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Posture recognition, as a research hotspot, has been widely applied. A recognition model based on 

bone key point detection is proposed for the posture correction application module. Firstly, the 

lightweight You Only Look Once v3 tiny network was chosen as the infrastructure, and the OpenPose 

algorithm in the bottom-up strategy was chosen to implement posture recognition. To reduce the 

computational burden of the model, the Media Pipe Blaze Pose algorithm was introduced for 

improvement. At the same time, by refining more bone key points, the accuracy of the model has been 

improved. The experiment outcomes revealed the recognition accuracy of Cross View in the NTU60 

RGB+D dataset and NTU120 RGB+D dataset was 94.7% and 82.7%, respectively. Compared to 

graph Transformer networks and semantic posture recognition models, the Cross-Subject metric 

improved by an average of 3.5%. Therefore, the research and design model has shown better 

robustness in the field of posture recognition, which can help complete pose correction more 

efficiently. 

Povzetek: Predstavljen je nov sistem za prepoznavanje in popravljanje drže. Uporablja MPP-YOLOv3, 

OpenPose in Media Pipe Blaze Pose.

1 Introduction 

Computer vision has gradually integrated into people's 

daily lives. Among them, posture recognition has always 

been one of the research hotspots in this field. Posture 

recognition is applied in multiple realms including home 

monitoring, posture correction, and rehabilitation training 

[1-2]. The demand for pose correction has gradually 

increased, and it is mostly used to correct improper 

movement postures. This is especially important in 

professional sports training, physical therapy, and 

personal fitness scenarios, where accurately identifying 

and correcting incorrect exercise postures can greatly 

improve exercise efficiency, reduce the risk of injury, and 

promote physical health. Deep learning technology is one 

of the commonly used methods in this field, playing an 

important role in the design of motion pose correction 

systems [3]. Traditional motion recognition techniques 

often rely on wearable sensors or complex labeling 

systems, which are often limited, costly, and may 

interfere with the natural movements of athletes. The 

deep learning network model provides a non-invasive 

solution for it, which can directly recognize human 

posture by analyzing image or video data obtained from 

cameras. In the field of deep learning, Convolutional 

Neural Network (CNN), Recurrent Neural Network 

(RNN), and others are widely used for feature extraction 

and modeling of visual data, thereby achieving 

recognition and analysis of human actions. Posture 

recognition has two parts to compose its full function, 

namely identifying bone keypoints and keypoint 

connections [4-6]. However, in practical applications, 

models need to learn data from different actions and 

perspectives, which will inevitably impose a greater 

computational burden on them. Therefore, the research 

aims to further enhance the computational ability of the 

model while ensuring its accuracy. Based on this, a You 

Only Look Once version 3 (YOLOv3) posture 

recognition network was studied and designed, which 

achieved a balance between recognition accuracy and 

speed through lightweight and bone key point refinement. 

It is based on Media Pipe Blaze Pose and is therefore 

known as Media Pipe Blaze Pose YOLOv3 

(MPP-YOLOv3). The research has 4 parts. There are two 

innovations in research technology. The first is the use of 

lightweight YOLOv3 Tiny to build the basic framework, 

and the second is the implementation of the OpenPose 

algorithm to enhance the system and optimize model 

calculations. Additionally, the model extracts more 

skeletal details to capture motion details and improve 

technical reliability. As a result, the research model 

accurately recognizes the posture and movements of the 

human body and provides precise posture correction 

suggestions. The first gives the status of posture 

recognition, the second part designs deep learning 

network models, the third part conducts experimental 

analysis on the performance of the design model, and the 

last part summarizes the experimental data. 
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2 Related works 

