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ABSTRACT. An algorithm is described for detecting the intersection of two

simple polyhedra.

given segment and simple polygon.
relations between a point,
vector form.

1. INTRODUCTION

One of the fundamental problems in
computational geometry is detection of the
intersection of two polyhedra. The problem is
directly related to linear programming, hidden
surface elimination, computer wvision, motion
planning and robotics.

Of the numerous publications devoted to
this subject we shall mention only those dealing

with the problem of intersection [5,6,9] and
detection of the intersection [1-4] of two
polyhedra. Some of the authors have considered

the computational complexity of the algorithms
used for solving these problems [3-6,9,10]}.

In [7] and [8] we have described an
algorithm and the corresponding programme for
determination whether a given point belongs to
the interior domain of a simple polyhedron, as
well as for determination of the intersection of
a straight line and a simple polyhedron. The
basic procedures were formed on the basis of the
relations (given in the vector form), between a
point, a straight line and a plane.

The present article is a continuation of
the above studies in which our considerations
are being extended onto the problem of detection
of the intersection of two simple polyhedra.

2 THE ALGORITHM

Let be given two simple polyhedra P and Q.

Their possible relations may be as follows:
PnQ=2C, C=9 ,C» P, C#»Q (1)
PnQ=P, (PcQ) (2)
PnQ=Q, ( Qe P) (3)
PnQ=2o (4)
If the intersection of at least one edge of
P (resp. Q) and at least one facet of Q {(resp.
P) is not an empty set, then condition (1} is
fulfilled. If condition (1) is not fulfilled,
then P and Q Intersect provided that one
arbitrary vertex of P (resp. Q) belongs to the

interior of the polyhedron Q
condition 2 (resp. 3)
1f conditions (1)-(3)
case {4) holds, i.e.,

(resp. P), i.e.,
is fulfilled. Obviously,
are not fulfilled, then

P and Q do not intersect.

i The corresponding programme,
cssentially based on a procedure developed to test the intersection of the
The
a straight line and a plane,

implemented in Modula-2, is

basis for this procedure 1s the

expressed in the

Thus, testing condition (1) is reduced to the
multiple use of the function for detecting the
intersection of the segment (polyhedron edge)
and the simple polygon (polyhedron facet). This
function can be formed on the basis of the
relations given in their vector form.

2.1. BASIC RELATIONS

An arbitrary point ZeR3, considefed as a

.vector of the same coordinates, we shall denote

by 7. s 3
Let be givensthe points A<R” and BeR™, and
the plane a in R . Let us form the following

expression:

Dl-(ﬁ—i’)oﬂ {(5)
D, = (B-%) - N _ - (6)
D =D,- D, (7)

where N is a vector perpendicular to a and Xea.
The mark *e* denotes the scalar product of
vectors. If D < O (resp. D>0}, then the points A
and B are on different (resp. on the same) side
of the plane a. For Di-O and Dst point. A

belongs to the plane a, and for D ~0 and Dz-d

point B belongs to the plane a. If Di-O'and DZ-O

then the segment AB belongs to the plane a.,
Let us form the expressions:

al-(a-mx(v-a)
B, = (@-0)x (V-0
E =B - B,

(8)
(9)
(10)

where the points G, H, U and V belong to the
same plane. The mark "x* stands for the vector
product of vectors. If E > O (resp. E < 0), then
the points G- and H are on the same (resp. on
different) side of the straight line determined
by the points U and V. For E1 = 0 (resp. E2 = 0}

point G (resp. H) lies on the straight line
determined by the points U and V.



On the basis of retations (8)-(10) it can
be determined whether the segments GH and UV
intersect. Namely, if the points G and H are on
the different sides of the straight line UV and
the points U and V are on the different sides of
the straight line GH, the two segments
intersect, otherwise not.

