1
)
−
(
n−k−1
k−1

)
+ 1, then there exist x ∈ [n] and

x /∈ G ⊆ [n] such that F = {G} ∪ {F : x ∈ F, F ∩ G 6= ∅}. Observe that for any
H 6= G with x /∈ H there exist lots of sets F ∈ F that are disjoint with H , so only sets
H ′ that contain x can be added to the Fj’s. But as all Fj’s consist of pairwise disjoint sets,
such an H ′ can only be added to the Fj containing G. Also, at most one such set can be
added as again this Fj consists of pairwise disjoint sets. We obtained that if t ≥ 2 and
h =

(
n−1
k−1
)
−
(
n−k−1
k−1

)
+ 1, then

∑h
j=1 |Fj | ≤

(
n−1
k−1
)
−
(
n−k−1
k−1

)
+ 2 <

(
n−1
k−1
)
.

Next, we assume that 2k + 2 ≤ n < 3k. Then we have t ≤ 2 and therefore the family
F ′ := ∪hi=1Fi has the property that for any F ∈ F ′ there exists at most one other G ∈ F ′
that is disjoint with F . Such families are called (≤ 1)-almost intersecting and Gerbner et
al. [8] proved that whenever 2k + 2 ≤ n holds, then any (≤ 1)-almost intersecting family
G ⊆

(
[n]
k

)
has size at most

(
n−1
k−1
)
.

Finally, if n = 16, k = 4, then we need to bound h+m2+m3+m4 ≤ h+m2+2m3 ≤
h+ 2m2 + 3m3. As

(
3k
k

)
=
(
12
4

)
> 6
(
8
4

)
=
(
2k
k

)
, (2.2) implies 2m2 + 3m3 ≤

(
8
4

)
. Using

the Hilton-Milner bound h ≤
(
n−1
k−1
)
−
(
n−k−1
k−1

)
+ 1 and plugging in n = 16, we obtain∑h

i=1 |Fi| ≤ h + 2m2 + 3m3 ≤
(
n−1
k−1
)
−
(
11
3

)
+ 1 +

(
8
4

)
<
(
n−1
k−1
)
. This concludes the

proof.
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Proof of Theorem 1.2. Theorem 1.4 shows that Knn,k ≤
(
n−1
k−1
)

holds if n ≥ 2k + 2.
Observe that diam(Knn,k) ≤ 3 if and only if n ≥ 2.5k − 0.5 (see e.g. [16]). Also,
Theorem 1.3 yields that if the diameter of a graph G is at most 3, then any independent set
in G is in general position. The largest independent sets in Knn,k correspond to stars, i.e.
families Sx = {H ∈

(
[n]
k

)
: x ∈ H} for some x ∈ [n]. Therefore, gp(Knn,k) ≥

(
n−1
k−1
)

holds provided n ≥ 2.5k − 0.5.
If 2k+2 ≤ n < 2.5k−0.5, then the upper bound of Theorem 1.4 is based on the result

of Gerbner et al. [8] on (≤ 1)-almost intersecting families. Their result also states that the
only (≤ 1)-almost intersecting families of size

(
n−1
k−1
)

are stars. But if n < 2.5k − 0.5,
then {H ∈

(
[n]
k

)
: 1 ∈ H} is not in general position as shown by the following example:

let n = 2k +M with 1 ≤ M < 0.5k − 0.5 and F1 = [k], F2 = {1, 2, . . . , k −M − 1}
∪ {k + 1, k + 2, . . . , k +M + 1}. We claim that dKnn,k(F1, F2) ≥ 4. Indeed, as C :=
[n]\(F1∪F2) is of size k−1, we have dKnn,k(F1, F2) ≥ 3. SupposeG1, G2 are k-subsets
of [n] with F1 ∩G1 = G1 ∩G2 = ∅. Let us define ` = |G1 ∩ F2|. As G1 is disjoint with
F1, so with F1 ∩ F2, we have ` ≤ M + 1. Therefore |C ∩ G1| ≥ k −M − 1 must hold.
As G2 is disjoint with G1, we obtain |C ∩ G2| ≤ M , but as |F1 \ F2| = M + 1 and
2M + 1 < k, G2 must meet F2, so indeed dKnn,k(F1, F2) ≥ 4 holds. On the other hand,
for any x ∈ F2 \F1 and y, z ∈ F1 \F2, the sets F1, C ∪ {x}, F2 \ {x} ∪ {y}, C ∪ {z}, F2

form a path of length 4, therefore a geodesic with 1 ∈ F2 \ {x} ∪ {z}. This shows that
{H ∈

(
[n]
k

)
: 1 ∈ H} is not in general position. Therefore if 2k + 2 ≤ n < 2.5k − 0.5

holds, then we have gp(Knn,k) <
(
n−1
k−1
)
.