The application of posture recognition is very extensive 

and has received academic research on prevention. Zhou 

et al. proposed a new semantic posture recognition 

method that classifies actions in videos by learning 

multiple visual pose models and pose dictionaries 

associated with body parts. The researchers identified 

hidden poses in video frames and mapped them to actions 

in semantic instructions. The experiment outcomes 

indicated that their solution was effective on multiple 

datasets [7]. Liu et al. learned and put forward a 

Transformer network for skeleton based human posture 

recognition. They utilized multi head self attention and 

temporal kernel attention to capture high-order 

dependencies of joints in the skeleton and enhance the 

temporal correlation of actions. The experimental results 

indicated that their model outperforms the baseline 

models [8]. Alemu et al. proposed a method for 

generating human actions using an auxiliary conditional 

genetic neural network. The aim was to overcome the 

limitations of single-view action generation by creating 

samples from new perspectives and expanding the view 

range. Additionally, they introduced a view domain 

generalization model to improve posture recognition 

performance from different perspectives. Tests on 

multiple RGB+D skeleton datasets showed that their 

method effectively improves the accuracy of posture 

recognition [9]. Fang et al. learned and put forward a 

spatiotemporal slow fast graph convolutional network, 

which effectively captured the spatiotemporal joint 

relationships of long and short distances in skeleton data 

by designing specific adjacency matrices. They used fast 

and slow paths to process action information at different 

time scales. Tests on multiple datasets showed that 

STSF-GCN achieves leading recognition performance at 

lower computational costs [10]. 

Coskun et al. designed a minimal transfer learning 

method. By independently training local visual cues and 

using a meta learning-based framework, the action 

classification model was transferred with only a few 

samples. The experiment outcomes indicated that their 

solution was effective [11]. Li et al. proposed an posture 

recognition method supported by wavelet transform, 

which enhanced the sensitivity and discriminative ability 

of graph convolutional networks to local movements 

through an innovative three attention module. By 

aggregating global statistical information and integrating 

multidimensional features, the perception of significant 

changes was strengthened. The experiment outcomes 

indicated that their solution achieved comparable 

performance on multiple datasets [12]. Hao et al. 

proposed the use of hypergraph neural networks to 

enhance human motion recognition based on machine 

vision. By constructing hypergraphs, attention 

mechanisms, and residual modules to obtain 

discriminative features, the three-stream fusion 

architecture further improved recognition accuracy. Their 

method achieved optimal performance on two benchmark 

datasets [13]. Table 1 depicts the specific literature 

content. 

 

Table 1: Main contents of literature review 

Reference Research method Research dataset and results Limitations 

Reference 

[7] 

A new semantic pose recognition 

method has been proposed in the study 

Using a pose dictionary dataset for 

classification proves the 

effectiveness of this technique 

This technology is 

computationally 

complex 

Reference 

[8] 

A Transformer network based on 

skeleton for human pose recognition 

has been proposed in the study 

Tested on a universal human image 

dataset, this model outperforms the 

baseline model 

This technology 

does not take into 

account changes in 

complex motion data 

Reference 

[9] 

Research proposes a human action 

generation method supported by 

auxiliary conditional genetic neural 

networks 

Tested on the RGB+D skeleton 

dataset, this method effectively 

improves the accuracy of pose 

recognition 

This model requires 

complex parameter 

calculations 

Reference 

[10] 

A spatiotemporal slow and fast graph 

convolutional network has been 

proposed in the study 

STSF-GCN has excellent 

recognition performance in both 

self-made and universal skeleton 

data 

This method is 

susceptible to noise 

drying 

Reference 

[11] 

Researched and designed a minimum 

transfer learning method 

The model classification 

performance is tested on a linear 

sample dataset, and the scheme is 

reliable 

This method has 

poor stability 

Reference 

[12] 

A pose recognition method supported 

by wavelet transform has been 

proposed in the study 

Tested on NTU-RGB+D-skeletons 

data, the research method has 

shown excellent performance 

The model performs 

poorly on lower 

samples 
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Current posture recognition models primarily rely on 

extracting bone key points to improve recognition 

accuracy, but often neglect the improvement of detection 

speed. Therefore, the study proposes an posture 

recognition model based on lightweight YOLOv3 Tiny, 

which not only enhances the refinement of key points but 

also improves the detection efficiency of the model. 

3 Design of a posture recognition 

system based on YOLOv3 tiny 

network architecture and mpp 

optimization 

A deep learning based action recognition network is 

proposed for the application field of posture correction. 

Firstly, the lightweight YOLOv3 Tiny network is chosen 

as the infrastructure and optimized using the OpenPose 

algorithm. Subsequently, Media Pipe Pose is introduced 

to achieve deep convolutional separation and lightweight 

design, achieving an improvement in the accuracy of the 

network model. 

