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Abstract. We propose a novel unsupervised image-segmentation algorithm aiming at segmenting an image into
several coherent parts. It requires neither user input nor supervised learning phase and assumes an unknown
number of segments. It achieves this by over-segmenting the image into several hundred superpixels iteratively
joined on the basis of a discriminative classifier trained on color and texture information obtained from each
superpixel. The output of the classifier is regularized by a Markov random field that lends more influence to
the neighbouring superpixels that are more similar. In each iteration, the similar superpixels fall under the
same label, until only a few coherent regions remain in the image. The algorithm is tested on a standard
evaluation data set, where it performs on par with the state-of-the-art algorithms in terms of precision and
greatly outperforms the them by reducing the oversegmentation of the object of interest.
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Regularizirana nenadzorovana segmentacija slik

Predlagamo nov algoritem za nenadzorovano segmentacijo slik
na več vizualno skladnih delov. Novi algoritem ne zahteva ini-
cializacije s strani uporabnika, ne potrebuje nadzorovane učne
faze in ne predpostavlja znanega števila segmentov. To doseže
tako, da najprej sliko pre-segmentira na nekaj sto superpikslov,
nato pa jih iterativno združuje s sprotnim nenadzorovanim
učenjem diskriminativnega modela, ki temelji na barvi in
teksturi. Rezultat diskriminacije je regulariziran z Markovim
slučajnim poljem, moč regularizacije pa se avtomatsko določa
preko vizualne podobnosti sosednjih superpikslov. Algoritem
smo analizirali na standardni podatkovni zbirki in ugotovili, da
je po preciznosti primerljiv z najsodobnješimi algoritmi za seg-
mentacijo in jih močno prekaša v konsistentnosti segmentacije,
saj bistveno manjkrat objekt razgradi v več regij.

1 INTRODUCTION

Image segmentation is a popular branch of computer
vision, used to partition an image into a number of non-
overlapping different segments or labels that correspond
to some meaningful regions of the image. Depending on
the size and number of the resulting regions, the final
result can be called a segmentation or an oversegmen-
tation into superpixels.

Superpixels are usually very homogeneous in color
and texture and respect strong edges.
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Broadly speaking, the image is said to be comprised of
superpixels if the number of segments is in the hundreds,
though there is no precise definition. Most methods
can produce both coarse and fine segmentations, which
can sometimes be controlled by adjusting the method
parameters. We use the words segment, region and label
interchangeably, since segments are defined as all the

Figure 1. From left to right: input image, an example of the
MRF pairwise consistency encoded by color similarity, and
final segmentation.

pixels belonging to the same label.
Our focus in this paper is on non-semantic unsuper-

vised segmentation with an unknown and variable num-
ber of segments, i.e. we make no assumptions about the
meaning of the regions produced, we do not require any
user input and the number of final regions is determined
by the output of our algorithm. Therefore, even though
a large part of image segmentation concerns supervised
segmentation, foreground-background delineation and
region labelling, all the work indicated here concerns
unsupervised and object-agnostic segmentation unless
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otherwise noted.
Several approaches to image segmentation have been

developed. Among the first are graph-partitioning meth-
ods such as Shi and Malik’s normalized cuts (NCC) [1]
and Felzenszwalb and Huttenlocher’s graph cut in
nearest-neighbour graphs (FH) [2], which are frequently
used as a preprocessing step in more sophisticated
algorithms. Also well-known is the Grabcut [3] method,
though it requires user input and only outputs a fore-
ground/background segmentation. Another approach is
mode-seeking algorithms such as Mean Shift (MS) [4]
or Quick Shift [5] used in a color space such as RGB
or Lab.

Arbelaez et al. [6] tackle the problem of image
segmentation through contour detection, but the contours
are not always valid segmentations because they are
not necessarily closed. Other unsupervised methods start
with a mixture of a large number of Gaussians [7] and
gradually reduce this number by removing degenerated
Gaussians and merging those that are closer in the
feature space than some specified threshold.

Popular methods also include agglomerative cluster-
ing, i.e. a bottom-up aggregation of either the image pix-
els [8], [9], [10] or superpixels [11], [12]. However, these
methods are greedy and suffer from error propagation,
where incorrectly merged regions are propagated into
subsequent iterations, although recent work by Wang et
al. [13] tries to alleviate such errors by using multiple
merge steps.

Although many methods do not use the spatial struc-
ture of the image, ignoring this information can some-
times lead to non-smooth segmentations. To combat
this, many segmentation methods [14], [15], [16], [17]
use MRFs as a way to enforce spatial consistency in
the neighboring pixels in the image. However, these
methods work on the pixel level, which is becoming
increasingly more computationally intensive due to the
rise of high-resolution images. Another benefit of this
approach is that by using a superpixel segmentation
algorithm that can output a fixed number of superpixels,
all images require roughly the same computational effort
regardless of their underlying pixel resolution.