Finally, let us consider the case n = 2k + 1. Again, vertices corresponding to sets
of stars are not in general position and all other independent sets have size smaller than(
n−1
k−1
)
. So suppose F, F ′ are disjoint sets in a family F corresponding to vertices in

general position. Then by Theorem 1.3, for any set G 6= F, F ′ in F we must have
d(G,F ) = d(G,F ′). Observe that in Kn2k+1,k we have d(H,H ′) = min{2(k−|H∩H ′|),
2|H ∩H ′|+ 1}.

Let us first assume that k = 2l + 1 is odd. Then by the above, for any G ∈ F we
must have |G ∩ F | = |G ∩ F ′| = l and the unique element x ∈ [2k + 1] \ (F ∪ F ′) must
belong to G. Therefore, with the notation of the proof of Theorem 1.4, we have m2 = 1
and h ≤

(
n−1
k−1
)
−
(
n−k−1
k−1

)
+ 1 and thus |F| ≤

(
n−1
k−1
)
−
(
n−k−1
k−1

)
+ 2 <

(
n−1
k−1
)
.

Let us assume that k = 2l is even. Then by the above, for any G 6= F, F ′ in F we must
have |G ∩ F | = |G ∩ F ′| = l and thus G ⊆ F ∪ F ′. If we take one set from each disjoint
pair, we obtain a family G ⊆

(
[2k]
k

)
such that any pairwise intersection is of the same size.

By Fisher’s inequality, we obtain that the number m2 of pairs is at most 2k. Moreover,
as all sets of F are k-subsets of [2k], we must have h ≤ 1

2

(
2k
k

)
. Therefore, we need to

show 1
2

(
2k
k

)
+ 2k <

(
2k
k−1
)
=
(
2k
k

)
k
k+1 which is equivalent to 2k(2k+2)

k−1 <
(
2k
k

)
. This holds

for k ≥ 4.

3 Concluding remarks

First of all, it remains an open problem to determine gp(Knn,k) for 2k + 1 ≤ n <
2.5k − 0.5.

Let us finish this short note with two remarks. First observe that an (≤ 1)-almost in-
tersecting family F ⊆

(
[n]
k

)
corresponds to a subset U of the vertices of Knn,k such that

Knn,k[U ] does not contain a path on three vertices. There have been recent developments
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[1, 9, 15] in the general problem of finding the largest possible size of a subset U of the
vertices of Knn,k such that Knn,k[U ] does not contain some fixed forbidden graph F . Note
that independently of the host graph G, if a subset S of the vertices of G is in general posi-
tion, then G[S] cannot contain a path on three vertices as an induced subgraph. Returning
to the Kneser graph Knn,k it would be interesting to address the induced version of the
vertex Turán problems mentioned above.

There have been lots of applications and generalizations of Bollobás’s inequality. Very
recently O’Neill and Verstraëte [13] obtained Bollobás type results for k-tuples. Their con-
dition to generalize disjoint pairs is completely different from the condition of Lemma 2.1.
More importantly pairwise disjoint, cross-intersecting families were introduced by Rényi
[14] as qualitatively independent partitions if the extra condition that ∪F∈FiF = [n] holds
for all 1 ≤ i ≤ h is added, and the uniformity condition |F | = k for all F ∈ ∪hi=1Fi is
replaced by |Fi| = d for all 1 ≤ i ≤ h. Gargano, Körner and Vaccaro proved [7] that
for any fixed d ≥ 2 as n tends to infinity the maximum number of qualitatively indepen-
dent d-partitions is 2(

2
d−o(1))n. Based on their construction, for any fixed d one can obtain

2(2−o(1))k many pairwise disjoint cross-intersecting d-tuples of k-sets as k tends to infinity.
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position problem on kneser graphs and on some graph operations, Discuss. Math. Graph Theory
(2020), doi:10.7151/dmgt.2269.

https://orcid.org/0000-0002-1651-2487
http://fs.unm.edu/IJMC/IJMC-4-2016.pdf


280 Ars Math. Contemp. 18 (2020) 273–280

[11] A. J. W. Hilton and E. C. Milner, Some intersection theorems for systems of finite sets, Quart.
J. Math. Oxford 18 (1967), 369–384, doi:10.1093/qmath/18.1.369.
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