
Informatica 35 (2011) 29-37 29

Component Reconfiguration in Presence of Mismatch

Carlos Canal and Antonio Cansado
Department of Computer Science, University of Málaga, Spain
E-mail: canal@lcc.uma.es

Keywords: component substitution, dynamic reconfiguration, software adaptation

Received: February 20, 2010

This paper discusses how to reconfigure systems in which components present mismatch in both their
signature and behavioural interfaces. We are interested in performing component substitution without
stopping the system, though we assume components are not designed with reconfiguration capabilities in
mind. We also consider that components may need to be adapted before interacting with the system. In
this work we identify the basic requirements for achieving runtime component substitution, and define
several different interchangeability notions that are adequate to component substitution under behavioural
adaptation. Our approach is illustrated with a case-study of a client/server system where the serverneeds to
be substituted by a new one. Classic equivalence and compatibility notions fail to find a new server because
the only one available implements a different interface. We show how our interchangeability notions could
be used in order to let the system keep on working.

Povzetek: Opisanoje preoblikovanje sistemov, ko se zgodi neskladje.

1 Introduction

Software reuse is of great interest because it reduces costs
and speeds up development time. Indeed, a vast number
of software components are already available through the
Internet, and many research and development efforts are
being invested in devising techniques for combining them
safely and efficiently. In particular, Software Adaptation
promotes the use of adaptors in order to compensate mis-
match among component interfaces. In fact, this is the
only known way to adapt off-the-shelf components since
designers usually only have access to their public inter-
faces. Without adaptation, components could not be put
together or their execution could lead to deadlocking sce-
narios [2, 9].

Still, one of the most challenging issues in Software
Adaptation is that systems need to adapt to environmen-
tal changes, server upgrades or failures, or even the avail-
ability of a new component more suitable to be used in the
system. Indeed, the need for finding a new component to
be integrated in the system may be either reactive or proac-
tive. The reactive case is caused by the system itself. For
instance as a consequence of connection loss or failure of
one its components, thus creating a hole in the system that
must be filled for its correct functioning. The proactive
case would be caused by the availability of a new compo-
nent that is suspected to be a good candidate for being inte-
grated in the system, replacing some of its current compo-
nents. In both cases, we have first to detect the need for re-
configuration by using runtime monitoring techniques both
on the system and on its environment. Then, the interface
of the candidate components —and its compatibility with
the rest of the system— must be evaluated, attending not

only to its signature interface (names of services, opera-
tions, messages, etc.), but also to its behavioural interface
(the order in which the elements in the signature interface
are expected to be used) and the QoS features provided/ex-
pected by the component and the system.

When dealing with this kind of dynamic reconfigura-
tion [14], component substitution must be applied without
stopping the complete system, and trying to affect mini-
mally its performance, in particular the functioning of those
of its parts that are not directly involved in the reconfigura-
tion. That means that components must collaborate to sup-
port reconfiguration capabilities. In fact, it is important to
determine when the system can be reconfigured and which
kind of properties the system holds after reconfiguration.

Few works have studied the interplay of behavioural
adaptation and reconfiguration so far. In most approaches
to reconfiguration, substituting a component by another
one requires the new component to implement the same
functionality as the former one. This means that substitu-
tion is usually limited to instances (or subtypes) of a given
component. However, it is possible that a component can-
not substitute another one, but an adapted version can.

This paper identifies some basic requirements for run-
time component substitution and we describe the opera-
tions required to achieve this reconfiguration. We also
define several different interchangeability notions that are
well fitted for component substitution under behavioural
adaptation. The paper is structured as follows: Firstly,
Section 2 provides some background on behavioural inter-
faces and adaptation. Then, Section 3 introduces a clien-
t/server system that is used as running example through
all this document. Section 4 presents our reconfiguration
model, for describing systems as a collection of static ar-

mailto:canal@lcc.uma.es

30 Informatica 35 (2011) 29-37 C. Canal et al.

chitectural views (configurations), and reconfiguration op-
erations for moving from one configuration to another one;
it also shows how reconfiguration states can be defined at
certain points of system execution, and how new compo-
nents must be initialised for arriving to these states. Next,
Section 5 defines different notions of substitutability that
we believe are adequate for component replacement under
behavioural adaptation. Then, Section 6 outlines the plat-
form that we plan to implement for validating our results.
Finally, Section 7 presents related works on reconfigura-
tion and behavioural adaptation, and Section 8 concludes
the paper.