 

3.1 Design of action recognition module 

based on improved YOLOv3 tiny network 

architecture 
With the artificial intelligence growth, machine vision are 

applied in various realms such as motion, medicine, and 

industry. Deep learning has been applied to the direction 

of posture correction, and a human action recognition 

algorithm has been developed. CNN are a commonly 

used technology in deep learning and have matured 

significantly. The research selects the most representative 

YOLO algorithm, which is based on the feature network 

of the image, performs grid partitioning, generates 

corresponding prior boxes, and finally performs target 

recognition through regression tasks. Based on the 

performance comparison of various versions of the 

YOLO algorithm, a lightweight YOLOv3 Tiny algorithm 

is chosen for research, which has better flexibility and 

agility. However, its lightweight characteristics can also 

lead to a decrease in model accuracy. Therefore, the study 

further strengthened the accuracy of algorithm 

recognition by reducing the number of predicted 

classifications to lower network operating parameters, as 

shown in Figure 1. 
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Figure 1: YOLOv3-Tiny network infrastructure 

 

The prerequisite for achieving posture correction is action 

recognition, which involves identifying key points in the 

human body and making optimal connections. Deep 

learning-based recognition techniques include two forms: 

two-dimensional and three-dimensional. The running 

process of the two is roughly the same, but 3D 

recognition requires a transformation of 3D space after 

mapping key points. According to the number of target 

recognition, it contains two categories: single person and 

multi person recognition [14-15]. The study investigated 

more complex scenarios for recognizing multiple 

individuals, using common detection strategies such as 

bottom-up and top-down approaches. In the top-down 

approach, only target parameters need to be detected 

before action estimation. While the recognition accuracy 

is high, it does not meet the real-time requirements for 

multiple targets. From top to bottom, it is necessary to 

detect and group key human points, and then perform 

matching recognition. This approach is more suitable for 

recognizing multi-target actions. To study the commonly 

used OpenPose algorithm in bottom-up strategies, it is 

necessary to first perform feature extraction and generate 

corresponding feature maps. Then input it into the Visual 

Geometry Group 19 (VGG19) network for feature 

extraction. Estimate the Part Confidence Maps (PCMs) in 

the upper branch, and estimate the Part Affinity Fields 
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(PAFs) in the lower branch. Among them, PAF is a 2D 

limb annotation technique that can preserve the position 

and directional parameter information of limb intervals, 

as shown in Figure 2. 

 

Input imageInput image

PCMsPCMs

VGG19VGG19 Characteristic 

map

Characteristic 

map PAFsPAFs

PCMsPCMs

PAFsPAFs

Phase 1Phase 1 Phase 2Phase 2

...... PCMsPCMs

PAFsPAFs

Phase 6Phase 6

  

Figure 2: OpenPose module combination diagram 

 

PAFs can represent the practice of each key point, 

providing support for subsequent key point matching. 

The joint confidence plot jS  and PAFs plot cL  are 

shown in formula (1). 
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In formula (1), *w h  represents the input image size, 

and /J C  represent the total number of human 

keypoints and bone connections, respectively. The 

confidence plots lS  and PAFs lL  for the production 

cost period are shown in formula (2). 
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In formula (2), 
' '/   represent the stage inference of 

the confidence map and PAFs map, F  represents the 

feature map, and represents the confidence map and PAFs 

map of the previous stage, respectively. The study 

introduces L2 loss functions to calculate the losses of 

each branch separately, aiming to ensure the correct 

expansion of the training direction. Subsequently, the 

study aimed to address the phenomenon of missing labels 

in annotated samples and optimized the loss function 

through mask operation. The loss function of the entire 

model is the sum of two branches, and the improved loss 

function /t t

S Lf f  corresponding to the upper branch of 

PCMs and the lower branch of PAFs is shown in formula 

(3) [16]. 
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In formula (3), t  represents the corresponding number 

of stages, ( ) ( )/t t

j cS p L p  represent the pixel PCMs and 

PAFs of each stage, ( ) ( )* */j cS p L p  represent the 

confidence map and partial affinity domain of the 

annotated points, and ( )W p  represents the binary mask 

function of the pixel points p . ( )W p  value of 1 or 0 

corresponds to the cases where pixels are labeled and 

unlabeled, respectively. There are a total of 18 key points 

in the human body, as Figure 3. 

 



The Application of Action Recognition Based on MPP-YOLOv3… Informatica 48 (2024) 19–34 23 

1414 1515

1616 1717
00

11
22

33

44

55

66

77

88

99

1010

1111

1212

1313

Upper bodyUpper body

Head Head 

Lower  bodyLower  body

14/15:Right / Left eyes14/15:Right / Left eyes

0: Nose 0: Nose 

16/17:Right / Left ears16/17:Right / Left ears

2/5:Right / Left shoulders2/5:Right / Left shoulders

1: Neck 1: Neck 

3/6:Right / Left elbows3/6:Right / Left elbows

4/7:Right / Left wrists4/7:Right / Left wrists

8/11:Right / Left hips8/11:Right / Left hips

9/12:Right / Left knees9/12:Right / Left knees

4/7:Right / Left ankles4/7:Right / Left ankles

 

Figure 3: Key points of human bones 

 

The human body is considered as three parts: the head, 

upper body, and lower body. Except for the nose and 

neck, all other key points are symmetrical on both sides. 

