
Informatica 36 (2012) 297–303 297

Adaptive Random Testing Based on Two-Point Partitioning

Chengying Mao
School of Software and Communication Engineering,
Jiangxi University of Finance and Economics, 330013 Nanchang, China
Email: maochy@yeah.net

Keywords: adaptive random testing, test data generation, partition, failure pattern, candidate set

Received: October 24, 2011

Test data generation is a key issue in the field of software testing. Adaptive random testing (ART) method
has been proposed by Chen et al. to improve the fault-revealing ability of random testing. In the paper, we
are mainly concerned with the partitioning-based adaptive random testing and present a new ART based on
two-point partitioning. In the new algorithm, the current max-area region is partitioned by the midpoint of
two points instead of a single point. The first point is randomly generated, and the second point is picked
out from the candidate set according to the farthest distance criterion. In order to compare our algorithm
with other two well-known algorithms, the experiments for the case of two-dimension are performed. The
results show that our ART-TPP algorithm has a positive improvement for the other two, i.e. ART-RP and
ART-BP. Moreover, the appropriate size of candidate set is determined as 2 or 3 based on our sensitivity
analysis.

Povzetek: Predstavljena je nova metoda za generiranje podatkov na osnovi dvo-točkovne porazdelitve

1 Introduction

In the past decades, software testing has proved to be an ef-
fective way to ensure software quality. As stated by NIST,
software errors cost the U.S. economy about $59.5 billion
each year, but the testing infrastructure could save 1/3 cost
[1]. However, software testing is also a time-consuming
and high cost activity in the whole life-cycle of software
development. Consequently, it is is necessary to realize
the automation of testing activity so as to improve the effi-
ciency. At present, test data generation is recognized as the
most difficult for automated software testing.

In fact, test data generation is a search process of se-
lecting the representative data from the input domain of
the program under test. In recent years, the most popu-
lar way is to use meta-heuristic search (MHS) techniques
such as simulated annealing (SA) [2], ant colony optimiza-
tion (ACO) [3], and generic algorithm (GA) [4], to produce
test inputs which can find faults with high probability. But
this kind of test data generation method has two limitations:
(1) It needs the guideline information about program’s in-
ternal constructs, and (2) the search process consumes a
lot of time due to slow convergence speed. On the other
hand, in general, black-box (functional) testing methods,
such as random testing and boundary value analysis, can
produce test data with high speed and low cost. However,
these methods fail to show strong fault revealing capabil-
ity. Therefore, a possible solution is to rebuild the low-cost
functional testing method to generate more effective test
inputs.

Random testing (RT) is a naïve method for generating
test data, and has been widely adopted by most popular

testing tools. However, the size of test data set is very lim-
ited in comparison with the whole input space of program
under test, so the test inputs generated by RT are not really
even distribution yet. In order to overcome this problem,
Chen et al. proposed an improved method, called adap-
tive random testing (ART) [5, 6], to produce more decen-
tralized test inputs. Their experimental results show that
ART can find potential faults faster than the traditional RT.
At present, two kinds of ART have been confirmed effec-
tive. One is partitioning-based method [6], and the other is
distance-based method [7]. In the former method, random
partitioning and bisection are two well-known strategies.
In the paper, a new partitioning strategy named two-point
partitioning is proposed. We believe that it is a useful sup-
plement for the existing ART methods.

The paper is structured as follows. In the next section,
it reviews the background of adaptive random testing. It
mainly includes two parts: software failure pattern and the
basic idea of ART. Then, the two-point partitioning-based
ART is addressed in Section 3. In Section 4, some ex-
periments are studied to validate the effectiveness of our
method. Finally, the concluding remarks are given in Sec-
tion 5.