This paper builds on our previous work in the field. It
is an extension of our position paper [10], developing the
ideas presented there, adding many explanations and more
detailed examples. In presents also our model for dy-
namic reconfiguration, and the notions of substitutability
discussed in [10] are formally defined here.

2 Background
We assume that component interfaces are equipped both
with a signature (set of required and provided operations),
and a protocol. For the protocol, we model the behaviour of
a component as a Labelled Transition System (LTS). The
LTS transitions encode the actions that a component can
perform in a given state. For reasons of space we omit the
signature interface when it can be easily inferred from the
corresponding protocol.

Definition 1. [LTS]. A Labelled Transition System (LTS)
is a tuple (S, s0, L, where S is the set of states, s0 G S
is the initial state, L is the set of labels or alphabet, ^ is
the set of transitions : ^C S x L x S. We write s s' for
(s, a, s') G^.

Communication between components are represented
using actions relative to the emission and reception of mes-
sages corresponding to operation calls, or internal actions
performed by a component. Therefore, in our model, a la-
bel is either the internal action T or a tuple (M, D) where M
is the message name and D stands for the communication
direction (! for emission, and ? for reception).

LTSs are adequate as far as user-friendliness and de-
velopment of formal algorithms are concerned. However,
higher-level behavioural languages such as process alge-
bras can be used to define behavioural interfaces in a more
concise way. We can use for that purpose the part of the
CCS notation restricted to sequential processes, which can
be translated into LTS models: P ::= 0|a?P|a!P|T.P|P1 +
P2|P/L|A, where 0 denotes a do-nothing process; a?P a
process which receives a and then behaves as P; a!P a pro-
cess which sends a and then behaves as P; T.P a process
which performs an internal action T and then becomes P;
P1 + P2 a process which may act either as P1 or P2; P/L
is the process P after hiding the names in L, preventing any
communication on those names; and A denotes the call to

a process defined by an agent definition equation A = P.
Additionally, we will use the parallel operator || for repre-
senting the composition of components —represented by
CCS processes— allowing the synchronisation of their in-
put and output actions.

In this paper we will use LTSs or CCS expressions in-
distinctly for representing components and adaptors. Both
could be easily obtained for standard notations such as WS-
BPEL or WWF.

2.1 Specification of adaptation contracts
Adaptors can be automatically generated based on an ab-
stract description of how mismatch can be solved. This is
given by an adaptation contract (AC). In this paper, the
adaptation contract between components is specified using
vectors [8]. Each action appearing in a vector is executed
by one of the components, and the overall result corre-
sponds to a loose synchronisation between all of them. A
vector may involve any number of components and does
not require interactions to occur on the same names of ac-
tions. For distinguishing between actions with the same
name occurring on different components, we prefix actions
with component names.

For example, (C1.on!,C2.activate?) is a vector denot-
ing that the action on! performed by component C1 cor-
responds to action activate? performed by component C2.
This does not mean that both actions have to take place si-
multaneously, nor one action just after the other; for the
transmission of C1's action on! to C2 as activate?, the
adaptor will take into account the behaviour of these com-
ponents as specified in their LTS, accommodating the re-
ception and sending of actions to the points in which the
components are able to perform them (Fig. 1).

> Q
(sK

®
> Q

(sK
®

Figure 1: Components C1 and C2 connected through an
adaptor.

2.2 Adaptor generation
Thus, previously to the reconfiguration of the system by
the integration of a new component, we will likely need
to adapt the component for solving the problems of com-
patibility detected in the component discovery phase. This
will be accomplished by generating an adaptor, that will
play the role of wrapper or component in-the-middle, fil-
tering the interactions between the component and the sys-
tem and ensuring both a correct functioning of the system
(verifying for instance the absence of deadlocks or other
user defined properties) and the safety of the composition
(i.e., that the component is behaving as stated on its inter-
face). In previous works we have developed a methodology

COMPONENT RECONFIGURATION IN PRESENCE OF. Informatica 35 (2011) 29-37 31

for behavioural adaptation (see [9], where our approach for
generating adaptors is presented). Following this method-
ology, both contract specification and adaptor generation
are tool supported [8].