When there is no occlusion in the human body image, 

there is a unique maximum value among its 

corresponding PCMs. When there are k  human targets 

in the image, there will be k  peaks in the corresponding 

keypoint PCMs, represented as ( )*

,j kS p . By using the 

max method, multi-objective PCMs aggregation ( )*

jS p  

can be achieved, as formula (4). 
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In formula (4),   represents the standard deviation, p  

represents the position of ( )*

,j kS p , and ,j kx  represents 

the pixel position of k  people in the corresponding joint 

point j . After the key points are extracted, they need to 

be grouped and connected to ultimately achieve human 

pose recognition. When there are multiple targets in the 

image, the fully connected form can lead to redundant 

connections, while the midpoint detection method can 

lead to errors in connecting multiple targets. Therefore, 

the study aims to use the corresponding partial affinity 

domain values for key point connections through 

two-dimensional vector field PAFs, as shown in formula 

(5) [17]. 
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In formula (5), ( )*

,c kL p  represents the PAFs values of 

the corresponding limb target keypoints, c  represents 

the truncation of the target limb, and v  represents the 

unit vector. The calculation of the unit vector is given as 

formula (6). 
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In formula (6), 1 2/j j  represent different key points, and 

2 1. ./j k j kx x  represents the coordinates of target k  in 

different feature points. 

3.2 Design of posture correction system 

based on Media Pipe Blaze Pose 

To reduce the computational burden of the model, the 

study introduces the Depth Separable Convolution (DSC) 

strategy for improvement. Among them, DSC improves 

an algorithm model for annotated convolution by 

separating the correlation between the spatial dimension 

and the channel (depth) dimension.  
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This reduces the number of parameters required for 

convolution calculation and improves the computational 

efficiency of the model [18]. Although the recognition 

accuracy of this network may slightly decrease, the 

decrease in accuracy can be negligible when the 

parameters are significantly reduced. The DSC strategy 

aims to decompose standard convolution into deep 

convolution kernel 1 * 1 convolution, corresponding to 

the combination of spatial dimension data and channel 

data. Between each depth convolutional layer and 1 * 1 

convolutional layer, a BN layer and ReLU layer are set, 

consistent with the standard convolution. The DSC 

decomposition structure is given in Figure 4. 
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Figure 4: Depthwise separable convolution structure 

 

In Figure 4, the convolution sum size is KD  * KD , 

F FD D M   is the symbol that denoting the input 

feature map size, F FD D N   is the symbol that 

denoting the output feature map size, and N  

convolution kernels number. The required computational 

cost SC  is given in formula (7) [19-20]. 

 S K K F FC D D M D D N=        (7) 

The DSC convolution computation DC  divides the 

standard convolution computation into two modules: 

depth convolution and 1 * 1 convolution, as shown in 

formula (8). 

 D K K F F F FC D D M D D M N D D=     +    (8) 

By comparing the standard convolution computation with 

the DSC convolution computation, the corresponding 

computational ratio of the two can be obtained, as shown 

in formula (9). 

2

1 1D

C

S K

C
P

C N D
= = +     (9) 

From formula (9), the calculation ratio is related to the 

number and size of convolution kernels. In practical 

networks, the number of convolutional kernels is usually 

large, so the impact on computational complexity can be 

ignored in calculations. In the study of using network 

models, the kernel size is set to 3 * 3, which means KD  

is equal to 3. Therefore, the ratio of DSC convolution 

computation to standard convolution computation is 

approximately 1:9, which also proves that DSC can help 

cut the computational parameters and burden of the 

model greatly. Based on this, a graphic cross platform 

architecture Media Pipe is introduced and applied to the 

target post recognition. This model can achieve 

end-to-end acceleration, with a built-in fast ML inference 

and processing framework that enables it to run on 

servers such as mobile devices and workstations. In 

addition, the Media Pipe model can also simultaneously 

build multiple learning channels such as videos and 

sensors. The Media Pipe infrastructure is shown in Figure 

5. 
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Figure 5: Media Pipe infrastructure 

 

In addition, the model also needs to further implement a 

module for real-time inference, and a lightweight CNN 

network Blaze Pose is studied and introduced, which is 

specifically designed for mobile device applications. 

