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ABSTRACT: In this paper circuits in grids which are obtained by using plane tessellations are observed, Isomorphism
and congruence of circuits in these grids is defined in natural way. Conection between these relations is discussed.

1. INTRODUCTION

A tesselation of plane is a covering of the plane
by using polygons. It is known that there are exactly
eleven ways to cover plane by using regular polygons.
Three of these are regular tessellations, where each
vertex is surrounded by identical regular polygons (see
fig.1). The other eight are semi-regular tessellations,
in which each vertex is surrounded by an identical cy-
cle of regular polygons (see fig.2).
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Figure 1. The three regular tesselations
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Figure 2. The eight semi-regular tesselations

In this way eleven infinite periodic grids are ob-
tained. (This grids are plane representation of infini-
te plane graphs.). Let G be one of obtained grids, A
circuit of the lenght m in a grid G is a oriented clo-
sed path without repeated vertices, containg m edges.

A circuit C in the grid G determines a simple poly-
gon which consists of the edges of C. We will say that
a circuit Cq is congruent to a circuit Cp iff polygons
determined by circuits C1 and Cy are congruent poly-
gons. Also, in natural way we define an isomorphism of
circuits in the grid G which is obtained by regular and
semi-regular tessellations, Let Cq and C» be the circu-
its in the grid G. Then: the circuits C1 and C; are iso-
morphic circuits iff there exists a congruence transfor-
mation T such that:

1) T maps the grid G into itself and

2) T maps a polygon determined by the circuit Cy
into polygon determined by circuit Cp.

Also we say that simple polygons A and B in the grid
G are isomorphic polygons iff circuits determined by A
and B are isomorphic circuits.

2, WORD REPRESENTATION OF CIRCUITS

Let G be one of grids obtained by using tessellations.
Grid G is periodic, Let us determine period of grid G.
If n is the number of edges in period of G then the num-
ber of oriented edges is 2n and we shall denote these
oriented edges (vectors) by v{0),v{1),...,v(2n-1).In"*his
way for any oriented edge of the grid G there is corres-

-ponding--uniquely determined vector~from the set v={v(0),

v(1)5eeesv{2n-1)},

Let A and B be points in the grid G, and P oriented
path of lenght t, from A to B, If path P consists of ori-
ented edges v(i7),v{i2),...,v(i¢) respectively, then the
word f(P)=i1i2,..1¢ which corresponds to path P is uni-
quely determined. Specialy, for i=1 f(v(i})=i. Let AN be
the set of all words of 1eEght k over the alphabet A=
={0,1,...,2n~1} and A"=UAK k>0,

Then denote by A" the set of all words which corres-
ponds to oriented pats in the grid G. That means: aGA'k=>
exists path P such that f(P)=a.

If the word a=i1' ...14 is from A", then a determines
the path v(iq}...v(1 § such that f(P)=a. The circuit C of
lenght n determines %n closed oriented paths, depending
on the choice of the initial vertex and the orientation
of the circuit, A function f maps these 2n oriented paths
into 2n words of the set A", Let us denote the set of
these 2n words by Q(C) (for circuit C}. Let T be isometry
which maps grid G into itself. Let T(v(i}))=v(i") i=0,1,2,
«vesen=1 then (0°,1°,...,(2n-1)") is permutation of (0,1,
«..»2n-1), Transformation T maps path P=v(iq)v{ip)...
v(i¢) into path T(P) such that T(P)=T(v(i1)v(ip)...v(it))
=T(v(11)2T(v(i2))...T(v(it))=v(if)v(1§)...v(if§ or
f{T(P))=1{i5.. ¢,

Let A"™-be the set of all words which correspond to
circuits in the grid G. Also every word a from A" (a=i}
...1¢) determines circuit C=v(iq)v(i2)}...v{iy) {which
determines simple polygon with edges of C}.

Let a and b be words from A" , We say that a and b
are in the relation a iff circuits, which are determined
by words a and b, are isomorphic circuits.

LEMMA 1: Relation o is equivalence relation.

PROOF: The set 1 of all congruence transformations which
map grid G into itself is a group.
Specialy: If T=I (identical mapping) then for a,beQ(C)=>
aab,

In the set of vectors {v(0),v{1),...,v(2n-1)} we de-
fine relation p by: v(i) v(j) < exists isometry T which
maps the grid G into itself such that

T(v(i)) = T(v(i))
LEMMA 2: Relation p is a relation of equivalence.
PROOF: Directly from definition.