3 Running example
This section presents the running example used through-
out the paper. It consists of a client/server system in which
the server may be substituted by an alternative server com-
ponent. This may be necessary in case of server failure,
or simply for a change in the client's context or network
connection that made unreachable the original server. Sup-
pose that the client wants to buy books and magazines as
shown in its behavioural interface in Fig. 2(a). The server
A can sell only one book per transaction (see Fig. 2(c)); on
the other hand, the server B can sell a bounded number of
books and magazines (see Fig. 3(b)). In both cases, sales
are represented by a pair of actions (one order and its ac-
knowledgement), and with these two actions we abstract all
the details of payment and shipment.

Initially, the client is connected to the server A; we shall
call this configuration cA. The client and the server agree
on an adaptation contract A C C A (see Fig. 2(b)), which es-
tablishes action correspondences between the client and the
server A. Obviously, under configuration cA the client can
buy at most one book in each transaction but it is not al-
lowed to buy magazines because this is not supported by
the server A. The latter is implicitly defined in the adapta-
tion contract (Fig. 2(b)) since there is no vector allowing
the client to perform the action buyMagazine!. Finally, the
server A does not send the acknowledgement ack? expected
by the client; this must be worked out by the adaptor, too
(see v4 in Fig. 2(b)).

In an alternative configuration cB the client is connected
to the server B whose protocol is depicted in Fig. 3(b).
Similarly, the client and the server agree on an adaptation
contract ACC,B (see Fig. 3(a)). Under configuration cB,
the client can buy a bounded number of books and maga-
zines. In Fig. 3(a), we see that vector v5 allows the client
to buy magazines. Moreover, the server B sends a differ-
ent acknowledgement for each product (see v4 and v6 in
Fig. 3(a)).

Following the methodology for behavioural adaptation
presented in [9], adaptors can be automatically generated
for configurations cA and cB (see adaptors AC A and AC B
in Fig. 4). These adaptors ensure by construction that the
interaction between the client and servers A or B will take
place without deadlock and fulfilling the correspondences
of actions described in the corresponding adaptation con-
tracts [9].

4 Reconfiguration model
This section presents the model that enables both reconfig-
uration and behavioural adaptation. We define a reconfigu-

(a) LTS of Client C

vi = {C.login!, A.userl)
v2 = {C. passwd! , A. passwd?)
v3 = {C.buyBook!, A.buy?)
v4 = {C.ack?, A.E)
v5 = {C .logout!, A.disconnect?)

(b) Adaptation Contract ACC a

Figure 2: Configuration cA.

vi = {C.login!, B.connect?)
v2 = {C. passwd!, B. pwd?)
v3 = {C : buyBook! B : buyBook?)
v4 = {C.ack?, B.bookOk!)
v5 = {C.buyMagazine!, B .buyMagazine?)
v6 = {C.ack?, B.magazineOk!)
v7 = {C .logout!, B .disconnect?)

(a) Adaptation Contract ACC,B

(b) LTS of Server B

Figure 3: Configuration cB.

ration contract to determine how the system may evolve in
terms of structural changes.

First, a system architecture consists of a finite number of
components. Each configuration is a subset of these com-
ponents connected together by means of adaptation con-
tracts.

Definition 2. [Configuration]. A configuration
c = {P, AC, S*) is a static structural representation

(c) LTS of Server A

32 Informatica 35 (2011) 29-37 C. Canal et al.

Figure 4: Adaptors

of a system's architecture. P is an indexed set of compo-
nents. AC is an adaptation contract of components in P.
S* is a set of reconfiguration states defined upon P; these
are the states in which reconfiguration is allowed.

Changing a configuration by another is what we call a re-
configuration. A reconfiguration is specified in a reconfig-
uration contract which separates reconfiguration concerns
from the business logic of the system. This way, each con-
figuration can be thought of as a static view of the system,
while its dynamic view is specified by a reconfiguration
contract.

Definition 3. [Reconfiguration Contract]. A reconfigu-
ration contract R = (C, c0, Ar) is defined as:

C is a set of static configurations, c0 G C is the initial
configuration. Ar C C X Rop xC is a set of reconfiguration
operations, with reconfiguration operation Rop C S* X S
S* G ci, S** G cj, ci, j G C.

From the definition above, reconfiguration can only take
place at predefined states, for guaranteeing system consis-
tency. One certain state of the source configuration (s*)
defines when an architecture can be reconfigured. On the
other hand, one state of the target configuration (s*) says
what is the starting state in the target configuration to re-
sume the execution. Notice also that the target configura-
tion may require a new adaptation contract (allowing re-
placing a component by another one that implements a dif-
ferent behavioural interface).