2 Background

2.1 Software failure pattern

In the field of software testing and debugging, the empirical
knowledge may play an important role in finding failure-
causing input or locating faults. Therefore, it is necessary

298 Informatica 36 (2012) 297–303 C. Mao

to summarize the failure pattern [8] or bug pattern [9] so
as to generate good fault-revealing test inputs. Generally
speaking, the knowledge about location and shape of fail-
ure patterns can facilitate black-box testing methods to se-
lect test data.

The failure pattern of program under test, in fact, it is the
rule of failure-causing inputs of the program. According to
Chen and Schneckenburger’s analysis [6, 7, 8], the patterns
of failure-causing inputs can be classified into three types:
block pattern, strip pattern and point pattern. As illustrated
in Figure 1, for the block failure pattern, the inputs causing
program failure are within a specific area. From the per-
spective of program code, this kind of fault may lie in the
statement block under a compound predicate. For exam-
ple, if a fault exists in the branch such as if(a<=x &&
x<=b && c<=y && y<=d), the failure-causing input
area can be denoted as {(a, b), (c, d)}. In the second pat-
tern, i.e. strip failure pattern, the failure may be attributed
to predicate fault in a branch. For example, if an expected
form of predicate if(x+y>=k1) is wrongly written as
if(x+y>=k2) by a programmer, the failure-causing in-
puts will lie in a strip, whose width is determined by the
value of |k1 − k2|. In the last failure pattern, the failure-
causing inputs will scatter into some points or small areas
in the whole input domain. The corresponding faults may
occur in a branch with modulo operation or bitwise op-
eration etc. For instance, if some statements in a branch
if(x%10==0 && y%10==0) contain faults, the corre-
sponding failure pattern belongs to the point case.

It should be noted that, we only discuss the two-
dimensional case in the above analysis. But these three
failure patterns are also applicable to other cases, such as
one dimension or high dimension.

2.2 Adaptive random testing

As mentioned above, ART attempts to generate test data
which can evenly scatter in the input space with the great-
est possible. Hence, this method can enhance the fault-
revealing capability of test cases. Based on this idea, Chen
et al. developed a series of ART methods for generating
test data set [5, 6, 7]. Furthermore, Ciupa et al. have suc-
cessfully used ART to test object-oriented software, and
their ARTOO method [10] can reduce the number of tests
generated to reveal the first fault.

All existing ART methods can be classified into two
types: distance-based strategy and partitioning-based strat-
egy. In the paper, we only pay attention to the second strat-
egy. Here, we primarily introduce two well-known parti-
tioning algorithms proposed by Chen et al [6].

(1) Random Partitioning Algorithm (ART-RP). This kind
of partitioning algorithm samples test data according to the
proportion of region area to whole input space. The basic
process of producing test cases can be described as below.

Without loss of generality, here we assume the input do-
main as a rectangle for two-dimension case. As illustrated
in Figure 2(a), the initial test input is randomly selected

from the whole input domain. Then, the space is divided
into four sub-rectangles according to X and Y coordinates
of the initial input point. Next, the max-area region is se-
lected out from them, and the second test input is randomly
generated from this area (as shown in Figure 2(b)). At
this moment, the whole input domain has been divided into
seven regions. Hereafter, the random partitioning is itera-
tively performed on the current max-area region until the
termination condition is satisfied.

Region 1 Region 2

Region 3 Region 4

Region 2

Region 3 Region 4

Region 1.1 Region 1.2

Region 1.3 Region 1.4

(a) (b)

T1 T1

T2

Figure 2: The illustration for random partitioning algo-
rithm (2-D case).

(2) Bisection Algorithm (ART-BP). The second kind of
partitioning strategy proposed by Chen et al. is bisection.
In this strategy, the partitioning is not based on the coor-
dinates of test input points but the width and height of a
region.