Also, we say that: ipj iff v(i)pv(J).

» If P is a path from point A to point B then vector
AB is equal to the vector sum of oriented edges which
_the path P contains, . .

LEMMA 3: -Word a=i iZ"'it from A" is from A™ (or
v{ig)v(i )...v(it] is circuit) iff 12.v(i1)+v(i2)+'_.+
v(iy)=0 %vector summ) and 2) v(1j)+v P41 ...+ ' v
V(ij+k)f0 for kej+ks t.

3. . ALGORITHM FOR COUNTING NDNISOMORPHIC CIRCUITS

Using observations from previous section we can pro-
pose one common algorithm for determination numbers of
nonisomorphic circuits on each of grids obtained by tes-
sellations (regular and semi-regular),

Let eq and ep be the vectors from {v(0),v(1),...,
v(2n-1)} which are not colinear, Now, we determine co-
ordinates of each vector from {v(0),v{1),...,v(2n-1}}
with respect to vectors eq and es. )

Let v(i)=aqei+81ep (i=0,...,2n-1} then follows (from
Lemma 3):

LEMMA 4: If a=i4ip,...,1¢ is word from A" then

2n-1 . 2n-1
.2 a;1(i)=0 and .Z B;1(1)=0
i=o i=o

where 1(i) is the number of occurences of character i in
the word a=iqip...i¢. CONDITION 3 will be called CONDI-
TION-G.

LEMMA 5: If P is an oriented path in the grid G then: P
is a circuit iff: .

1) the word f(P) satisfies CONDITION-G and

2) no subword b of a satisfies CONDITION-G,

We use following input data and their notations:

1) Number of vectors in period of G,

2) Number of continuations of each vector denoted by
C. (Vector v(i) is a continuation of-a vector v(J)-if
word ji is from A"},

3) Continuations of each vector. Corresponding cha-
racters for continuations of vector v(i) denoted by
c(i,y1),c(i,2),...,c(1,C). . ’

4) Number of initial vectors-denoted by I.Note: Ini-
tial vector can be any vector. It is clear that if the
word a=iyi2...it. Is from A" and iyp jq then there exists
a word b=jyj2...j¢ such that aab, +hat means: the number
of initial vectors can be equals to the number of equi-
valence classes with respect to relation p, In this way
can be reduce the computation time.

5) Initial vectors-corresponding characters denoted
by Iv(1),Iv(2),...,Iv(I),

6) Number of transformations {of t).

7) One isometry of first class which maps grid into
itself. ’ .

?) One isometry of second class which maps grid into
itself,

8) For every vector v(i) its opposite vector v(j),
(+(i)==v(3)). ,

Note: for grid 3.6 isometry of first class no exists
so 7 is identical mapping.

Let a=i4i2...it be word from A", and let a(j) denoted
the word ij1j+1...1¢ 15jSt, If CONDITION-G is not satis-
fied for any j{1<jst) then we call the word ijip...it
addable. It is clear that i9i2...14 can be completed to
a word iqip...ip (m>t), representing a circuit iff iyip
it s aﬁdab]e. Also it is obvious that a=iqiz...it
denotes a circuit iff a(j) satisfied CONDITION-G only
for j=1.

A1l words that are a-equivalent to a word a repre-
senting a circuit we can obtain using 6,7,8,9 (see input
data), We consider only the equivalent words begining by
one of initial vectors (input data-5) and sort them in
lexicographic order, We choose the first word a” as a
representative of this class. Hence, if the word a is

"equal to a”, then word a represents a circuits of lenght
t and print it,

Our algorithm can be conveniently explained using two
phases: extend and reduce, These phases correspond to the
addable and nonaddable cases respectively,
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READ (t)
FOR k=1 to I DO
BEGIN
i1=Iv(k); m:=1
REPEAT
IF i9i2.,,ip is addable
THEN exteng
ELSE IF i1i2,..iy is representative of
a nonisomorphic circuits
THEN print iqiz2...ip
reduce
UNTIL m=1
END
where

‘extend = BEGIN mz=m+1; ipi=c(ip-1,1) END .