2.2 DETECTION OF THE INTERSECTION OF A SEGMENT
AND A SIMPLE POLYGON

Let us denote the vertices of an edge of
the one polyhedron by A and B, and by S a facet
of the other polyhedron. Facet S is a simple
polygon. Let the plane a be determined by the
polygon §. Let wus suppose the wvalues in
expressions (5)-(7) are as follows: D<0; Dl=0
and D2t0; Dlxo and D2=0. In these cases the
intersection of the segment AB and the plane a
is a point. Let us denote this point by R. If R
belongs to the interior region or of the hull of

the polygon S, then the intersection of the
segment and polygon S is not an empty set. In
the case when. the segment AB belongs to the

plane a, then detection of the intersection of
the segment AB and polygon S consists in the
following. The intersection of the segment AB
and all the edges of S is tested on the basis of
relations (8)-(10). If this intersection is an
empty set, then it 1s necessary to test
additionally if at least one of the points A and
B belongs to the interior region of S. If it
does, the intersection of the segment AB and
polygon $ is not an empty set.

Therefore, detection of the intersection of
the segment AB and polygon S is reduced further
to solving the following task.

Given a simple polygon S in a and the point
Rea, determine if the point R belongs to the
interior region of S.

Let r be an arbitrary straight line 1lying
in the plane a and passing through the point R.
Let us introduce the following definitions.

Definition 1. The intersection point
between r and the hull of P is a piercing point
if at this point r passes from the interior into
the exterior domain of P, or vice versa.

Definition 2. The edge of the simple
polygon S§, lying on the straight .line r 1is a
piercing edge if one vertex of this edge borders
upon the internal and the other on the external
region of S.

Then, the folliowing theorem holds.

Theorem. Point R belongs to the interior
region of S if on the same side of the point R
lying on the straight 1line r, the sum of
piercing points and pilercing edges is an odd
number .

Proof. Let us suppose the point Y moves
along the straight line r from infinity to the
point R. Then Y belongs to the exterior domain
of S until it reaches the first piercing point,
or plercing edge. After passing through the
first piercing point / piercing edge, the point
Y enters the interior domain of S and remains in
it until reaching the second piercing point /

piercing edge. Afterwards, the point Y comes
again to the exterior domain, and so on.
Therefore, if point Y coincides with R after

passing through an odd number of the sum of

piercing points and piercing edges, then R

belongs to the interior domain of polygon S.m
Let us denote an edge of S by Vl_iv‘. The

straight line r and the edge Vx-tvx may have one
of the following relations:
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({t)y r oV \Y

- T
i-1 4 T

T 1s different from Vl_l and Vl;
{4 ! = -
({4} r n \i_ivi Vi or r n vl_lvl Vl_i,
({44) r n vl_iv‘ - vl_tvl,
{é) rnvV V =90
i-1 4
In case (4) T is a pilercing point. Let in

case (i4) the intersection be the vertex V1'
Then Vl is a plercing point if the vertices V‘_
and V1+

1
, are on different sides of the straight

line determined by the points V‘ and R, i.e. if
the following condition is fulfilled:

(U, V0BV o0 e ol U xET ) <o

(11)
In case (i4i), " the edge vi_iv‘ is a
piercing edge if the vertices Vl_2 and V“1 are
on different sides of the straight line r, i.e.

if the following condition is fulfilled:
(0, x@ 9 e, -V

2 i 1 i

—1)X(v1—v1‘1))<0
(12)

Obviously, in case (4#), the edge Vi_‘v1 is

not a piercing edge and there are no piercing
points on it.

Figure 1 shows an illustrative example of
the intersection of the straight 1ine r and
polygon S. The corresponding intersection points
are K1‘ K K K‘ and Vls. and the piercing

3° 3t
edge is V10V11 Additionally, the edges V2V3 and
and the vertex V13 lying on the

ARV}

6 7
straight line r. On the basis of these data, it
point Rer is on

is possible to determine if a
or it belongs to the interior /

the hull of S,
exterior region of S. First, if the point R

coincides with one of the piercing points Kx‘
K2, K3, K4 and sz' or w?th the vertex V:a' or
it belongs to one of the edges Vzva' Vo\!7

Vlovli' then R is on the hull of S. Second,
us suppose that the point R is between K3
V,O. Then, on the one side of this point
found the piercing points Kt, K2 i Ka‘ and on
the other side, the piercing edge onV and the

on the

are

and
let
and
are

11

piercing points K4 and V:s' Obviously,

basis of the given theorem, in both cases point
R belongs to the interior region of S.
Let us consider now the segment RRm. where

the point Rw is chosen to belong to the exterior

region of S, which 1is easily achfeved by taking
that absolute values of the coordinates of the
point R, are large. The algorithm for

determining if R belongs to the interior region
of S, can be formed as a Modula-2 function
procedure Internal in the following way:

PROCEDURE Internal(R, S)}: BOOLEAN;

{ Procedure Internal returns TRUE {f point R
belongs to the interior region or to the hull of
the simple polygon S, whose vertices are dcnoted
by V;‘ i=1, 2, ..., n, where it is assumed that
Vn =V0 ’ Vnﬁ 1 =V1 ’ Vn+ 2 l=\,2 *

K is the sum of plercing points and piercing
edges. ] .