Initially, as shown in Figure 3(a), a test input T1 is ran-
domly generated from the whole input domain. Then, the
whole region is divided into two parts through performing
a partition on the bisector of region height. Meanwhile, an-
other test input T2 is randomly generated in the sub-region,
which previously does not contain any test input points (re-
fer to Figure 3(b)). Similarly, the region can also be divided
on the bisector of width. As shown in Figure 3(c), test input
T3 and T4 can be generated in the next step. Subsequently,
the partition process can be continued by alternately bisect-
ing the height and width of each sub-region until the termi-
nation condition is satisfied.

2.3 Basic terms
In order to facilitate the expression below, we also fol-
low and define some basic terms about ART. For an in-
put domain D, the corresponding domain size is denoted
as d. Meanwhile, we use m and n to denote the number
of failure-causing inputs and number of test inputs, respec-
tively. Then, the sampling rate σ and failure rate θ can be
defined as n/d and m/d, respectively.

It should be noted that, the case of two-dimension input
domain is utilized to describe our partitioning algorithm.
For the two-dimension case, a region can be expressed via
point Pll and Pur, where Pll represents the lower-left point
of the region and Pur is the upper-right point. For each
point P , it can be denoted by X and Y coordinates, i.e.

ADAPTIVE RANDOM TESTING BASED ON. . . Informatica 36 (2012) 297–303 299

(a) Block Pattern (b) Strip Pattern (c) Point Pattern

Figure 1: Block, strip, and point failure patterns in a two-dimensional input domain. Here, the shaded areas represent
failure-causing inputs.

(d) (e)(c)

(b)

T1

C2 (T2)

T1

T2

Pm1

Region 1

Region 2

Region 3 Region 4

T1

T2

Pm1

C1'
(T3)

T1

T2

Pm1

T3

Pm2

(a)

T1

C1
d1

d2

C2'

d1'

d2'

Figure 4: The illustration for the algorithm of two-point partitioning strategy.

P=(x, y). During the process for generating test inputs,
the set of test data can be denoted as ST ={Ti|1 ≤ i ≤
n}, and the candidate set of random points is denoted as
SC={Cr|1 ≤ r ≤ k}, where k is the pre-specified size of
test input candidate set.

Here, we also use the number of test cases re-
quired to detect the first failure (referred to as the F-
measure) as the effectiveness metric. For a test data set
ST ={T1, T2, · · · , Tn}, if the corresponding F-measure is
equal to u (1 ≤ u ≤ n), which means that the test input
between 1 to u− 1 can’t reveal faults but the u-th can find
them. Formally, it can be denoted as F=u. With regarding
to the traditional random testing, in theory, its F-measure
is equal to d/m. When comparing two test data generation
methods, the lower value of F-measure means the higher
effectiveness, because the low F-measure means few test
inputs which are required to reveal the first fault.

3 Two-point Partitioning Algorithm
In the traditional partitioning strategies, it is possible that
the two sampled test inputs are very close with each other.
Here, we propose a new test data generation strategy based
on two points partitioning. The basic process is illustrated
in Figure 4, and the steps can be stated as below.

(1) Add the whole input domain into the region list L, and
set ST =Ø.

(2) Select the max-area region from L, denote it as curReg,
and remove it from L.

(3) If there are no previous test inputs in curReg, a new in-
put point should be randomly generated in this region,
then add it into ST . Otherwise, go to step (4).

(4) Suppose the existing test input in curReg denoted
as Ti, randomly generate k candidate points in cur-
Reg. Calculate the distance from Ti to each candidate

300 Informatica 36 (2012) 297–303 C. Mao

Algorithm ART-TPP
Input: The boundary point of input domain bndP[2], where bndP[0] represents the lower-left point of region and bndP[1] is the

upper-right point.
Output: The set of test data ST ={T1, T2, · · · , Tn}.