Example. In our running example, there are two config-
urations:
ca = ({C, A}, A C C,A, SA),and
CB = ({C, B}, AC C,B, SB).
The reconfiguration contract R = (C, cA, AR) is given by:
C = {CA, CB}, and AR = {CA A cb}, with
r = OA sB).

Hence, r specifies pairs of reconfiguration states on which
reconfiguration can be performed. Since both servers have
different behavioural interfaces, it is not straight-forward to
determine how reconfiguration can take place after a trans-
action between the client and the server has started.
In the simplest scenario, we may consider that reconfig-
uration from cA to cB and back is only allowed at the
initial states of the client and the server. This is spec-
ified as a unique reconfiguration state s0 G S*, i G {A,B}
for each configuration, (where sA = {C.s0,A.s0} and sB =
{C.s0, B.s0}), and a pair of reconfiguration operations

rA,B , rB,A . . , 0 0 , .

ca —> CB and CB —> ca, with rA,B = {sA,sB} and rB,A =
{s0

B, s0
A} (subindexes in states always refer to state numbers

as depicted in Figs. 2 and 3).

In the next section, we will study how other pairs of re-
configuration states —apart from the initial states here—
can be obtained.

4.1 Reconfiguration at runtime

In the previous section we have presented our reconfigura-
tion model considering that reconfiguration could be only
performed at the initial state of the system (i.e. at static
time). Now we will generalise our working scenario allow-
ing reconfiguration to occur when the interactions have al-
ready started and the components are in intermediate states
(i.e. at dynamic time).

Interactions already performed with the component be-
ing substituted cannot be merely ignored; they must be ei-
ther reproduced up to an equivalent state with the new com-
ponent, transparently to the rest of the system, or rolled
back and compensated when the reproduction of the state
is not possible. Both fault-tolerance algorithms, exception
handling and roll-back techniques must be developed to
this effect, and compensation procedures must be defined
when the initiated interactions cannot be correctly finished.

Example. In our running example, if the login phase has
already been performed with the system in configuration
cA, and then we need to move to configuration cB, the server
B should be initialised such that the client does not need to
re-log in the system. Suppose that the client C has per-
formed a trace {login!,passwd!}: Then, the initialisation
trace for the server B would be {connect?, pwd?}. Once the
server B is initialised as indicated, the system can be recon-
figured in order to use the new component. The substitution
of the server A by the server B does not affect the client C
in the sense it does not need to re-log in the system. In fact,

COMPONENT RECONFIGURATION IN PRESENCE OF. Informatica 35 (2011) 29-37 33

the client continues working on transparently, though it is
warned that the adaptation contract has changed.
This way, we have implicitly defined two new reconfig-
uration states: sA = {C.s2, A.s2} for configuration cA and
s2

B = {C.s2,B.s2} for cB, and one reconfiguration operation
CA CB, with r2 = {sA, s2

B}.

In the next section, we will present several notions of
substitutability that will help us defining additional recon-
figuration states and operations for our system.

5 Notions of substitutability
One of the key elements in allowing safe reconfiguration
is to determine whether a certain component can be easily
replaced by another one.

A relation of equivalence —such as bisimulation (~)
in CCS— cannot be used for these purposes. Indeed,
since there is mismatch among the interfaces of the com-
ponents, a test based on bisimulation would immediately
reject servers A and B as equivalent (A ̂ B). Even if we ac-
commodated name mismatch between both servers by us-
ing the adaptation contracts ACC ,A and ACC ,B for build-
ing name substitutions aA, oB according to the correspon-
dence of names described in those contracts, the renamed
components AGa and BGb would still remain not bisimilar,
due to behavioural mismatch between them. Thus, we need
to define a notion of substitutability adequate for our pur-
poses, indicating whether the replacement of the server A
by the server B (or vice versa) is suitable in a certain system
willing to perform this reconfiguration.

5.1 Contextual equivalence
As we have seen, an equivalence relation like bisimulation
is not well suited for our purposes since it takes into ac-
count all visible actions possibly performed by the compo-
nents and ignores the context in which those components
operate, and how this context affects them. A proof of
equivalence would yield whether two components are in-
terchangeable in any system, while we just need to prove if
they can be exchanged in a given system.

Hence, we need to take into account the influence of the
context and to ignore the actions performed by the former
and novel components such that the rest of the system con-
tinues working transparently. This allows both former and
novel components to have different behavioural interfaces
as far as their adapted versions provide the same function-
ality from the point of view of the context. For representing
how the context affects the behaviour of a component, we
will use the adaptor generated for this component within
this context, as described in section 2.