BEGIN
K := 0;
Determination of point Rm;
FOR {1 := 1 TO n DO

IF (ReViV"l) THEN
RETURN TRUE
ELSIF (V|Vi¢1CRRm) AND
(Vl—i'vl+2 are on different sides of the
straight 1line RRm) THEN
INC(K) .
ELSIF (VieRRm) AND
(Vv 1,\/,H are on different sides of the
P i
straight line RRm) THEN
INC(K)
ELSIF (va1‘
INC(K)

END
END
RETURN K<>0 AND ODD(K)
END Internal;

N RRm » @) THEN

In the given algorithm, the relations
between two segments, and between a point aqd a
segment are determined on the basis of relations

(8)—~(10). . .
The algorithm for determining if an edge
and a facet intersect is the auxiliary one, and

will be used in the final step. It is formed as
the Modula-2 function procedure Intersect.

PROCEDURE Tntersect(E, F): BOOLEAN;

{ Procedure Intersect returns TRUE if the edge E
‘and the facet F intersect, otherwise it returns
FALSE } 4

BEGIN
IF (E n plane(f) = 6) THEN
IF (E < plane(F)) THEN
IF (E n hull(F) = &) THEN
RETURN TRUE
ELSE
R is one of the vertices of E
IF Internal(R, F) THEN
RETURN TRUE
END
END
ELSE
R := E n plane(F)
IF Internal(R, F) THEN
RETURN TRUE
END
END
END;
RETURN FALSE
END Intersect;

23. PROCEDURE FOR DETECTING THE INTERSECTION OF
TWO SIMPLE POLYHEDRA :

~ Let us denote by pr' i=1,2,...,IEP| and

FPi i=1, 2, ., IFP| the edges and facets of

the simple polyhedron P, and by EQi. i =

1,2,...,1EQ! and FQ1 i =1, 2, ., IFQl the

corresponding edges and facets of the polyhedron
Q. Then, the algorithm for detecting the
intersection of P and Q may be presented in the
form of Modula—-2 function procedure
Polyhedralntersection.

PROCEDURE Polyhedralntersection(P, Q): BOOLEAN;
{ Procedure Polyhedralntersection returns TRUE

if Polyhedra P and Q intersect, otherwise
returns FALSE }
BEGIN '
FOR i := 1 TO |EP| DO
FOR j := 1 TO IFQi DO

IF Intersect(EP‘. FQJ) THEN
RETURN TRUE

END
END
END
~FOR i := 1 TO |EQt DO
FOR j := 1 TO IFP{ DO

IF Intersect(EQl, FPJ) THEN

RETURN TRUE
END
END
END :
IF (any vertex(P) € Q) OR { PcQ, cond.
{any vertex(Q) € P) [ Q=P, cond.
THEN
RETURN TRUE
ELSE
RETURN FALSE
END;
END Polyhedralntersection;

]

(2)
(3) 1}

The modules for testing whether any vertex
of one polyhedron belongs to the interior domain

‘of the other polyhedron has been given in [8].

3. TEST EXAMPLE

pata structure of the simple polyhedra P, Q
and R is given in Tables 1.-3.

