
 Informatica 41 (2017) 305–315 305

Accelerating XML Query Processing on Views

Yin-Fu Huang and Yu-Hsien Cho

National Yunlin University of Science and Technology

123 University Road, Section 3, Touliu, Yunlin, Taiwan 640, R.O.C.

E-mail: huangyf@yuntech.edu.tw, http://mdb.csie.yuntech.edu.tw

Keywords: XPath, labeling schemes, materialized views, T-Bitmap, tag index, value index, navigation, twig query

Received: April 13, 2016

With the widespread use of the eXtensible Markup Language (XML), more and more applications store

and query XML documents in XML database systems. Thus, how to efficiently process a query and find

the specified patterns conforming the query from XML documents is a crucial issue. In this paper, some

processing methods are employed on XML documents to improve document retrieval. First, a

materialized view is built from an original document for each query. Then, on each materialized view,

auxiliary structures such as T-Bitmap and indexes are also built to further accelerate query processing.

Finally, four experiments are conducted to show the superiority of the proposed approach.

Povzetek: Predstavljena je metoda za hitrejše iskanje po bazah XML dokumentov.

1 Introduction
Since XML (eXtensible Markup Language) was widely

used to exchange data over the web, more and more

applications store and query XML documents in XML

database systems. Different from other data formats, an

XML document is composed of elements and values with

a nested structure, and could be modeled as a tree

structure. XPath and XQuery are the standard XML

query languages proposed by W3C. They can be used to

describe patterns with specified predicates on multiple

elements with tree structured relationships. However,

how to efficiently process a query and find the specified

patterns conforming the query from XML documents is a

crucial issue.

In the past, different methods have been proposed in

querying XML documents. One of research directions

was to build materialized views on XML documents. The

goal is to reduce the number of visited nodes during tree

traversing by searching from the root of a materialized

view, rather than from the root of an original XML

document tree. Another research direction was to

construct index or access methods to query XML

documents for facilitating query processing. In this

paper, we integrate the methods from these two research

directions as our motivation for accelerating XML query

processing on views. The reason is that the performance

of a materialized view is better than a non-materialized

view because not only these data can be accessed without

re-materialization, but also they can be fetched faster by

building indexes on these data beforehand. Besides, a

materialized view is usually used in accessing a large

amount of data, such as data warehouse applications, in

support of management’s decision-making process

through OLAP queries, almost read operations In short,

the motivation is for decision makers to accelerate XML

query processing in a data warehouse.

In summary, we highlight the contributions of this

paper as follows:

1) In this study, we build materialized views from an

XML document for each query to reduce the search

space of queries, and also build auxiliary structures

such as T-Bitmap and indexes to further accelerate query

processing.

2) Comprehensive experiments are conducted to verify

the superiority of the proposed approach.

3) The space vs. time issue is explored when multiple

materialized views are integrated together to save the

space.

The remainder of this paper is organized as follows.

Section 2 presents the previous work proposed in

querying XML documents. In Section 3, basic concepts

such as query processing and materialized views on

XML documents are introduced. In Section 4, we

propose a system architecture consisting of view

processing and query processing. In Section 5, four

experiments are conducted to show the superiority of our

approach. Finally, we make conclusions in Section 6.

2 Previous work
As mentioned in Section 1, one research direction on

querying XML documents was to build materialized

views on XML documents to reduce the number of

visited nodes during tree traversing, thereby leading to

faster query processing. Godfrey et al. [1], and Murthy

and Banerjee [2] proposed SQL/XML syntax for query

processing on views, whereas Halevy [3] and Jayavel et

al. [4] proposed various query syntax such as join to

handle views and focused on the problem of evaluating

XML queries over XML views of relational data.

However, users must be familiar with these various query

syntax. Katsifodimos et al. [5] considered choosing the

http://mdb.csie.yuntech.edu.tw/

306 Informatica 41 (2017) 305–315 Y.-F. Huang et al.

best views to materialize within a given space budget to

improve the performance of a query. Roantree and Liu

[6] approach is to segment a materialized view into

fragments to minimize the effect of view changes.

Bonifati et al. [7] presented an algebraic approach for

propagating source updates to materialized views. Wu et

al. [8, 9] proposed a bitmapped materialized views

approach for optimizing XML queries. Gosain et al. [10]

provided a survey of materialized view evolution

methods, which aims at studying the materialized view

evolution in relational databases and data warehouses as

well as in a distributed setting. Gosain and Sachdeva [11]

drew several conclusions about the status quo of

materialized view selection and a future outlook is

predicted on bridging the large gaps that were found in

the existing methods.