reduce = WHILE ip=c{ip-1C) and m22
D LI

. 0 m:=m~
IF m#i
THEN BEGIN

t:=0

REPEAT t:=t+1
UNTIL ig=c(im-1,t)
ipisc(ip-1.t+1)

D

Data obtained by proposed algorithm will be given in next
section, k(t) denoted the number of nortisomorphic circu-
its lenght of t,

Grids which is obtained by tessellations 6°,4",3% are
not specialy treated, but they have been observed in the
papers: |1],]2],|3]|. The algorithm presented here could
be also directly applied to these a rids,

4, CONNECTION BETWEEN ISOMORPHISM AND
CONGRUENCE OF CIRCUITS

It is clear that if Cq and C2 are isomorphic circuits
then C4 and Cp are congruent circuits, In this section we
will-shew that for "grids obtained by tesselldtions 33,42,
32,4.3.4,°3.4.6.4, 3.6.3.6, 3,122, 4.6.12, 4.8% (all se-
mi-regular except 3*.6) is satisfied: if circuits Cy and
C2 are congruent circuits then they are isomorphic circu-
its, For grids obtained by regular tessellations previous
statament follows obviously because of that they are not
specialy treated,

In proofs of following lemmas we will use:

LEMMA 6: Let M=MyM>...Mt and N=NiN5...Ny be congruent po-
1ygons such that Mji=Njy,Mj232N;2,Mi25Ni:(for some integres
i1,i2,i3 from (1,2,,...,t), then: if points Mj,,M;, and
Mjs are not colinear then Mi=Ny for all i€{1,2,...,t}.

We shall denote by 3(i,J) the angle between vectars
v(i) and v(j). By r(M) will denoted the word mi,2..n.¢
determined by a simpl polygon M=M{M2.,.Mt such that mj= «
f(Mifie1).

LEMMA 7: Let G be the grid obtained by tessellation 3°.4%
then: if M and Il are congruent polygons in grid G then
r(M)ar(N). : :

PROOF: Equivalence classes with respect to relation p are:
1={0,5} 11={1,4,9,6} 111={2,3,7,8} (see fig.3)

Let M=MiM2., .Mt and N=NiN5...Nt are congruent polygons in
the grid G and r(M)=mimz,..my and r{N)=nqnz...ny.

a8

1

2
VECTORS: 5 6 7 8 9.are opposite
| VAYVA | o for: 01234
t: 34567 8 910 11
{ o k(t): 12246173290 204
' d Ninitial vertex
f(P)=0231208935759020235
767544408 ﬁ]g 3

1-case:my,ni€l then mymy...ma0mj,..mg and nyny...na0ng
...ng (words Omj...mg and Onz...n{ exist because mq and

ny are from same equivalence class) if mj=n; then by Lemma
6 mi=n{ for i=3,,,.,t if m3#n3 then we apply reflection in



a line determined by vector v(0) which maps grid G into
jtself. The image of Om3...mg is Om3..

(0 12345678 9)
0687951324

since )(0 mg) 3(0,n3) we have m1 Ny, myma...ma0n5
meaOngma. . Mg, NyNp...ngalOng...ng that means t
6] n3=m3,...,n{=mi or mqmy...mafiqn;..

2-case: mynq€||then mym;.. .m{ and nyny...ngin3
.ng

y{imE)=3 (1,05 mmp=n;

" If m3=n3=1 then we continue until m{#1 but then using
Lemma 6 mj=nj or mmy...mealms...me=1ns...njonyny...0n¢,
3- case m1 »MGEIII then mqmp...mia2ms...mg and nyny...
Feongich (L. n)

if m5= nz then clearly mi=nj

.mt.

Eemma

.mta1m§..

for i=3,...,t and mymg...

mtu21nz... t31f m3 fnz then, let be for example, my=3 and
n now m n
& 2! 3; ;%2 ng) = m3=6 and nj=3

that means 2m2 ..mg=236 and 2n3...n{=243 but 236a243

4-case: m1G|n1G||then m1m2 < .myalm3. .
aln3...n
?0 mj)= )(¥ n3)=m3=1 and n5=5 continuing we have Omj...
mr0154 and In3.. nr154% but.015441540

5- case m1€|, ni6]||then mymp.. .meaOm;..