Figure 1



Table 1

ordinal no. Polyhedra
of vertex P Q R
1 (0,0,0) (1,1,1) (0,0,6)
2 (5,0,0) (6,1,1) (5,0,6)
3 (3,2,0) (4,3,1) (3,2,6)
4 (4,4,0) (5,5,1) (4,4,6)
5 (2,2,5) (3,3,6) (2,2,11)
Table 2
Ordinal Edge determined
no. of edge by vertices
1 1, 2
2 2, 3
3 3, 4
q 3,5
5 4, 5
6 4, 1
7 1, 5
Table 3
Ordinal Facet determined by
no. of facet ordered vertices
1 1, 2, 5
2 2, 3,5
3 3, 5, 4
4 4, 1, 5
5 1, 2, 3, 4
PnQ n.a and P nR =29,

4. CONCLUSION

Oon the basis of the relations derived in
vector form, a function can be easily formed
for testing of the intersection of a given
segment and a simple polygon. The multiple use
of this function can serve for detecting the
intersection of two simple polyhedra P and Q for
the cases when P n Q = C, C = 9, C » P and C »
Q. The introduced vector relations may be suited

for solving other problems in computational

geometry.
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APPENDIX
IMPLEMENTATION OF THE ALGORITHM

Al PRELIMINARIES

For representing a simple polyhedron,
following data 'structure has been adopted:

the

Point = ARRAY [1..3] OF REAL;
Edge = RECORD
F, S: Point
END;
Polygon = RECORD
V : ARRAY [1..100] OF Point;
No : [1..100}
END;
Aux = ARRAY [1..20} OF INTEGER;
Polyhedron = RECORD
NoP ¢ CARDINAL; .
Vertices: ARRAY [1..100] OF Point;
NoE ¢ CARDINAL; .
Edges : ARRAY (1..50] OF Aux;
NoF : CARDINAL;
Facets : ARRAY [1..50] OF Aux;
NoOfV : ARRAY [1..50]) OF INTEGER;
END;

A vertex is represented by the array Point
of three real numbers, i.e. coordinates of the
point. An edge is represented by the record Edge
of two points, and a polygon is represented by
the record Polygon i.e. by the array V of No
points.

A polyhedron 1s represented by the record
Polyhedron 1.e. by its vertices (array Vertices
of NoP points), edges (array Edges of NoE vertex
indices - pointers to array Vertices) and facets
(array Facet of NoF vertex indices - pointers to
array Vertices). The i-th element of the array
NoOfV contain the information on the number of
vertices of the i—-th polyhedron facet.

There are two operations on data structures

representing polyhedron. The first one
(imniemented as the function procedure ELdg(P:
Polyhedron; 1i: CARDINAL): Edge sclects the i-th
edge of the polyhedron P. The other ona

(implemented as the function procedure Fac(P:
Polyhedron; 1i: CARDINAL): Polygon selects the
j-th facet of the polyhedron P. Both procedures
return their - values in appropriate data
structures, i.e. Edge and Polygon, respectively.



PROCEDURE [Lda(P: Polyhedron; i:
VAR E: Edge;

CARDINAL): Edge;

BEGIN
WITH P DO
E.F := Vaertices|[Edges|{i,1]};
E.S := Vertices{Edges[i,2]];
END; .
RETURN E

END Edga; )
PROCEDURE Fac(P: Polyhedron, i: CARDINAL):
Polygon;
VAR S$: Polygon;
. J: CARDINAL;
BEGIN .
WITH P DO
S.No := NoOfV[il];
FOR j := 1 TO $.No DO
S.V[j] := Vertices|Facets[i,j]]
END3
END;
RETURN S
END Fac;

We will cite without a source code some
procedures for basic vector operations, which we
need for implementation of the algorithm:

PROCEDURE ScalarMul(V1,V2:Point): REAL;:

[ ScalarMul=U1-¥2 |
PROCEDURE VecEqual(Vl V2:Point): BOOLEAN;

{ VecEquals=(V1=0U2) )
PROCEDURE VecAdd(V1, va: Point): Point;

{ VecAdd=U1472 |
PROCEDURE VecScMul (A:REAL; V1:Point): Point;

[ VecScMul=A*U1

PROCEDURE VecSub(V1,V2: Point): Point;
[ Vecsub=U1-U2 )
PROCEDURE VecMul(V1l, V2: Point): Point;

{ VecMul=U1xU2 }

A.2. PROCEDURE INTERNAL

The procedure détermines if the given point
belongs to the interior domain of the simple

polygon. 1t uses additional procedures OppSides
and Between , which are based on relations
(8)-(10).