When using the Blaze Pose network for inference, 33 

bone key points can be extracted through the detector 

tracker module. The tracker can predict the position of 

key points, as well as predict whether there is a target in 

the image frame and the pose interest region of the image 

frame. If the presence of human targets is not detected in 

the corresponding image frame, continue to re detect and 

predict tracking in the next frame. This working mode 

determines that the dependency between adjacent frames 

is strong. Embed the Blaze Pose network into the Media 

Pipe framework to obtain the Media Pipe Pose model. 

The Blaze Pose network is a stacked encoder-decoder 

heatmap network, along with a regression encoder 

network. The model training applies heat map and offset 

loss, and deletes the corresponding output layer during 

inference. Jump connections are used between different 

stages to balance high and low-level functions. However, 

the regression encoder gradient stops the connection. This 

strategy can effectively improve prediction accuracy and 

coordinate regression accuracy. The number of human 

bone keypoints in the Blaze Pose network has increased 

to 33, and the head, hand, and foot keypoints have been 

refined, as shown in Figure 6. 

 

2233

1515

1414

2222

2323

2525

2727

1111

2626

2828

11 5544 66

00

99 1010

1212

1313

2121

1919 1717

2424

1616

1818 2020

3131 2929 3030 3232

Key point refinementKey point refinement

Head refinement key points：Head refinement key points：

Side eyes and lipsSide eyes and lips

Palms and fingersPalms and fingers

Hands refinement key points：Hands refinement key points：

Toes and heelsToes and heels

Feet  refinement key points：Feet  refinement key points：

77 88

 

Figure 6: Detailed analysis of key points 

 

In Figure 6, the newly added outer and inner sides of the 

left and right eyes on the head are 3/6 and 1/4, 

respectively, and the left and right lips are 9/10, 

respectively. In the newly added key points of the hand, 

the left and right little thumbs are 17/18, 19/20 

respectively for the left and right index fingers, and 21/22 

respectively for the left and right thumbs. The feet have 

been added with 29/30 on the left and right heels, and 

31/32 on the left and right toes. The remaining key points 

in the model are consistent with the original. The human 
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body posture can be divided into 8 types: standing, 

walking, squatting, waving, bending, kicking, as well as 

side pressing and sitting. After obtaining attitude data, 

normalization processing is required, which means that 

all key points are mapped to the (0,1) interval. In the 

normalization of the horizontal axis in a two-dimensional 

coordinate system, the normalized horizontal axis is 

shown in formula (10). 

 
1

X
X

W
=             (10) 

In formula (10), 1/X X  respectively represent the 

horizontal coordinates of the key points before and after 

normalization, while W  is the symbol that denoting the 

display camera width. Correspondingly, the vertical 

coordinates in the two-dimensional coordinate system are 

normalized, as shown in formula (11). 

 
1

Y
Y

H
=              (11) 

In formula (11), 1/Y Y  represent the vertical coordinates 

of the key points before and after normalization, and H  

represents the length of the display camera. However, 

some key points in the image may be obscured. To avoid 

changes in the dimensionality of the feature vector, its 

coordinates should be supplemented with (0,0). 

4 Performance and practical 

application analysis of action 

recognition network based on 

MPP-YOLOv3 tiny 

To assess the reliability of the proposed deep learning 

network for action recognition, the study conducted 

experiments on the model's performance, including its 

training and validation error, detection speed, and weight 

file size. Subsequently, practical application analysis is 

conducted to understand the specific recognition 

performance for different actions, with the demand to 

verify its superiority in action recognition. 

4.1 Performance verification of action 

recognition model based on MPP-YOLOv3 

Tiny network 

The study first investigated the performance of each 

module in the MPP-YOLOv3 Tiny network. The specific 

experimental environment and parameter selection are 

shown in Table 2. 

 

Table 2: Experimental environment and parameter settings 

Name Settings 

Operating system Ubuntu 18.04 

GPU NVIDIA Quadro M2200 

CPU Intel Xeon CPU E3-1505M v6 @3.00GHz 

RAM 16GB 

CUDA 10.1 

Programming language Python 3.6 

Epochs 220 

Batch size 64 

Learning_rate 0.0001 

Optimizer function Adam 

 

The study selects the CityPersons public dataset for 

experimentation, which contained a total of 3475 image  

 

 

data. Among them, the number of test sets is 500. The 

accuracy and loss curve of the model for training and 

validation are shown in Figure 7.
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Figure 7: Model training verification performance analysis 

 

In Figure 7 (a), as iterations increased, the curve of the 

training data rapidly improved and eventually stabilized. 