: yfo mz) 5305, n8)= ns 9 and nf6(8,2) if mg8 applying oo
we have m ..mead 2mE. . .mp n Np...na20nj...n¢
3(0,m})= )12 n3)=>nW 0 )(2 m %0 n3j=n
mnnnmngwege m3. ces 320n3
=2020... but this words are not from A”

6-case: m1G|l, ni€l]l then mymgz..
nga2nj...ng

We are interested in the case when my and ny do not sa-
tisfy any of previous observed cases. If for some i one
of them is sat1sf1ed then we observe polygons MiMi4q..

Mi.q1 and N;N; Ni-1 where Mpyg=My and Nygg=Np. Since
)11 m3)= )(é nzi and m2,ny do not satisfy cases 1,2,3,4,5
then m3=2 and n3=9, Next, we have im3...m{=1 297 and
2n3.. nt-2971 but 1207 2971 therefore mmy..
miangnz..

LEMMA 8: Let G be the grid obtained by tessellations
32.4.3.4, Then: if A and B are congruent polygons then
r{A)ar(B).

PROOF: Equivalence classes with respect to relation p
are:

E{0,7,10,17}
1l ={2 4,5,9, 11 13, 16 18}

.mg and nqnz...

.m¢ and nynp..

.malmi...mg and nqny...

i|=11,3,6,8,12,14,15,19}
(see f1g 4)

initial vertex

£(P) = 1312715109139 1316814190
18 11 10 1611 18 6 0 18 11 &

5_1n3 y _

AT vectors: 10 11...18 19 are opposite

) for : 0 1... .

2/NE

‘ t: 34567 8 9 10

M k(t): 121361735101

Fig. 4.

Let M=M Mg and N=N,N>...N; are congruent polygons

and r(M}—m,mz .my and r(ﬁ) n1n2 ..n¢. Case of interest
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and nyny...

case: m€ll , nqEil then mmp...mea1mi ."AéM M 2
=hBfg. . g

n;a11n4 Nz Let us observe polygons M°
N BAN3...N (see fig. 4a).

(r(M")=tm3...m{ and r{N")=11n3...n¢{)). Since M” and N°
are congruent, there exist 1sometry S which maps plane
into itself such that S(M")=S(ABMj...M{)= S(A)S(B)S ).

iS(Mg)=BAN5...N{=N°. But then S {s either ~
1) reflect1on in line s which is symmetry axes of
segment |AB]|.

or 2) half turn with centre in middle of segment |AB].
If S is reflection then images of edges denoted by
broken 1ine (---) do not belong to grid G; therefore ed-
iges of polygon BAN3...N” can be some of edges denoted
with «--+, Since polygonls conected, we conclude ns7.But
for n<7 there are thirteen d1fferent a-equivalence clas-
ses and representatives of this classes are not congru-
ent polygons so statement follows. In the case when S is
half turn, proof is analogous.
- For gr1d G obtained by tessellation 3*.6 (see fig.5)
words which correspond to congruence polygons do not ha-
ve to be a-equivalent. For example: for congruent trian-
gles A and B (as it is shown in fig. §) r(A)ar(B) but
there is no isometry which 1) maps grid G into itself,
2) maps A into B.

93
e\ \-
124\°0f3 o
AN\S,
iz

VECTORS:15 16 ,.. 28 29 are opposite
for: 0 1...1314

t: 34567 8

I 1’
'
A\V/://// k(t): 2225613
%initial vertex

= 23 10 26 22 122215259452 34
506271106
rig. 5.

f(P)

The proofs of following lemmas are omited, since
they are analogous to proofs of Theorem 1 and Theorem 2.

LEMMA 9: Let G be the grid obtained by tesselations
3.4.6.4, Then: if M and N are congruent polygons in grid
G then r(M)ar(N).