Therefore, in more recent work, MRFs have been
used on the superpixel level instead as a way to reduce
the computational cost and achieve a speed-up [18].
Similarly, Fulkerson et al. [19] impose an MRF on a
preliminary oversegmentation from QS [5]. In contrast
to our work, [5] require offline pre-training and do not
perform a segmentation but rather a region proposal
generation for object detection. Some methods, such as
Li et al. [20] and Wang et al. [21] use graph partitioning
on the superpixel level, employing methods such as
MS [4] and FH [2] as a preliminary step. However, both
methods require the number of the final segments to be
known.

Our contributions and approach: Our work is in-
fluenced by several of the aforementioned approaches.
We adopt the preprocessing step of oversegmenting the
image into several hundred superpixels as in [20], [21],
[19]. There are many methods able to provide superpixel
initialization such as SLIC [22], MS [4] and FH [2]. We
find that SLIC works best for our purposes. From each
of these superpixels we extract color and texture features
using COLOR-CHILD [23], though any other descriptor
could be used instead.

The main part of our algorithm are the subsequent
iterations. In each iteration we train a discriminative
classifier in a one-vs-all fashion, i.e. for each label a
binary classifier is trained to distinguish between the
superpixels belonging to that label (positive examples)
and all the others (negative examples). Similarly to [19]
we find that for our purposes Support Vector Machines
(SVM) [24] work sufficiently well. We use these clas-
sifiers to re-classify all the superpixels to obtain a
probability vector of labels for each superpixel. At the
end of each iteration, we assign each superpixel to the
highest probability in the label vector.

Although there are as many labels as there are super-
pixels in the beginning, which increases the computa-
tional cost of each training phase, the number of labels
quickly declines in subsequent iterations. This is because
many labels, especially those at the beginning when each
label has a small number of superpixels, happen not to
output the highest probability for any vector and are
thus automatically removed from the label pool in all
subsequent iterations.

Lastly, as in [17], [19], we adopt the idea of enforcing
spatial consistency of the segmentation using an MRF.
Before assigning the superpixels to their new labels, we
perform regularization by penalizing neighbouring su-
perpixels that are very similar, but have different labels.
See Figure 1 for an example of superpixels, the pair-
wise potentials in the Markov random field, and the final
regularized segmentation. A more detailed description of
each step is presented followed by quantitative results
and comparison in Section 3.

2 METHODS

The task of segmenting an image can be formulated as
assigning a label li to each pixel. The number of labels
K, however, is unknown a priori. An iterative approach
can therefore be applied that starts with labelling every
pixel with its own label and then gradually reduces the
number of labels. Our approach is a two-stage approach
composed of a pre-segmentation stage and followed by
an iterative segmentation stage described below.

2.1 Pre-segmentation
Many regions of the image are visually similar and

will likely have been assigned the same label in the final
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segmentation. This means that such neighbouring pixels
can be grouped, thus pre-segmenting the image. The
image is over-segmented into a few hundred coherent
groups of pixels previously defined as superpixels. This
can be thought of as jump-starting the iterative merging
of regions, since merging the pixels in the beginning
with a hundred superpixels instead of a million pixels re-
duces the computational cost of any graph-based method
that operate on the (super) pixel level, at the expense of
having slightly less-refined boundaries. The algorithm
used in this preliminary step is called Simple Linear
Iterative Clustering (SLIC) [22]. It is a simple sped-
up version of k-means that clusters the pixels simulta-
neously in a five-dimensional CIELAB and coordinate
space (L, a, b, x, y). Since our method is agnostic of
the choice of the superpixel pre-segmentation algorithm,
we also experiment with MS [4] and FH [2] as a
pre-segmentation, and present quantitative differences in
Section 3.

2.2 Super-pixel description and classification
After oversegmenting the image, the next step is to

use a descriptor to obtain discriminative features for each
superpixel. The feature descriptor used in our algorithm
is COLOR moments augmented Cumulative Histogram-
based Image Local Descriptor (COLOR-CHILD) [23].
The color part contains the first, second and third image
moments of all three color channels, whereas the texture
part includes the information obtained from the first and
second-order derivatives. The color and texture features
together comprise the D = 57-dimensional descriptor (9
color dimensions and 48-bin quantized histogram) fi ∈
R57×1 for the ith superpixel.

These descriptors can readily be used to learn a
classifier for each label. For example, assume we have
M superpixels labelled by K labels. A classifier such
as a one-versus-all support vector machine (SVM) [24]
can be learned for each class from the features extracted
from the superpixels labelled by the same label, resulting
in K SVMs. The input to the SVM for label k is thus:

X = [f1, ... , fM ]T , y = [δl1,k, ... , δlM ,k]
T , (1)

where δij is the Kronecker delta function, which is 1 if
i = j and 0 otherwise. In other words, all the superpixels
that are currently labelled as k are the positive examples
and all the rest are the negative examples, corresponding
to the classic one-vs-all fashion for training multi-class
SVMs.