Definition 4. [Contextual interchangeability]. Two com-
ponents A and B are interchangeable in the context of an-
other component C i f f :

(A\\ACA)/LA ~ (A\\AC,B)/LB

where AC A, (resp. AC ,B) is the adaptor necessary for mak-
ing A (resp. B) interact successfully with C, and LA (resp.
LB) is the alphabet or set of labels used by A (resp. B) in
its communications.

In the definition above, for checking contextual inter-
changeability we just have to compose the components A
and B involved, together with the corresponding adaptors
generated for interacting with the context C, and to hide
the labels (LA or LB) through which the components and
their adaptors communicate. The resulting processes rep-
resent the components as seen from the point of view of
the context C. If they are equivalent —which can be easily
checked with CCS tools like the Concurrency Workbench
(CWB)—, they can be freely substituted one by another.
Any action performed by one of them in the context of C
can be exactly reproduced by the other one.

Example. In our running example, consider now a client
C2 that buys exactly one book in each transaction:
C2 = login! passwd! buybook! ack? logout! 0
C2 can interact with server A or B indistinctly. Therefore,
the client C2 (here playing the role of the context) enforces
a behaviour that makes both servers A and B equivalent in
the sense above. Hence, we should be able to build a sys-
tem that is able to reconfigure at any point from the server
A to the server B (or from the server B to the server A).
Similarly, it is easy to find out that servers A and B are not
equivalent in the context of the client C, as originally de-
fined in Fig. 2(a).

5.2 Minimal Disruption
Contextual interchangeability requires that once adapted
the components being considered are undistinguishable
from the point of view of the context they interact with. A
more relaxed notion of substitutability is what we call min-
imal disruption. Here, only the future actions performed
by the environment are taken into account as far as the
current system execution —but not any possible previous
interaction— can be simulated in the new configuration.
This is useful when the new configuration has an incom-
patible behaviour up to a certain point and a compatible
one afterwards, but for some specific trace —the current
execution— the incompatible part of the behaviour works
fine.

Before defining minimal disruption, we have to show
how can we enforce a certain component to execute a given
trace. This is the purpose of the Definition 5 below.

Definition 5. [Trace-enforcing processes]. Let t =
{(a0 , a 0) , . . . (an,an}} be a trace of actions pairs, where
each di states for the complementary action of at (i.e. if at
is a! then di is a? and vice versa). Then, we define Left(t)
andRight(t) as the processes:
Left(t) = a0 ... an 0

34 Informatica 35 (2011) 29-37 C. Canal et al.

Right(t) = a0 ••• an 0
obtained by the sequential composition of the left (resp.
right) actions from each pair)ai, a) in t.

Definition 6. [Minimal disruption]. Two components A
and B are minimal disrupting replaceable in the context of
another component C, and given a trace of actions t, i f f
there exist At, Bt, Ct such that:

- At ~Right(t)\\(A\\AC,A)/LA,

- Bt ~Right(t)\\(B\\AC,B)/LB,

- Ct ~Left(t)\\C, and

- At andBt are equivalent in the context ofCt.

where as in Definition 4 ACA, (resp. AC,B) is the adaptor
necessary for making A (resp. B) interact successfully with
C.

Hence, for finding out if two components A, B are in-
terchangeable up to minimal disruption in a certain context
C, and given a trace t already executed in that system, we
just have to make A, B (composed with their correspond-
ing adaptors), and C execute the corresponding part (left or
right actions) of the trace, and then prove if the future be-
haviour of these components is equivalent from the point of
view of the context. Again, all this can be easily checked
with the CWB. In that case, we can freely perform the sub-
stitution of A by B (or the other way round) at the execution
point defined by the trace.

Notice that the trace t used in this notion of minimal dis-
ruption shows us how to define a reconfiguration state for
each configuration ({C.si,A.sj) for cA, and {C.si,B.sk) for
cB) which denote the states in which A, B and C are after be-
ing enforced to reproduce the trace t, and the corresponding
reconfiguration operations (from cA to cB and vice versa).

Example. In our running example, consider now that we
are in configuration cB —where the client C is interact-
ing with the server B (adapted through AC B)— and they
have already executed the trace {{C.login!,B.connect?),
{C.passwd!,B.pwd?), {C.buybook!,B.buybook?)}. If at
that point we have to replace the server B with a fresh ver-
sion of this server (let us call it B') due to server break-
down or connection failure, we have to initialise the new
server B' (still adapted through BC B) , with the process
connect! pwd! buybook! 0. Then, the reconfigured system
would be able to go on normally.