Stage 1: Initialization
1: regionList = Ø; //regionList is a list of regions
2: set the region (bndP[0], bndP[1]) as curReg; //curReg represents the current region needed to be partitioned
3: tempP = generateRandPoint(curReg.ll, curReg.ur);
4: ST = ST

∪
{tempP};

5: add curReg into regionList;
Stage 2: Test Data Generation

6: while true do
7: pIndex = findMaxRegion(regionList); //find the max-area region in regionList, and pIndex is the index of region needed to

be partitioned
8: curReg = regionList.get(pIndex);
9: regionList.remove(pIndex); //remove the max-area region from regionList

10: if curReg doesn’t contain an existing test input then
11: generate a new test input using function generateRandPoint(curReg.ll, curReg.ur), denote it as P1;
12: ST = ST

∪
{P1};

13: if P1 hits the failure-causing region then
14: break;
15: end if
16: randomly generate k candidate points in curReg, and store them in SC ; //SC is the test input candidate set
17: select the point from SC which is the farthest from P1 as the second test input P2;
18: else
19: P1 = the existing test input in curReg;
20: randomly generate k candidate points in curReg, and store them in SC ;
21: select the point from SC which is the farthest from P1 as the second test input P2;
22: end if
23: ST = ST

∪
{P2};

24: if P2 hits the failure-causing region then
25: break;
26: end if
27: calculate the midpoint of P1 and P2, divide curReg into four new sub-regions via this midpoint, and then add them into region-

List;
28: locate P1 and P2 to their corresponding sub-regions;
29: end while
30: return ST ;

point, and select the point which is farthest from Ti

as the second test input (denoted as Ti+1) in curReg,
ST =ST

∪
{Ti+1}.

(5) In the step (3) and (4), once a new test input is gener-
ated and added into ST , we should validate whether it
can hit the failure-causing region. If true, terminate the
process and output ST . Otherwise, continue the pro-
cess to append other test inputs.

(6) Compute the midpoint of the corresponding points of
Ti and Ti+1, denoted as Pmi. Then, partition the cur-
rent max-area region into four sub-regions via Pmi,
add these sub-regions into L, go to step (2).

Formally, the adaptive random test data generation al-
gorithm based on two-point partitioning can be described
in the form of pseudo-code (cf. algorithm ART-TPP).
It should be noted that, we are mainly concerned with
the case of two dimension here. Accordingly, the high
dimension case can be treated in the similar way. In

the line 3 and 11 of algorithm pseudo-code, function
generateRandPoint(curReg.ll, curReg.ur) can ran-
domly generate a test input (or point) in the current region,
where curReg.ll refers to the lower-left point of region, and
curReg.ur is the upper-right point. curReg is a rectangle
region object which contains two main member variables:
lower-left point (ll) and upper-right point (ur). The func-
tion findMaxRegion(regionList) in line 7 returns the in-
dex of the max-area region in regionList. There are several
kinds of operations can be invoked by object regionList,
such as get(), remove() etc.

Here, we suppose the size of test data set is n. Obviously,
the time complexity of function findMaxRegion() is
O(l), where l is the length of region list, and it varies from
0 to n. Therefore, the time complexity of whole algorithm
is O(n2/2). In general, n is in the same magnitude of
θ−1 and n < θ−1. Accordingly, the complexity can be
expressed as O(θ−2/2).

ADAPTIVE RANDOM TESTING BASED ON. . . Informatica 36 (2012) 297–303 301

(c) (d)

T1

T2

T3

T4

(a)

T1

T2

(a)

T1

T1

T2

T3

T4

Figure 3: The illustration for bisection algorithm (2-D
case).

4 Experimental Analysis

4.1 Analysis on failure patterns

In this section, we perform the simulation analysis on the
case of two-dimension. The experiment is employed in the
environment of Eclipse 3.6 and JRE 1.6.0_05. The program
runs on a computer with Pentium IV 1.8 GHz CPU, 1 GB
RAM and Windows XP SP2. In this sub-section, we want
to investigate the following two questions.

RQ1: How effective is the ART-TPP algorithm for three
types of failure patterns?

RQ2: Does the failure rate affect the F-measure ratio (F-
ratio for short)?