Each SVM is calibrated by a Platt calibration such that
it outputs a probability of observing label li, given its
feature descriptor fi. These classifiers are then applied
back to each superpixel so that for the next iteration each
superpixel is assigned a class label of the SVM with the
maximum probability:

li = argmax
j
p(lj |fi)

where j ∈ {1, ...,K}. In this way, the superpixels are
relabelled. But an independent classification of the pixels
will likely result in a noisy segmentation and some
kind of regularization should be enforced to penalize
the neighbouring superpixels that do not belong to the
same class.

2.3 Regularization of segmentation
To enforce regularization, we apply a Markov Ran-

dom Field (MRF) on the superpixels. MRFs are first-
order graphical models commonly used as a way to
encode spatial dependencies present between neighbour-
ing pixels in an image. They have found applications in
image restoration, stereo vision, and segmentation [14],
[16], [17], [19]. Our approach uses MRFs to take
advantage of the structural information present in an
image, that would otherwise be unused. Each superpixel
is a variable, with dependencies between superpixels that
share a boundary.

The particular type of MRF applied here and the
corresponding procedure of energy minimization are
described in Kristan et al. [17]. Let λij be the similarity
of superpixels i and j defined as

λij =
1

Zi
exp(−||Ci −Cj ||2)

where Ci = [ri, gi, bi]
T denotes the intensity of the

RGB values of the i-th superpixel, ||.|| denotes the usual
l2 norm, and Zi is a normalization constant ensuring the
weights sum to 1, i.e.,

∑
j∈Ni

λij = 1, where Ni is the
neighbourhood of the i-th superpixel, Briefly, the energy
function corresponding to the MRF is the following:

E ∝
M∑
i=1

log p(li|fi)−
1

2
(DKL(πi, πNi)+DKL(pi,pNi

)),

(2)
where πi denotes i’s prior probability distribution over
the labels, πNi

is a weighted sum of the priors of i’s
neighbours πNi =

∑
j∈Ni,j 6=i λijπj , and DKL(p, q) =∑

x
p(x)log

(
p(x)
q(x)

)
is the Kullback-Leibler divergence.

The variables pi and pNi
are the corresponding pos-

teriors and the neighbourhood averages, similarly to the
priors. This particular formulation of the MRF [17] treats
the priors as well as posteriors as random variables and
enforces an MRF on the prior and an MRF on the
posterior.

Given the visual likelihoods for all superpixels esti-
mated by the SVMs, i.e., p(li|fi), the posteriors pi are
computed over all superpixels by minimizing the energy
function from (2) by the iterative approach from [17].

2.4 Iterative re-labeling and class reduction
Once the posteriors over the superpixels are com-

puted, each superpixel is assigned the label with the
maximum probability. The classes that do not receive
any superpixels in a given iteration are removed from
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the candidate classes. Then the remaining SVMs are re-
learned from the relabelled superpixels. The process of
superpixel re-classification, unsupported class removal
and SVM-relearning is repeated until convergence. The
iterative procedure is summarized in Algorithm 1.

Algorithm 1 Unsupervised MRF-based segmentation
1: Input: Image I
2: (fi, li)← color-child(spix(I)) ∀i
3: while ∃i : li 6= li−1 do
4: for each label l do
5: train a SVM to compute p(li|fi)
6: minimize the energy function (2)
7: for each superpixel i do
8: //Assign each i-th superpixel to the MAP

estimate of the label
9: li = argmaxj p(lj |fi)

10: return labeled image I using final labels l

3 RESULTS

We have used the following parameters in our eval-
uation: we used an RBF kernel for the SVM with
γ = 0.001 and regularization constant C = 1.0. These
parameters were kept fixed in all experiments.

Our algorithm was evaluated on a standard data set [8]
consisting of 100 color images which contain a single
object of interest that usually occupies a majority of
the image (Figure 2). The ground truth consists of three
manual foreground-background segmentations provided
by three human annotators. The task is to correctly infer
the foreground region from the background pixels. The
performance is measured by the F measure:

F =
2PR

P +R
, (3)

where P and R denote the precision and recall which
measure the fraction of the segment that contains the
foreground, and the fraction of the foreground contained
by the segment, respectively. In addition to computing
the F measure for each segment and reporting the
best value as Fsingle, we also compute it for each
combination of segments and report the highest value
as Fmulti:

Fsingle = max {Fs} s ∈ S (4)

Fmulti = max {Fs} s ∈ 2|S| (5)

where S is the set of segments comprising the final
segmentation, 2|X| denotes the power set of X , and Fx

denotes the F-measure of a segment x.
Finally, we assess the fragmentation of each method

by counting the number of segments comprising the

combined F-measure as follows:

Ffrag = N − 1, (6)

where N is the number of segments. Lower fragmenta-
tion, ideally zero, means that the object is represented
by a single segment, whereas high Ffrag implies over-
segmentation.