As the model approached 40 iterations, the accuracy 

curve became smoother, and ultimately reached 93.01% 

in the 230 th iteration. The loss value during training 

began to flatten out around the 20 th iteration, and at this 

point, the training loss decreased to 0.085. At the 230 th 

iteration, the training loss of the model is only 0.0462. In 

Figure 7 (b), the model validation data quickly drops to a 

flat state around the 22 nd iteration. As the number of 

iterations increases, its accuracy gradually improves. At 

the 230 th iteration, the accuracy of the validation data 

reaches 96.97%. Moreover, its validation loss curve also 

rapidly decreases to a steady state after around the 15 th 

iteration. In the 230 th iteration, the validation loss value 

is only 0.0417. Overall, the model performs well in both 

training and validation. Further research compares the 

designed MPP-YOLOv3 Tiny model with the 

pre-optimized OpenPose algorithm model and 

OpenPose-VGG19 algorithm model, as shown in Figure 

8. 
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Figure 8: Comparison of model performance before and after optimization 

 

Figure 8 (a) shows the comparison of detection speed and 

number of key point recognition before and after 

optimization of the model. The MPP-YOLOv3 Tiny 

network designs for research could recognize up to 33 

key points of human bones, while the two models before 

optimization could only recognize 18 key points of 

human bones. Additional key points may improve the 

recognition accuracy of human body movements in the 

image, but may also result in slower recognition speed. 

Therefore, the detection speed of the research design 

model is 11 FPS, which is 36.36% lower than the 7 FPS 

of the OpenPose algorithm model. However, compared to 

the OpenPose-VGG19 algorithm, the detection speed is 

still 42.11% higher. In Figure 8 (b), the accuracy of the 

research design model reaches 98.17%, while the 

accuracy of the two models before optimization is below 

95%. The accuracy of the MPP-YOLOv3 Tiny network is 

improved by an average of 5.01%. The weight file for the 
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research and design model is 1.6 M, which is 99.22% 

lower than the OpenPose algorithm. Compared to the 

OpenPose-VGG19 algorithm, it reduces by 79.94%. In 

summary, although the detection speed of the research 

and design model is slightly lower than that of the 

OpenPose algorithm, its overall performance is the best. 

Therefore, studying the optimization of initial action 

recognition models is effective and reliable. 

4.2 Practical analysis of posture correction 

model based on MPP-YOLOv3 tiny network 

With the demand to do recognition performance 

verification for 8 common actions, a pose dataset is 

constructed using MediaPipe Pose. In addition, the study 

also introduces running, hugging, computer operation, 

and falling movements that are easily confused with other 

movements for further comparison. The total number of 

images is 17980, and the experiment randomly divides 

them into a training set and a validation set in an 8:2 ratio. 

The experiment outcomes are given as Figure 9. 
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Figure 9: Different action recognition accuracy analysis  

 

Figure 9 (a) shows the visualization of the recognition 

effect of the model on common actions. Among them, the 

recognition accuracy of the model for side leg pressing 

and hand waving movements is 100%, and the 

recognition accuracy for other movements is also above 

90%. The recognition accuracy of walking movements is 

91.1%, because walking movements are easily confused 

with standing and kicking movements, with recognition 

errors of 4.4% for both movements. The recognition error 

for squatting and sitting movements is 2.2%, and the 

recognition error for kicking and lateral pressure is also 

2.2%. Bending, squatting, walking, and sitting 

movements are easily confused, but the errors are all 

within 2.2%. Overall, the model achieves an average 

recognition accuracy of 96.7% for common actions. In 

Figure 9 (b), four movements including running have 

been added, while sitting and standing movements have 

been removed. The model has achieved 100% recognition 

accuracy for five movements: standing, squatting, waving, 

kicking, and playing computer games. Except for the 

bending motion, the recognition accuracy for all other 

movements has also reached over 92%. The recognition 

accuracy of bending and falling movements is only 

86.7%, because bending and falling movements are easily 

confused, with a recognition error of 12.3%. Further 

research will apply the MPP-YOLOv3 Tiny action 

recognition network to posture correction. Taking 

squatting as an example, the model's recognition effect on 

incorrect squatting movements is shown in Figure 10. 
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Figure 10: Recognition results of squat posture correction 