F-measure ratio = FART

FRT
, where FART represents the F-

measure value of ART method, and FRT is the F-measure
of the general RT method. According to the description in
section 2.3, FRT is equal to 1/θ.

As shown in Figure 5, we firstly analyze the F-measure
ratios for 20 different random failure regions. For each re-
gion, we repeat 5000 runs to get the average value of F-
ratio. In the figure, the square-marked curve represents the
theoretical value of RT’s F-ratio, the other three curves are
ART’s F-ratios for three kinds of failure patterns. It is not
hard to find that, the location of failure region does not im-
pose a great impact on F-ratio. The F-ratio of ART-TPP
for block failure pattern is about 76.5%, but its F-ratios of
strip and point failure patterns are very close to the theoret-
ical value of RT. This phenomenon is in accordance with
Chen’s research results [6]. It means that the ART is more

effective than the general random testing method, and es-
pecially for the block failure pattern.

2 4 6 8 10 12 14 16 18 20
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

Trials on Failure Region

F
−m

ea
su

re
 R

at
io

 (
F

ar
t /

 F
rt

)

RT

ART−TPP(Block)

ART−TPP(Strip)

ART−TPP(Point)

Figure 5: The F-measure ratios for different failure region
locations.

2 2.5 3 3.5 4
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

− log
10

θ

F
−m

ea
su

re
 R

at
io

 (
F

ar
t /

 F
rt

)

RT
ART−TPP(Block)
ART−TPP(Strip)
ART−TPP(Point)

Figure 6: The F-measure ratio vs. failure rate θ.

Meanwhile, we also analyze the F-ratio through vary-
ing the failure rate θ from 0.01 to 0.0001 (see Figure 6).
For the reason of computing time, when θ is equal to 0.01,
0.005, 0.002 and 0.001, we randomly select 100 locations
of failure regions, and repeat 5000 runs for each location
to get the average F-ratio. When θ is equal to 0.0005 and
0.0002, 20 random locations and 1000 runs are used for ex-
periments. Moreover, we set 20 random locations and 200
runs when θ is 0.0001. As illustrated in Figure 6, the failure
rate does not cause obvious fluctuation on F-ratio. When
θ varies from 0.01 to 0.0001, F-ratio approximately keeps
the value of 0.765 for block failure pattern, 0.95 for strip
pattern and 0.97 for point pattern.

4.2 Comparison analysis
In this sub-section, we want to perform a comparison anal-
ysis and answer the question as below.

RQ3: Is our algorithm more effective than the existing
two partition-based ART algorithms?

302 Informatica 36 (2012) 297–303 C. Mao

Failure
rate

Block pattern Strip pattern Point pattern

ART-RP ART-BP
ART-
TPP

ART-RP ART-BP
ART-
TPP

ART-RP ART-BP
ART-
TPP

0.01 77.4% 72.1% 75.3% 92.8% 91.9% 93.6% 99.5% 97.7% 97.1%
0.005 77.4% 74.3% 76.5% 97.1% 95.5% 95.0% 99.6% 98.1% 97.9%
0.002 78.0% 73.6% 76.0% 95.3% 95.1% 95.3% 99.7% 98.7% 96.8%
0.001 79.6% 74.1% 76.9% 96.5% 96.6% 96.5% 98.0% 96.8% 97.5%

Table 1: Comparison analysis between ART-TPP and other two ART algorithms

In the experiment, our algorithm is run for different fail-
ure rates and different failure region types, the results are
shown in Table 1. In the same way, we randomly select 100
locations of failure regions, and repeat 5000 runs for each
location to get the average F-ratio. The results of other two
algorithms are referred from [6]. Here, we compare the
F-ratios of three algorithms as follows.

For the block failure pattern, the effect of ART-TPP al-
gorithm is better than ART-RP but worse than ART-BP for
all the values of θ. On average, the F-ratio of our ART-TPP
algorithm is lower than that of ART-RP about 2 percent, but
greater than that of ART-BP about 2.6 percent.