Another research direction was to construct index or

access methods to query XML documents, also

improving query processing. Some studies investigated

constructing index methods to query XML documents

[12-15]. Bruno et al. [12] and Jiang et al. [13] used a

structure join method to determine element relationships

based on the numbering scheme. This method has good

performances for an ancestor-descendant axis, but it

might fetch useless nodes for a parent-child axis, because

all descendant nodes must be accessed to check if they

are real children. Therefore, Huang and Wang developed

an efficient query processing algorithm for retrieving

XML documents [14]. Hsu et al. also proposed a path

clustering method based on the concept of summary

indexes for the processing of both structural and content

queries on XML documents [15]. Karthiga and

Gunasekaran [16] used tree-based association rules to

mine the semantics from XML documents, which

provide information on both the structure and the content

of XML documents. The mined knowledge is used to

provide the quick answers to queries and an approach

called path based indexing is used to improve the speed

of data retrieval. Alghamdi et al. [17], and Thi Le et al.

[18] proposed approaches to optimizing twig queries by

utilizing the semantics/constraints defined in XML

schemas. Furthermore, Ordonez focused on the

optimization of linear recursive queries in SQL [19].

Subramaniam and Haw [20] proposed an XML labeling

scheme that helps quick determination of structural

relationship among XML nodes and supports dynamic

updates without relabeling nodes in case of update

occurrences. Belgamwar et al. [21] follows an upside

down approach which explicitly stores the values and

only reconstructs the internal nodes, if needed. As a

solution, they proposed a compressed internal storage

format for native XML database systems where the inner

structure of the gathered documents is virtualized. Ferro

and Silvello [22] introduced a new paradigm where

traditional approaches based on traversing trees are

replaced by a brand new one based on basic set

operations which directly return the desired subtree,

avoiding to create it. Tudor [23] proposed an

optimization model for XML data processing based on a

heuristic algorithm to extract data from XPath views.

3 Basic concepts

3.1 XML documents

XML is a markup language which was proposed by W3C

in 1996. The main purpose of the standard language is to

provide data descriptions and data exchanges across

different platforms. Like other markup languages, the

contexts of XML are declared between start and end tags;

however, especially different from others, the tags can be

flexibly defined by users to describe data, and

furthermore XML is supported in different platforms and

systems. That is why it becomes the most common

format for data exchanges.

An XML document is with a nested structure, and it

could be represented as a rooted, ordered, and labeled

tree structure. Figure 1 and Figure 2 illustrate an XML

document and its corresponding tree representation,

respectively. In the document, there is a unique root

element called “root” and one of the descendant

elements, called “Book”, has seven child element nodes;

i.e., Title, Chapter, Para, Author with an attribute node

“Id”, Publisher, Name, Email, and their texts. The

symbols as shown in Figure 2 are circles, rectangles, and

triangles; they represent elements, texts, and attributes,

respectively.

<?xml version="1.0" standalone="yes"?>
<root>
 <store>
 <Books category="Technology">
 <Book>
 <Title>How to know XML</Title>
 <Chapter>
 Introduction to XML
 <Para>Your First XML</Para>
 </Chapter>
 <Author Id="Q345">John</Author>
 <Publisher>
 <Name>XML tech</Name>
 <Email>John@hpdiy.zzn.com</Email>
 </Publisher>
 </Book>
 <Book>

 </Book>
 </Books>
 </store>
</root>

...

Figure 1: XML document.

3.2 XPath

XPath (XML Path Language) is an expression language

for addressing and querying an XML document. In

XPath expressions, each step is separated by "/" and

contains three components: axis, node test, and

predicate. Axis defines the relationship to be followed in

the document tree. Node test defines what kind of nodes

Accelerating XML Query Processing on Views Informatica 41 (2017) 305–315 307

is required. Predicate is optional and provides the

capability to filter nodes, according to selection criteria.

Given an XPath example “//child::Publisher

[child::Name='XML tech'] /child::Email” , it is to get the

email of the publisher whose name is “XML tech”. When

navigating the XML document, it must start from the

root element “root”, then the descendant node

“Publisher”. Beneath “Publisher”, we search the child

nodes to find the node called “Email”. Besides, during

the search, it must have a child node called “Name”

whose text matches with the specified predicate “XML

tech”. In general, the example above can be abbreviated

to “//Publisher [Name ='XML tech'] /Email”.

Figure 2: XML document tree.