5.3 History-aware interchangeability
When dealing with component upgrade it is more useful
to define a notion of substitutability that we could name as
history-aware. Only the current execution needs to be sim-
ulated in the new configuration; future actions are allowed
to be different. After reconfiguration, the environment may
access the new services provided by the new component,
or be denied to others that cannot be handled in the new
configuration.

Definition 7. [History awareness]. Two components A
andB are history-awareness interchangeable in the context
of another component C, and given a trace of actions t, i f f
there exists At, Bt, Ct such that:

- At ~Right(t)\\(A\\ACA)/LA,

- Bt ~Right(t)\\(B\\AC,B)/LB,

- Ct ~ Left(t)\\C.

where all the processes involved in the definition above are
the same as indicated in Definitions 5 and 6.

As we can see, history-aware interchangeability is a pre-
condition for minimal disruption. However, we have pre-
ferred to present the notions in this order, from the finest
grained to more relaxed notions.

Example. Consider in our running example that we
initially are in configuration cA, with the client logged
to the server A (adapted through AC A) and that they
have already executed the trace {(C.login!,A.user?),
(C.passwd!, A.passwd?) , (C.buybook!, A.buy?)}. If at that
point we have to move to configuration cB, replacing the
server A by the server B (for instance because the latter
just became available and the client prefers it since it offers
a wider functionality), we can check that both servers are
history-aware interchangeable in the context of C and for
the trace given. Thus, for performing the reconfiguration,
we will have to initialise the new server B (adapted through
BC,B), with the process connect ! pwd! buybook! 0 and then
the reconfigured system would proceed without problems
(possibly with the client taking advantage of the extended
functionality provided by the new server).

Example. Consider now that we are in con-
figuration cB, and the trace already executed
is {(C.login!, B.connect?), (C.passwd!, B.pwd?),
(C.buymagazine!,B.buymagazine?)}. If at that point
the server B became unavailable, we could not move
to configuration cA since for the trace already executed
both configurations do not fulfil the conditions of history
awareness substitutability (in fact, they would not fulfil
any of the notions of substitutability we have defined so
far).

5.4 Advanced notions of substitutability
Apart from those presented in previous sections, more ad-
vanced notions of substitutability could be envisioned. For
instance, we have identified that it would be useful to en-
dow components with (possibly nested) transactions. Once
a transaction is finished, there is no need to reproduce it
if the component is substituted. This would lead to a no-
tion of transaction-aware substitutability, whose utility is
shown with the following example:

COMPONENT RECONFIGURATION IN PRESENCE OF. Informatica 35 (2011) 29-37 35

Example. In our client/server example, the servers would
specify two nested transactions: one covers the full
servers' protocol, from the login (either with A.user
or B.connect) to the logout phase (in both cases with
disconnect ?). The other one, would be a sub-transaction,
that starts when receiving a buy order, and ends when
the acknowledgement has been sent to the client (e.g.
from B.buybook to B.bookok for the server B). Then,
it would be possible to start the system in config-
uration cB, buy some magazines from the server B
(which is not supported by the server A) executing
the trace {(C.login!,B.connect?), (C.passwd!,B.pwd?),
(C.buymagazine!,B .buymagazine?), (C.ack?,B.bookok!)}
and then move to configuration cA, substituting B by A. As
the sale sub-transaction has finished, it can now be safely
ignored when substituting the server A. Hence, the trace
we would have to consider is just {(C.login!,B.connect?),
(C.passwd!,B.pwd?)}, corresponding to the unfinished
full session transaction. Now we can find that the move
from configuration cB to cA fulfils the conditions of history-
awareness. Moreover, this would also prevent the client
from buying again an already bought product.

6 Component model support

We plan to validate the ideas presented above through real-
world applications on implementations using the Fractal
component model [5].

Fractal is a modular, extensible, and programming lan-
guage independent component model for designing, imple-
menting, deploying, and reconfiguring systems and appli-
cations. We consider that it is a suitable setting for showing
the benefits of our proposals because it deals explicitly with
system reconfiguration, and has been the origin of many in-
teresting formal underpinnings that can be applied to anal-
ysis of interface compatibility and verification of system
properties [6, 3].