For the strip failure pattern, the results of ART-TPP are
equal to those of other two algorithms on the whole. When
θ=0.01, the performance of ART-BP is the best, while ART-
TPP is on the worst performance. When θ=0.005, the F-
ratio of ART-TPP is the lowest one, and ART-RP acts the
worst performance. For the rest values of failure rate (θ),
the difference of three algorithms is basically within 0.2
percentage points. The results indicate that, for the strip
failure pattern, ART-TPP is quite good in the case of low
fault density, but the performance is not good in the case of
high fault density.

For the point failure pattern, the F-ratio of ART-TPP is
lower and more stable than other two ART methods. When
θ is from 0.01 to 0.002, the F-ratio of ART-TPP is always
the lowest one in the three algorithms. When θ is equal to
0.001, ART-TPP’s F-ratio is higher than that of ART-BP,
but lower than that of ART-RP. It is worth noting that the
fluctuations of the F-ratios of ART-TPP is the least of three
algorithms

Based on the above analysis, we can argue that our ART-
TPP algorithm has a positive improvement over the existing
two well-known ART algorithms, especially for the ran-
dom partitioning algorithm (ART-RP).

4.3 Sensitivity analysis
In the above experiments, we fix the candidate set size to 2.
In fact, k acts as a parameter of our algorithm, so we have
to answer the following question.

RQ4: Does k play an important role in algorithm effec-
tiveness? And which k value is the appropriate choice?

In order to answer this question, we take the block fail-
ure pattern as an example to analyze the impact of can-
didate set size. The results of θ=0.001 and θ=0.0005 are

1 2 3 4 5 6 7
0.74

0.76

0.78

0.8

0.82

0.84

0.86

Candidate Set Size (k)

F
−m

ea
su

re
 R

at
io

 (
F

ar
t /

 F
rt

)

(a) θ=0.001

1 2 3 4 5 6 7
0.74

0.76

0.78

0.8

0.82

0.84

0.86

Candidate Set Size (k)

F
−m

ea
su

re
 R

at
io

 (
F

ar
t /

 F
rt

)

(b) θ=0.0005

Figure 7: The F-measure ratio vs. candidate set size k.

shown in Figure 7(a) and 7(b), respectively. We can find
that, the F-ratio value greatly decreases when k is from 1
to 2, i.e. from 0.84 to 0.767. The F-ratio value decreases
0.017 when k is from 2 to 3. When k is greater than 3,
the F-ratio has no obvious change and keeps the value on
0.745. Therefore, k=3 is the best value for the size of can-
didate set, and k=2 is also a suitable choice while consid-
ering the computing cost. More importantly, the F-ratio
will sharply increase if we choose the second point without
candidate selection (i.e. k=1).

5 Conclusion
How to generate the test data with high fault-revealing ca-
pability is a critical problem in the field of software test-
ing. Random testing has been widely adopted in automated
testing tools due to its advantages such as simpleness, easy

ADAPTIVE RANDOM TESTING BASED ON. . . Informatica 36 (2012) 297–303 303

realization and low cost. Unfortunately, this method usu-
ally reveals the potential faults with the large amount of
test inputs, so its cost-benefit is not very good. Chen et
al. proposed an improved strategy named adaptive ran-
dom testing to overcome this shortage. In the paper, we are
mainly concerned with the partitioning-based ART. A new
algorithm based on two-point partitioning (i.e. ART-TPP)
is presented here. In our algorithm, we also select the cur-
rent max-area region as partition object, but the region is
partitioned at the midpoint of two points. At first, we ran-
domly generate a test point in the region. Then, the second
point is picked out from a candidate set according to the far-
thest distance criterion. The partition can be iteratively per-
formed until the potential faults are found or the size of test
data set reaches the pre-set limit. In order to validate the
effectiveness of ART-TPP algorithm, we compare it with
the other two well-known algorithms: random partitioning
(ART-RP) and bisection partitioning (ART-BP). The exper-
imental results show that ART-TPP is better than ART-RP
but worse than ART-BP in the case of block failure pat-
tern. For the strip failure pattern, the three algorithms have
no obvious difference. While considering the point failure
pattern, ART-TPP algorithm is better and more stable than
other two algorithms.