3.3 Labeling schemes

One of the major query searches is to determine the

relationships between nodes. In order to determine

element relationships quickly, several different labeling

schemes have been proposed. O'Connor and Roantree

categorized labeling schemes into containment schemes,

prefix schemes and prime number schemes [24]. Here,

labeling schemes are classified into prefix-based ones

and region-based ones (or containment schemes).

Dewey code [25] is a prefix-based labeling scheme

that records the position information of a node, according

to the path from the root to the node. For example,

Dewey-id of node “Para” is 1.1.1.1.2.2, and indicates that

we can get node “Para” if we search alone the path (the

first node of level 1, the first node of level 2, the first

node of level 3, the first node of level 4, the second node

of level 5, the second node of level 6). Besides, since

(1.1.1.1.2) is the prefix of (1.1.1.1.2.2), the relationship

between node “Chapter” (1.1.1.1.2) and “Para”

(1.1.1.1.2.2) can be deduced as a parent-child one.

However, the drawback of the prefix-based labeling

scheme is its lengthy Dewey codes, especially when the

levels of an XML document tree are too deep.

The region-based labeling scheme [12] is another

numbering scheme. The label contains three elements

(start, end, level) where the start value and end value

forms a region. The region of an upper-level node (i.e.,

ancestor or parent) must cover those of lower-level nodes

(i.e. children or descendants). In other words, if node A

covers node B, then A.start < B.start and B.end < A.end.

Besides, the level value represents the node level in a

document tree. With the coverage information, we can

determine the relationships between nodes quickly. As

for the labeling, we can label each node by traversing an

XML document tree in a depth-first search way.

3.4 XML document storage

An XML documents can be stored in a few different

forms, such as in flat files, in relational databases, and in

native XML databases. For an XML document to be

stored in flat files, we need to parse the files in advance

before accessing them. Although it is the simplest form,

the parsing time would be very lengthy when the XML

document size is too large. Besides, it also incurs multi-

user access and concurrency control problems. For an

XML document to be stored in relational database, since

the XML document is a tree structure, it must use some

middleware to translate the XML format into relational

tables. Besides, when querying the XML document, it is

also necessary to translate a query into an SQL

statement, and execute join operations repeatedly among

different relation tables, so that it exposes lower

efficiency. Native XML databases aim to provide

complete XML document storage and manipulation.

Different from other database systems, native XML

databases use an XML document as a basic unit of

storage, and defines an XML model used to store and

retrieve XML documents.

3.5 Materialized views

A view is a virtual and derived table defined by users for

facilitating to express a complicated query. Rather than

physically stored as parts of a database, a view definition

is merely recorded by the database system. It is evaluated

only when a user issues a query involving this view.

However, a materialized view is the one which is

physically stored in the database, in addition to its

definition. Absolutely, the performance of a materialized

view is better than a non-materialized view because not

only these data can be accessed without re-

materialization, but also they can be fetched faster by

building indexes on these data beforehand. Thus, a

materialized view is usually used in accessing a large

amount of data, such as a data warehouse or in business

intelligence applications, where we need to take more

time to query them. A data warehouse is a subject-

oriented, integrated, time-variant, and nonvolatile

collection of data in support of management’s decision-

making process. It can be accessed by decision makers

through OLAP queries, almost read operations. In short,

our design is for decision makers to accelerate XML

query processing in a data warehouse.

In this paper, based on native XML databases, we

use materialized views to query required data from an

original document. Here, a materialized view can be

defined using the “CREATE MATERIALIZED VIEW”

308 Informatica 41 (2017) 305–315 Y.-F. Huang et al.

function and an XPath expression. For the materialized

views on an original document, we build auxiliary files

and construct indexes using numbering schemes to avoid

unnecessary sub-tree traversal, thereby improving the

navigation efficiency of a query.

4 System architecture

4.1 Overview

In order to achieve faster query processing on the views

defined in a native XML database, we propose a system

architecture consisting of an offline phase and an online

phase, as shown in Figure 3. In the offline phase called

view processing, we build view-relevant structures such

as T-Bitmap and indexes to accelerate later query

processing. In the online phase called query processing,

the system can promptly respond to view-based queries,

utilizing the T-Bitmap and indexes built beforehand.

Figure 3: System architecture.

4.2 View processing

In this section, the motivation of view materialization is

introduced first. Then, we build relevant structures such

as T-Bitmap and indexes on materialized views to further

accelerate query processing.