The Fractal model is an open component model, and in
that sense it allows for arbitrary classes of controllers and
interceptor objects, including user-defined ones. This al-
lows us to define our own reconfiguration controllers that
will take care of component discovery, adaptation, initial-
isation, and system reconfiguration. Moreover, in Fractal
all remote invocations go through a membrane that con-
trols the component. This makes the membrane an ideal
container for a behavioural adaptor: the membrane will in-
tercept all incoming and outgoing messages and pass them
to the behavioural adaptor; the latter will compensate mis-
match accordingly to the adaptation rules and orchestrate
safe executions.

A good starting point for experimenting with our results
is to use the framework developed in [4]. The framework is
based on a Fractal-compliant component model and uses
custom reconfiguration controllers in order to allow the
system to self-adapt to changes in the environment. Their
model supports dynamic reconfiguration, dynamic compo-

nent instantiation, and support for interception of func-
tional requests. Moreover, controllers are implemented
in the form of a component-based system, which means
that each of our controllers would be seen as a component
plugged in the component's membrane.

7 Related work
Dynamic reconfiguration [14] is not a new topic and many
solutions have already been proposed in the context of dis-
tributed systems and software architectures [9, 10], graph
transformation [1, 21], software adaptation [17, 16], meta-
modelling [8, 14], or reconfiguration patterns [7]. On
the other hand, Software Adaptation is a recent solution
to build component-based systems accessed and reused
through their public interfaces. Adaptation is known as
the only way to compose black-box components with mis-
matching interfaces. However, only few works have fo-
cused so far on the reconfiguration of systems whose cor-
rect execution is ensured using adaptor components. In the
rest of this section, we focus on approaches that tackled
reconfiguration aspects for systems developed using adap-
tation techniques.

First of all, in [17], the authors present some issues
raised while dynamically reconfiguring behavioural adap-
tors. In particular, they present an example in which a cou-
ple of reconfigurations is successively applied to an adaptor
due to the upgrade of a component in which some actions
have been first removed and next added. No solution is
proposed in this work to automate or support the adaptor
reconfiguration when some changes occur in the system.

Most of the current adaptation proposals may be con-
sidered as global, since they proceed by computing global
adaptors for closed systems made up of a predefined and
fixed set of components. However, notably an incremental
approach at the behavioural level is presented in [18, 16].
In these papers, the authors present a solution to build step
by step a system consisting of several components which
need some adaptations. To do so, they propose some tech-
niques to (i) generate an adaptor for each new component
added to the system, and (i) reconfigure the system (com-
ponents and adaptors) when a component is removed.

8 Conclusions
We have presented a new research track where compo-
nents must be adapted to allow the system to be dynam-
ically reconfigured. We have discussed some basic re-
quirements for a runtime component substitution, and we
have defined new interchangeability notions that allow to
accommodate mismatch in behavioural interfaces. These
notions are shown adequate for verifying compatibility of
such components. For the same reason, we believe com-
ponent discovery algorithms should also take into account
components that have some degree of mismatch, as far as
there is a specification of how mismatch can be worked out.

36 Informatica 35 (2011) 29-37 C. Canal et al.

Finally, before reconfiguring the system, we have shown
that the new component must be adapted and initialised ac-
cordingly to the current system state. These constitute new
requirements for the runtime platform that we plan to ad-
dress in the short-term.

The work presented here should be taken as an initial
step towards dynamic reconfiguration where component
candidates present both signature and behavioural mis-
match. For the sake of simplicity, we have constrained
ourselves to describe component protocols using LTS and
CCS. However, one major drawback comes from this deci-
sion: data values present in message parameters are omit-
ted. Since the protocols between components are often de-
pendent on the data values carried in message parameters
this limits the practical use of the proposal. An obvious
extension of this work is to consider more expressive no-
tations for describing behavioural interfaces, for instance
Symbolic Transitions Systems (STS), or a value-passing
process algebra. This will be part of our future work.

Acknowledgements
This work has been partially supported by the project
TIN2008-05932 funded by the Spanish Ministry of Science
and Innovation, and project P06-TIC-02250 funded by the
Andalusian local Government.

References
[1] N. Aguirre and T. Maibaum. A Logical Basis for the

Specification of Reconfigurable Component-Based
Systems. In Proc. ofFASE'03, volume 2621 of LNCS,
pages 37-51. Springer, 2003.

[2] M. Autili, P. Inverardi, A. Navarra, and M. Tivoli.
SYNTHESIS: A Tool for Automatically Assembling
Correct and Distributed Component-based Systems.
In Proc. ofICSE'07, pages 784-787. IEEE Computer
Society, 2007.