If points A and B are on different sides of
the straight line determined by C and D, then

function procedure OppSides returns TRUE,
otherwise it returns FALSE. ’
PROCEDURE OppSides{A, B, C, D: Point): BOOLEAN;
VAR E1, E2: Point;

BEGIN

E1 = VecMul (VecSub({A,C), VecSub(D,A));
E2 := VUecMul {VecSub(B,C}, VecSub(D, B));
RETURN ScalarMul(E1,E2) < 0.0

END OppSides;

If the point R is on the segment vivz, thoen

the function procedure Between returns TRUE,
otherwise it returns FALSE.

PROCEDURE Retween{R, V1, Vv2:
PROCEDURIE Opposite():
BEGIN

RETURN ScalarMul {VecSub(R,V1),
VecSub(R,v2)) <= 0.0

Point):
BOOLEAN;

BOOLEAN;

END Opposite;
PROCEDURE SamelLine():
VAR ZeroVec, E: Point;

BOOLEAN;

BEGIN
ZeroVec|l] := 0.0;
ZeroVeci{2] := 0.0;
ZeroVec|3} := 0.0;

E := VecMul(VecSub(R,V1}, VecSub(R,V2));
RETURN VecEqual(E, ZeroVec)
END SamelLine;
BEGIN
RETURN Samel.ine{) AND Opposite()
END Between;

If the point R belongs to the interior
domain of the simple polyhedron S, then function
procedure Internal returns TRUF otherwise 1t -
returns FALSE.

PROCEDURE Internal(R: Point; S: Polygon):

. BOOLEAN;

CONST Inf = 200.0;

VAR 1, K: CARDINAL;
RInf: Point;
PROCEDURE NextV{i:
BEGIN

RETURN S.V[{i MOD S.No) + 1}
END NextV;
PROCEDURE Next2v(i:
VAR Ind: CARDINAL;
BEGIN

Ind := (i MOD S.No) + 1;

RETURN S.V[{(Ind MOD S.No) + 1}
END Next2v,
PROCEDURE PrevV(i:
BEGIN

IF i=0 THEN .

RETURN S.V{S.No}
ELSE
RETURN S.V[i-1]
‘END :
END Prevv
BEGIN
K = 0;
WITH § DO :
RInf := VecAdd(VecScMul(Inf, VecSub(R,V[1}]}),
vi1l]); :
FOR i := 1 TO No DO
IF Between(R, V([(i], NextV(i})) THEN
RETURN TRUE
ELSIF Between{V[i], R, RInf) AND
Between(NextV(i). R, RInf) AND
OppSides(PrevVv(i),Next2v{i),R,RInf) THEN
INC(K)
ELSIF Between{V[i], R, RInf) AND
OppSides(Prevv(i),NextV(i),R,RInf) THEN
INC(K)
ELSIF OppSides({V]i}l, NextV{i), R, RInf) AND -
OppSides(R, RInf, V{i], NextV{(i)) THEN
INC(K)

CARDINAL}: Point;

CARDINAL): Point;

CARDINAL): Point;

END
END;
END;
RETURN (K<>O) AND ODD(K)
END Internal;

A.3. PROCEDURE PoLYHEDRAINTERSECTION

The procedure determines 1if two simple
polyhedra intersect. Additional procedures
InterExists and Sameplane are based on relations
(5)-(7).

If the intersection between the segment L
and the plane determined by polygon S is not an .

empty set, then the function procedure
InterExists returns TRUE, otherwise it returns
FALSE.
PROCEDURE InterExists{E: Edge; S: Polygon):
BOOLEAN;
VAR N: Point;
El, E2: REAL;
BEGIN
WITH S DO
N = VecMul(VecSub{Vi1], v[2}]},
VecSub(V[2], VI[3]));
E1 := ScalarMul{VecSub(E.F, V{1]), N);
E2 := ScalarMul(VecSub(E.S, V(1] N);
END;
RETURN E1*E2 <= 0.0
END InterExists;
If the segment E belongs (o the plane
determined by polygon S, then the function

procedure SamePlane returns TRUE,
returns FALSE.

otherwise it



PROCEDURE SamcPlane(E: Edge; S: Polygon):

BOOLEAN;
VAR N: Point;
EL, E2: REAL;
BEGIN
WITH § DO
N := VecMul(VecSub(V]1l], Vi2}]),
VecSub(V[2], V[3]));
Ll := ScalarMul {VecSub{E.F, V{[1]), N);
E2 := ScalarMul{VecSub(E.S, V[1]), N};
END; ’

RETURN (E1 = 0.0) AND (E2 = 0.0)
END SamePlane;

I1f the intersection between the segment E
and the hull of § is not an empty set, then the
function procedure HullIntersect returns TRUE,
otherwise it returns FALSE. Procedure is based
on mutual application of procedure OppSides.