 

Figure 10(a) shows that the model's overall recognition 

performance for the knee joint buckle is poor, with a 

recognition accuracy of only 87.4%. This is mainly due to 

recognition errors that occur during the motion amplitude 

of this action. The recognition accuracy for excessive 

forward leaning of the trunk is relatively high, reaching 

92.6%. However, the main reason affecting its 

recognition is the obstruction of the excessive forward 

leaning surface. The recognition rate for trunk tilt and 

excessive upright posture is 96.5%. Figure 10(b) indicates 

that more than 19 individuals are successful, primarily 

due to significant changes in their movements. Next, the 

study compares the semantic action recognition model 

based on Pose Lexicon proposed by reference [7], and the 

action recognition model based on graph transformer 

network proposed by reference [8]. The experimental 

datasets used are the NTU60 RGB+D dataset and the 

NTU120 RGB+D dataset, respectively, with the latter 

being an extension of the former. The experiment 

outcomes are given as Table 3.

  

Table 3: Comparative analysis of the performance of each model 

Models Index 
Data sets 

NTU60 RGB+D NTU120 RGB+D 

Zhou. et al [7] 
CV 93.6% 82.6% 

CS 86.1% 78.8% 

Liu. et al [8] 
CV 92.5% 82.1% 

CS 85.2% 74.8% 

Ours 
CV 94.7% 82.7% 

CS 89.3% 80.6% 

 

The indicators in Table 3 represent the recognition 

accuracy of the model from the perspectives of Cross 

View (CV) and Cross Subject (CS), respectively. It could 

be concluded that all models performed better in the 

NTU60 RGB+D dataset. However, the research design 

model is still 1.7% better than the other two models in 

terms of CV index, while the CS index is 3.2% better 

than the other two models. In the NTU120 RGB+D 

dataset, the recognition accuracy of each  

 

 

model has decreased to below 90%. The CV index of the 

research design model in this dataset is increased by 

0.35% compared to the other models. The CS index has 

relatively increased by 3.8%. In summary, the 

MPP-YOLOv3 Tiny network proposed in the study can 

better achieve pose correction through action recognition. 

Additionally, eight tests are conducted to compare the 

performance of various models in terms of recall, 

precision, and F1 values, as depicted in Figure 11. 
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Figure 11: Test results of recall, accuracy, and F1 value for different models 

 

Figures 11 (a) to 11 (c) display the results of the recall, 

accuracy, and F1 value tests, respectively. The research 

design model maintained a recall rate of 0.95 or higher in 

8 rounds of testing, outperforming other models. 

However, the model proposed by L Zhou et al performed 

poorly, with a recall rate below 0.85 in the third round of 

testing and poor stability. When comparing accuracy, the 

design model consistently performed excellently with a 

stability of 0.93 or above, while the other two models had 

an accuracy range of 0.85 and poor overall stability. In 

terms of the F1 value indicator, the model proposed by Y 

Liu et al showed significant fluctuations in the 4th and 

7th rounds, performing worse than the design model 

overall. However, the F1 values of the design model are 

all above 0.94 with excellent stability. To test the 

recognition performance of the design model, 

conventional action data are collected in real 

environments as a self-generated training dataset for 

simple scenes, with a total of 1565 entries. Additionally, 

1756 complex scene data, such as squatting, kicking, and 

occlusion, are selected as a self-generated complex scene 

dataset. These two datasets are used to produce 

recognition results for real-world scenarios, as shown in 

Figure 12. 
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Figure 12: Comparison of recognition effects of different models in real scenarios 

 

In Figure 12 (a), the results of action recognition in a 

simple scenario are presented. The designed model 

achieved convergence after 80 iterations, with an 

accuracy of 95.25%. Both the models proposed by L. 

Zhou et al. and Y. Liu et al. achieved convergence after 

100 iterations. However, the overall recognition accuracy 

of the model proposed by L. Zhou et al. was 90.25%, 

while that of Y. Liu et al. was 88.21%. In complex 

scenarios, the recognition accuracy of all three models 

significantly decreased. According to Zhou et al, their 

proposed model exhibited poor overall stability and lower 

recognition accuracy than Liu's model in the later stage. 

The main reason for this may be the model's inability to 

handle the extraction of multivariate features in complex 

scenes, which affects the accuracy of later recognition. In 

comparison, the overall design model outperformed the 

other two models with a recognition accuracy of 90.95% 

when converging. In summary, the study found that the 

MPP-YOLOv3 algorithm has better practical application 

results. This was due to its lightweight design and 

enhanced feature extraction of upper and lower limbs, 

which ensured accuracy and stability of the technology. 