[3] T. Barros, R. Ameur-Boulifa, A. Cansado, L. Henrio,
and E. Madelaine. Behavioural models for distributed
fractal components. Annals of Telecommunications,
64(1):25-43, 2009.

[4] F. Baude, D. Caromel, L. Henrio, and P. Naoumenko.
A Flexible Model And Implementation Of Component
Controllers. Coregrid. Springer, 2008.

[5] Eric Bruneton, Thierry Coupaye, Matthieu Leclercq,
Vivien Qu6ma, and Jean-Bernard Stefani. The frac-
tal component model and its support in java: Experi-
ences with auto-adaptive and reconfigurable systems.
Softw. Pract. Exper., 36(11-12):1257-1284, 2006.

[6] L. Bulej, T. Bures, T. Coupaye, M. Decky, P. Jezek,
Pavel Parizek, F. Plasil, T. Poch, N. Rivierre, O. Sery,
and P. Tuma. CoCoME in Fractal. In Andreas Rausch,

Ralf Reussner, Raffaela Mirandola, and Frantisek
Plasil, editors, CoCoME, volume 5153 of Lecture
Notes in Computer Science, pages 357-387. Springer,
2008.

[7] TomÂas Bures, Petr Hnetynka, and Frantisek PlÂasil.
Sofa 2.0: Balancing advanced features in a hierar-
chical component model. In SERA '06: Proceed-
ings of the Fourth International Conference on Soft-
ware Engineering Research, Management and Appli-
cations, pages 40-48, Washington, DC, USA, 2006.
IEEE Computer Society.

[8] Javier Cámara, Jose Antonio Martin, Gwen Salaün,
Javier Cubo, Meriem Ouederni, Carlos Canal, and
Ernesto Pimentel. Itaca: An integrated toolbox for
the automatic composition and adaptation of web ser-
vices. In Proc. of ICSE'09, pages 627-630. IEEE
Computer Society, 2009.

[9] C. Canal, P. Poizat, and G. Salaün. Model-Based
Adaptation of Behavioural Mismatching Compo-
nents. IEEE Transactions on Software Engineering,
34(4):546-563, 2008.

[10] A. Cansado and C. Canal. On the reconfiguration of
components in presence of mismatch. In Proc. of the
2nd Workshop on Autonomic and SELF-adaptive Sys-
tems (WASELF09), pages 11-20. SISTEDES, 2009.

[11] A. Ketfi and N. Belkhatir. A Metamodel-Based
Approach for the Dynamic Reconfiguration of
Component-Based Software. In Proc. of ICSR'04,
volume 3107 of LNCS, pages 264-273. Springer,
2004.

[12] J. Kramer and J. Magee. The Evolving Philoso-
phers Problem: Dynamic Change Management. IEEE
Transactions on Software Engineering, 16(11):1293-
1306, 1990.

[13] J. Kramer and J. Magee. Analysing Dynamic Change
in Distributed Software Architectures. IEE Proceed-
ings - Software, 145(5):146-154, 1998.

[14] Jasminka Matevska-meyer, Wilhelm Hasselbring,
and Ralf H. Reussner. Software architecture descrip-
tion supporting component deployment and system
runtime reconfiguration. In In Proc. 9th Int. Work-
shop on Component-oriented Programming, 2004.

[15] N. Medvidovic. ADLs and Dynamic Architecture
Changes. In SIGSOFT 96 Workshop, pages 24-27.
ACM, 1996.

[16] P. Poizat and G. Salaün. Adaptation of Open
Component-Based Systems. In Proc. of
FM00DS'07, volume 4468, pages 141-156.
Springer, 2007.

COMPONENT RECONFIGURATION IN PRESENCE OF. Informatica 35 (2011) 29-37 37

[17] P. Poizat, G. Salaun, and M. Tivoli. On Dynamic Re-
configuration of Behavioural Adaptation. In Proc. of
WCAT'06, pages 61-69, 2006.

[18] P. Poizat, G. Salaun, and M. Tivoli. An Adaptation-
based Approach to Incrementally Build Component
Systems. In Proc. of FACS'06, volume 182, pages
39-55, 2007.

[19] M. Wermelinger, A. Lopes, and J. L. Fiadeiro. A
Graph Based Architectural (Re)configuration Lan-
guage. In Proc. of ESEC/SIGSOFT FSE 2001, pages
21-32. ACM, 2001.