4.2.1 View pre-processing

Usually, an Xpath expression is used to address and

query an XML document. However, for the query

execution, the system always searches an XML

document tree from the root. When a query is frequently

executed, the system performance would be degraded

since a large amount of unnecessary sub-tree traversal

cannot be avoided. For the query with an Xpath

expression as shown in Figure 4, we can define a

materialized view beforehand, which is rooted from node

“Books” with an attribute “category” matching with the

specified predicate “Technology”, as shown in Figure 5.

Then, the materialized view can be created from the

original document, as shown in Figure 6. Thus, rather

than traversing the original document tree always from

the root, the system only needs to search the materialized

view, thereby improving the navigation efficiency of the

query.

Figure 4: Query with an XPath expression.

Figure 5: View definition.

<?xml version="1.0" standalone="yes"?>
 <Books category="Technology">
 <Book>
 <Title>How to know XML</Title>
 <Chapter>
 Introduction to XML
 <Para>Your First XML</Para>
 </Chapter>
 <Author Id="Q345">John</Author>
 <Publisher>
 <Name>XML tech</Name>
 <Email>John@hpdiy.zzn.com</Email>
 </Publisher>
 </Book>
 <Book>
 <Title>Small World</Title>
 <Chapter>
 Q&A
 <Para>The One</Para>
 </Chapter>
 <Author Id="A854">Jimmy</Author>
 <Publisher>
 <Name>Network</Name>
 <Email>Jimmy@hpdiy.zzn.com</Email>
 </Publisher>
 </Book>

 </Books>

...

Figure 6: Materialized view.

Before building T-Bitmap and indexes on a

materialized view to further accelerate query processing,

we must determine the relationships between nodes (i.e.,

parent-child axes and ancestor-descendant axes) in a

materialized view using the region-based labeling

scheme as mentioned in Section 3.3. We traverse a

materialized view and label nodes in a depth-first search

way. When a node is visited first, its start value is

created; when we leave the node, the end value is

labeled. After traversing the whole materialized view, all

the nodes in the view are completely labeled as shown in

Figure 7.

CREATE MATERIALIZED VIEW mv AS(
SELECT extract(sys_nc_rowinfo$,
'/root/store/Books[@category="Technology"]')
FROM XMLTABLE);

XPath:/root/store/Books[@category="Technology"]
/Book[Title="How to know XML"]/Publisher
/Email=‘John@hpdiy.zzn.com’

Accelerating XML Query Processing on Views Informatica 41 (2017) 305–315 309

Book(1,25)

Title(2,4)

How to know
XML
(3,3)

Introduction
to XML

(6,6)

Para(7,9)

Your First
XML
(8,8)

Chapter(5,10)

Id(12,14)

Q345
(13,13)

John(15,15)

Author(11,16)

Publisher(17,24)

Name(18,20)

XML tech
(19,19)

John@hpdiy.zzn.com
(22,22)

Email(21,23)

Books(0,251)

…

Figure 7: Labeling nodes in a depth-first search way.

4.2.2 Building T-Bitmap

T-Bitmap is a bit string type, which is used to record

what descendant nodes are beneath a current node. First,

a dictionary recording the positions in T-Bitmap and the

corresponding tags is created, as shown in Table 1. Then,

the T-Bitmap value on each node can be calculated using

OR operators. For an example as shown in Figure 8, the

T-Bitmap of node “Publisher” can be calculated by

combining the T-Bitmaps of “Name”, “Email”, and itself

using OR operators.

Table 1: Dictionary: positions in T-Bitmap and

corresponding tags.

Position 0 1 2 3

Tag Books Book Title Chapter

Position 4 5 6 7

Tag Para Author Id Publisher

Position 8 9 - -

Tag Name Email - -

 Name 0000000010
OR Email 0000000001

 0000000011
OR Publisher 0000000100

 0000000111

 (b)
Title(2,4)

(0010000000)

Chapter

(5,10) Author(11,16) Publisher(17,24)

Book(1,25)

(0111111111)

Para(7,9)

(0000100000)
Id(12,14)

(0000001000)

Name(18,20)

(0000000010)

Email(21,23)

(0000000001)

(0000000111)(0000011000)(0001100000)

OR operator

OR operator

Level2

Level3

Level4

(a)

Level1

...

Books(0,251)

(1111111111)

OR operator

Figure 8: Combing T-Bitmaps using OR operators.