PROOF: Equivalence classes with respect to relation p
are:

1={0,1,2,3,4,5,12,13,14,15,16,17}
t=(6,7,8,9,10,11,18,19,20,21,22,23})

NI
V3 2
VECTORS:12 13 .., 2223 are opposite

for: 0 t:..71011

t: 3456789 20
jo04433 4
‘Tinitial vertex

1917161017 161017 23141373
10171873 4l§522v!5 1413650

f(P) =

LEMMA 10: Let G be the grid obtained by tesselation
3.6.3.6, Then: if M and N are polygons in grid G then
r(M)ar(N)

PROOF: There exist only one equivalence classes with
respect to relation p.

|¢6,1,2,3,4,5,6,7,8,9,10,11}

3 9
4 y
| o 50
VECTORS: 6 7 8 9 10 11 a
U Y'for: 012345 re. opposite
t: 3456789
k(t): 1112124

initial vertex




f(P)=10121120123476111062314
0

4
798790450098

LEMMA 11: Let G be the grid obtained by tessellations
3.12%, Then if M and N are congruent polygons in grid
G then r{M)ar(N).

PROOF: Equivalence classes with respect to relation o
are:
1={0,2,4,5,8,10,12,13,14,15,16,17}

I=11,3,6,7,9,11}.
6.2
s 12
0
J\ o /1

are opposite

for : 01 23 4 5 6 810
t: 31213 14 15 16 17 18
k() 1 1 1 33 3 1 1
f(P) =11411 0123451516784 5 15
1678916 14 11 0
rig. o.

LEMMA 12: Let G be the grid obtained by tessellation
4.6.12 then: if M and N are congruent polygons in grid
G then r(M)ar(N).

PROOF: Equivalence classes with respect to rellation p
are:

|={0,2,4,6,8,10,18,20,22,24, 26,28}
={1,3,5,7,9,11,19,21,23,25,27,29}
Ij=112,13,14,15.16,17,30,31,32,33, 34,35}

0

f(P) = 29 28 27 26 25 31 19 18 29 35 6 31 19
18 29 35 23 22 15 9 10 35 23 16 0 1
13 24 23 16 :
VECTORS: 18 19 .., 34 35 are'opposite
for: 0 1 ...1617
Tt 45678910 11121314 15 16
k(t): 101010 1 0 3 0 2 0 9

Fig. 9.

VECTORS: 17 7 16 9 12 11 14 13 15
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LEMMA 13. Let G be the grid obtained by tessellation
4.8% then: if M, N are congruent polygons in grid G
then r{M)ar(N).

PROOF: Equivalence classes with respect relation.p

are:
|=00,2,4,6) ; [|=(1,3,5,7,9,10,11}
2
i
0 F
3V5 A
VECTORS: 4 11 6 8 9 10 are opposite
for: 0 1235 7
t: 34567891011 1213 14
k(t): 0100010 t 0 2 0 4

¥~ {nitial vértex
2510284967984967
701 B

rig. v,

f(p) =

Let grid G be obtained by one of semi-regular tessel-
lations 33.42, 32,4.3.4,°3.4.6.4, 3.6.3.6, 3.122,
4.6.12, 4.82 then from lemmas 6-13 follows:

THEOREM 1: Circuits Cy and Cy in grid G are isomorphic
circuits iff they are congruent circuits.

"REFERENCES

|1| Doroslovacki R., Stojmenovi€ I., ToSi¢ R., “Genera-
ting and counting triangular systems", BIT, 1987,
27, 1, 1987, 18-24. .

|2| Robert A. Metler, "Tessellation graph characteriza-
tion using Rosettas", Pattern Recogrition Letters 4
(1986) 79-85

|3] Stojmenovi¢ I., Todi¢ R., DoroslovaZki R., "An al-
gorithm for generating and counting hexagonal sys-
tems", Proc. of the 6-th Yugoslav Seminar on Graph
Theory and Lectures for Research Seminar, Dub.-ovnik
1986, Institut of Mathematics, Univ. of Novi Sady
1986, 189-198,

|4] Tepav&evi¢ A., Stojmenovi¢c I., "Counting Nonisomorp-
hic pats in triangle-hexagonal grids", IX medjunaro-
dni simpozij “"Kompjuter na sveuZilidtu", 1987, IISOI,
1-4, )

{5| ToSi¢ R., Doroslovatki R., "Characterization of hexa-
gonal systems", Rev. of Res., Fac. of Sci. Math, Ser.,
Novi Sad 14, 2, 1984, 201-208.

|6| Zuni¢ J., Stojmenovi¢ I., "Counting nonisomorpphic

- circuits in grids obtained by regular and semi-regu-
lar tessellations", XI medjunarodni simpozijum “Komp-
juter na sveu&ili3tu", 1989, to appear.