PROCEDURE HullIntersect(E: Edge; S: Polygon):
BOOLEAN;
VAR 1i: CARDINAL;
NV: Point;
BEGIN
WITH $§ DO
FOR i := 1 TO No DO
NV := V[(i MOD No)+1];
IF OppSides(V[i], NV,
OppSides{(E.F, E.S,
RETURN TRUE

E.F, E.S) AND
V[{i}, NV) THEN

END;
END;
END;
RETURN FALSE
END HulllIntersect;

Function procedure CrossingPoint returns
the piercing point between the segment E and the
plane determined by polygon S. The procedure is
called only when E is piercing the plane.

PROCEDURE CrossingPoint{E: Edge; S: Polygon):
. Point;

VAR R: Point;

Aa, Bb, Cc, Dd, L: RIAL;

Dd:= -V[1,1]*(V[2,2]-V]
-V{1,3]*(V[2,1]-V[1,
~V[1,2]*(V[2,3]-V[1,3]}*(V{3,1]-V[1
VL, 3]*(VI3,1]-V[1,1]}*(V[2,2]-V{1
+V[1,1]%(V[3,2]-v[1,2])*(V(2,3]-V[1
+VEL,21%(VI2,11-V[1,1])*(V{3,3]-v[1
(Aa*E.F[1]+Bb*E . F[2]+Cc*E.F(3]+Dd) /
(Aa*(L.S{1]-E.F[1]}+Bb*(E.S[2]-E.F[2])+
Cc*(E.S[3]-E.F[3])};

V[1,2])*(V(3,3]-V]1

BEGIN

WITH S DO .
“Aar= (V[2,2]-V[1,2])*(V{3,3]-V[1,3])
- (V[3,2]-V[1,2])*(V[2,3]-V[1,3]);
Bb:= (V[2,3]-V(1,3])*(V[3,1]-V[1,1])
= (V[2,1]-v[{1,1])*(V[3,3]-V[1,3]);
Ce:= (VI2,1]-V[1,1])*(V[3,2}-V[1,2])
= (V{3,1]=-vi1,1]1}*(vi2,21-V(1,2]);

)

11)*(vi3,2]-v([1,

- . v o=

L:=

END;

R{1]:=E.F{1]-L*(E.S[1}-E.F[1]);
R{2]:=E.F{2]-L*(E.S{2]-E.F[2]);
R{3]:=E.F[3|~-L*(E.SI3]-E.F[3]);

RETURN R
END CrossingPoint;

If the intersection between
and the polygon S is not an empty set,
function procedure Intersect returns TRUE,
otherwise it returns FALSE. The procedure is
vased on afore-mentioned procedures and the
algorithm described in section 2.2 of the paper.

the segment E

then the
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PROCEDURE Intersect(E: Edge; S: l'olygon):
BOOLEAN;
BEGIN .
IF InterExists(E, S) THEN
IF SamePlane(E, S) THEN
IF Hulllnterscct(E, S) THEN
RETURN TRUE
ELSE
RETURN Internal{(E.F, S} OR
Internal(E.S, S)
END
ELSE
RETURN Internal(CrossingPoint(E, S), S)
END; ’
END;
RETURN FALSE;
END Intersect;

If the intersection of simple polyheadra P

and Q is not an empty set, then the function

procedure Polyhedralntersection returns TRUE,

otherwise it returns FALSE.

PROCEDURE Polyhedralntersection(P, Q:
Polyhedron): BOOLEAN;

VAR i, j: CARDINAL;

BEGIN

FOR i:=1 TO P.NoE DO
FOR j:=1 TO Q.NoF DO
IF Intersect(Edg(P,i},
RETURN TRUE
END
END
END;
FOR i:=1 TO Q.NoE DO
FOR j:=1 TO P.NoF DO
IF Intersect(Edg(Q,i), Fac{P,])) THEN
RETURN TRUE
END
END
END;
RETURN FALSE
END Polvhedralntersection;

Fac(Q,j)) THEN