In complex recognition scenarios, similar models with 

less feature extraction will significantly decrease 

accuracy. However, research models optimized the 

recognition process through lightweight design and DSC 

strategy to ensure recognition accuracy. 

4.3 Discussion 

The application of action recognition technology in 

correcting posture holds significant research value. This 

technology allows for real-time monitoring and analysis 

of human body posture, aiding in the evaluation and 

correction of poor posture, and ultimately improving 

overall health and motor skills. Reference [10] proposed 

an action recognition method based on spatiotemporal 

slow fast graph convolutional networks. However, this 

method was susceptible to external noise during data 

collection and action recognition processes, which can 

decrease the quality of the collected data and affect the 

recognition effect of the final action. 

Reference [11] proposed a technique for action 

recognition with minimal transfer learning. However, this 

technology exhibited high stability and recognition 

accuracy during the training process. As the training 

progresses, the stability gradually decreased and cannot 

meet the needs of practical applications. Reference [12] 

proposed a motion recognition technique based on 

wavelet transform. This technology relied on a large 

amount of collected data. The overall recognition 

accuracy of this method significantly decreased with 

fewer data samples, limiting its feasibility and accuracy 

in practical applications. Therefore, this study examined 

the application of action recognition in attitude correction 

using the MPP-YOLOv3 algorithm. The study compared 

and analyzed the techniques proposed in references [10], 

[11], and [12], and found that these methods have 

limitations. In contrast, the research method has 

advantages. Firstly, it can effectively overcome external 

noise during data collection and action recognition. The 

main focus of this study is to explore methods for 

reducing the number of predicted classifications in order 

to lower network operating parameters and improve data 

quality and action recognition performance. Secondly, the 

research method exhibited high stability and recognition 

accuracy during the training process. This was especially 

true with the introduction of the Blaze Pose network, 

which significantly improved the inference process and 

makes the research technology more suitable for practical 

applications. Additionally, when compared to literature 

[12], the research method demonstrated lower 

dependence on data samples while maintaining high 

recognition accuracy even with fewer data samples. 

In summary, the study found that the action recognition 

method based on the MPP-YOLOv3 algorithm has better 

application effects in attitude correction, higher 

recognition accuracy, and stronger stability. However, 

further experiments and research are needed to validate 

and improve the research methods, in order to enhance 

their accuracy and stability, and to promote their 

widespread application in practical settings. 
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5 Conclusion 

To correct posture and apply it to various fields, such as 

sports and medicine, research proposes using deep 

learning for action recognition. First, a lightweight 

network infrastructure based on YOLOv3 Tiny was built. 

Then, the model's accuracy was improved by refining 

bone key points through the MPP module. In the 

experimental analysis on the CityPersons public dataset, 

the results showed that the curves of model accuracy and 

loss values tended to stabilize with increasing iterations, 

and reached a training accuracy of 93.01% at 230 

iterations. The validation accuracy and loss values were 

96.97% and 0.0417, respectively. Although its detection 

speed was slightly lower at 11 FPS, compared to the pre 

optimized OpenPose algorithm and OpenPose-VGG19 

algorithm, the accuracy had improved by 3.2% and the 

model size has increased by 83.1%. In practical 

application analysis, the MPP-YOLOv3 Tiny network 

achieved a recognition accuracy of 96.7% for common 

actions, and can accurately recognize confusing actions 

such as running, hugging, operating a computer, and 

falling in datasets, demonstrating good generalization 

ability. When applied to pose correction for squatting 

movements, the success rate of identifying knee joint 

buckles was 87.4%, and the average success rate of 

identifying other erroneous movements reached 94.7%. 

This indicated that the model had practical value in pose 

correction. Compared to the action recognition model 

proposed by Zhou et al. [7] and the model proposed by Y 

Liu et al. [8], in the NTU60 RGB+D and NTU120 

RGB+D datasets, the average CV index improved by 

1.02% and the average CS index improved by 3.5%. In 

summary, the action recognition model based on 

MPP-YOLOv3 Tiny network proposed in the study has 

significant application value in posture correction. 

However, the detection speed of the action recognition 

model designed for research still needs to be improved. In 

the future, further efforts should be made to enhance the 

recognition speed of this module while ensuring 

lightweight and accuracy. 
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