Of course, there are still some open research issues that
need to explored in the next step. For example, we can
continue to conduct comparative analysis of the three algo-
rithms in high-dimensional case. Meanwhile, we are plan-
ning to use some real-world programs to analyze the effect
of our ART-TPP algorithm.

Acknowledgement

This work was supported in part by the National Nat-
ural Science Foundation of China (NSFC) under Grant
No. 60803046 and 61063013, the Natural Science Founda-
tion of Jiangxi Province under Grant No. 2010GZS0044,
the Science Foundation of Jiangxi Educational Commit-
tee under Grant No. GJJ10433, the Open Foundation of
State Key Laboratory of Software Engineering under Grant
No. SKLSE2010-08-23, and the Program for Outstanding
Young Academic Talent in Jiangxi University of Finance
and Economics.

References

[1] National Institute of Standards and Technology,
(2002). The Economic Impacts of Inadequate Infras-
tructure for Software Testing, Planning Report 02-3.

[2] N. Tracey, J. Clark, K. Mander, and J. McDer-
mid, (1998). An Automated Framework for Structural
Test-Data Generation, Proc. of the 13th Int’l Confer-
ence on Automated Software Engineering (ASE’98),
IEEE CS Press, Honolulu, Hawaii, USA, pp. 285–
288.

[3] K. Ayari, S. Bouktif, and G. Antoniol, (2007). Auto-
matic Mutation Test Input Data Generation via Ant
Colony, Proc. of the 9th Annual Conference on Ge-
netic and Evolutionary Computation (GECCO’07),
ACM Press, London, England, UK, pp. 1074–1081.

[4] R. P. Pargas, M. J. Harrold, and R. Peck, (1999). Test-
Data Generation Using Genetic Algorithms, Software
Testing, Verification and Reliability, vol. 9, no. 4, pp.
263–282.

[5] T. Y. Chen, F.-C. Kuo, R. G. Merkel, and T. H. Tse,
(2010). Adaptive Random Testing: The ART of Test
Case Diversity, The Journal of Systems and Software,
vol. 83, pp. 60–66.

[6] T. Y. Chen, R. G. Merkel, G. Eddy, and P. K. Wong,
(2004). Adaptive Random Testing Through Dynamic
Partitioning, Proc. of the 4th Int’l Conference on
Quality Software (QSIC’04), IEEE CS Press, Braun-
schweig, Germany, pp. 79–86.

[7] T. Y. Chen, F.-C. Kuo, and H. Liu, (2007). Dis-
tribution Metric Driven Adaptive Random Testing,
Proc. of the 7th Int’l Conference on Quality Software
(QSIC’07), IEEE CS Press, Portland, Oregon, USA,
pp. 274–279.

[8] C. Schneckenburger and J. Mayer, (2007). Towards
the Determination of Typical Failure Patterns, Proc.
of the 4th Int’l Workshop on Software Quality Assur-
ance in conjunction with ESEC/FSE’07, ACM Press,
Dubrovnik, Croatia, pp. 90–93.

[9] E. Allen, (2002). Bug Patterns in Java (2nd Edition),
Apress.

[10] I. Ciupa, A. Leitner, M. Oriol, and B. Meyer, (2008).
ARTOO: Adaptive Random Testing for Object-
Oriented Software, Proc. of the 30th Int’l Conference
on Software Engineering (ICSE’08), ACM Press,
Leipzig, Germany, pp. 71–80.