To analyze the results of our method, we compare it
to a number of state-of-the-art segmentation algorithms:
• Probabilistic Bottom-Up Aggregation and Cue In-

tegration [8], denoted by PBACI, which gradually
merges the pixels into successively larger regions
by taking into account the intensity, geometry and
texture.

• Segmentation by weighted aggregation [25], de-
noted by SWA, which determines the salient re-
gions in the image and merges them into a hierar-
chical structure.

• Normalized cuts [26], denoted by N-cuts, which
tackles the problem of segmentation by comput-
ing multiple minimum-normalized cuts on a pixel
graph.

• Contour detection and hierarchical Image Segmen-
tation [6], denoted by Gpb, which reduces the
problem to contour detection and uses spectral
clustering to combine local cues into a global
framework.

• Mean shift [4], denoted by MS, which is a general
mode-seeking algorithm on a non-parametric prob-
ability distribution, such as the color or intensity
distribution.

Method Fsingle Fmulti Ffrag

OurMS 0.69± 0.01 0.87± 0.01 0.45± 0.03
OurFH 0.71± 0.01 0.85± 0.01 0.43± 0.03

OurSLIC 0.72± 0.01 0.84± 0.01 0.40± 0.03
PBACI 0.86± 0.01 0.87± 0.02 1.66± 0.30

SWA 0.76± 0.02 0.86± 0.01 2.71± 0.33
N-cuts 0.72± 0.02 0.84± 0.01 2.12± 0.17

Gpb 0.54± 0.01 0.88± 0.02 7.20± 0.68
MS 0.57± 0.02 0.88± 0.01 11.08± 0.96

Table 1. Results of single and multi-segment coverage on the
dataset (95% confidence).

The results are given in Table 1, showing the average
scores for all images in the data set. Since we experiment
with different preprocessing superpixel segmentations,
we denote using MS, FH and SLIC with OurMS ,
OurFH and OurSLIC , respectively. The best results are
achieved using SLIC which has the lowest fragmen-
tation and highest F measure for a single segment.
Note that the all variants of our approach deliver the
lowest fragmentation error. This means that our iterative
approach consistently segments out the objects well
regardless of the initial segmentation process.
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Figure 2. A few images from the dataset and different segmentations. From left to right: Original image, OurSLIC , PBACI,
SWA, Normalized cuts, and Mean shift.

Our algorithm delivers highly competitive results in
both variants of the F measure. The advantage of
our approach is very apparent in fragmentation, where
it significantly outperforms the state-of-the-art, which
means that it correctly identifies the object with an
average of 1.4 segments regardless of the preprocessing
step, whereas all other methods over-segment it.

It should be noted that there is an inverse relationship
between the F measure, specifically Fmulti, and the frag-
mentation. If a method has high fragmentation, meaning
the foreground object is made up of several segments,
it is natural to assume that they cover it better than a
method that only produces one segment, but the ground
truth has only one segment, which should be preferred.
Therefore the advantage of our method is its correctly
delineating the object in the image as being comprised of
a single segment. This is because similar superpixels are
identified as having the same label early in the iterative
process and we are only left with a few segments.

Note that our method can artificially be made to

favor improved multi-segment coverage at the cost of
reduced one-segment coverage by increasing the Fmulti

which results in increase of Ffrag . This can be achieved
by forcing the SVMs to specialize to the superpixels
belonging to their segment, which results in reduced
merging of segments. For SVMs, this can be achieved
by increasing the γ parameter, which enhances non-
linearity and increases the specialization. A few exam-
ples of the (non-overspecialized) segmentation produced
by our algorithm are shown in Figure 2.

4 CONCLUSION

An unsupervised iterative segmentation algorithm is pro-
posed. The results show that the algorithm is comparable
to the state-of-the-art in terms of precision and recall,
and also outperforms the state-of-the-art by more often
correctly identifying the segments belonging to a single
object.

Future work will involve considering other classifiers
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that allow efficient learning and classification of high-
dimensional features. As the current segment labelling
is binary (hard assignment), using soft-labelling with
a segment belonging to different labels simultaneously
could also be explored. The pairwise MRF energy term,
i.e. the edge weight between neighbouring superpixels,
depends on the color similarity, but could also be ex-
tended to texture. We will also consider a hierarchical
approach in which the segmentation presented in this
work acts as a prior on pixel-level segmentation to
further improve the segmentation quality, by having
more refined segment borders. Lastly, saliency detection,
the task of determining the important regions of an
image, could benefit from our approach as a preliminary
step.
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