4.2.3 Building index

Here, we use labeling codes to build two kinds of index

trees; i.e., tag index trees and value index trees. To

illustrate the tag index construction, we extend the

storage model in Figure 7. As shown in Figure 9, we can

see a lot of nodes with the same tag names but with the

different labeling codes; e.g., node “Email(21, 23)” and

“Email(46, 48)”. We can build the index tree of each tag

using the start values in labeling codes as keys and the

well-known B+-tree algorithm, as shown in Figure 10

where the pointers of a leaf node in the tag index tree

indicate the positions of corresponding nodes in the

materialized view. For the query with an XPath:

“Book//Email”, when processing the current node

“Book(26, 50)”, we can use the tag index tree of “Email”

to locate each leaf node by following the dotted path, and

find out node “Email(46, 48)” covered by node

“Book(26, 50)”.

Figure 9: Extended storage model.

Figure 10: Tag index tree.

Besides, we can also build a value index tree

according to the text values of nodes in the document, as

shown in Figure 11. The construction method is the same

as that used to build tag index trees. However, we

generate only one value index tree for each materialized

view, and the records of a leaf node are with the [text,

start, pointer] format where the pointers also indicate the

positions of corresponding nodes in the materialized

view.

4.3 Query processing

In this section, the query transformation based on a

materialized view is introduced first. Then, according to

different axes specified in the transformed query, we

make use of the T-Bitmap and indexes built in the view

processing to accelerate query processing. Finally, we

also introduce subsequent processing for a query

specifying the particular predicate in an Xpath

expression.
John,15

Introduction to XML,6 Q345,13 The One,33

pA854,38

pHow to know XML,3

pIntroduction to XML,6

pJimmy@hpdiy.zzn.com,47

pJimmy,40

pJohn,15

pNetwork,44

pJohn@hpdiy.zzn.com,22

pQ345,13

pSmall World,28

pQ&A,31

pThe One,33

PYour First XML,8

pXML,19

Figure 11: Value index tree.

310 Informatica 41 (2017) 305–315 Y.-F. Huang et al.

4.3.1 Query pre-processing

After materialized views are created, a query should be

transformed based on its corresponding materialized

view. For the query as shown in Figure 4, its Xpath

expression (traversing from node root) is transformed

into a new one (traversing from node “Books”) as shown

in Figure 12.

Figure 12: Query transformation based on a materialized

view.

Before utilizing T-Bitmap and indexes to accelerate

query processing, we must deal with parent-child axes

and/or ancestor-descendant axes specified in the

transformed query. We execute navigation or indexing

according to different axes, and recursively check nodes

in the document tree.

4.3.2 Navigation

For a parent-child axis, we use a navigation way to

search nodes in the document tree. Here, T-Bitmap can

be used to avoid unnecessary search during the

navigation, since it provides the information whether

result nodes are beneath the current processing node. For

a query “/R/A/C” as shown in Figure 13, we can use an

AND operator to determine whether node C is beneath

the current processing node. First, for current node R,

Query(11010)^R(11111)=Query(11010) indicates node

C is beneath node R. Then, for the next node A1,

Query(01010)^A1(01100)Query(01010) indicates node

C cannot be beneath node A1, and we do not need to

search the sub-tree rooted at node A1. Next, for node A2,

Query(01010)^A2(01110)=Query(01010) indicates node

C is beneath node A2. Finally, we recursively check

nodes in the document tree until node C is found.

4.3.3 Indexing

For a query “/A//B∙ ∙ ∙” specifying an ancestor-

descendant axis as shown in Figure 14, although we can

also use T-Bitmap to search node B, the search based on

a parent-child axis would go through a lot of unnecessary

intermediate nodes. Therefore, we use indexes to directly

search a descendant node, instead of using T-Bitmap. As

mentioned in Section 4.2.3, we use the start value in the

labeling code of the ancestor as the key to search the tag

index tree of the descendant. Then, we check whether the

descendant node is covered by the ancestor node; if yes,

we fetch the descendant node and proceed to parse the

query downward.

4.3.4 Subsequent processing

In this section, we investigate the processing for the

query specifying a particular predicate. One is the query

specifying values, and another is the twig query.

4.3.4.1 Query specifying values

For a query “/Books/Book[Author = ‘Jimmy’]/Publisher

= ‘XML tech’ ”, two values are specified for filtering

nodes in the document. As shown in Figure 15, we use

the value index tree as mentioned in Section 4.2.3 to find

out value nodes “Jimmy(12)”, “XML tech1(7)”, and

“XML tech2(15)”, and then put them into their

corresponding queues, respectively. When processing

node “Book” in the query, we fetch node “Book1”, and

find that node “Jimmy(12)” is not covered by node

“Book1”; i.e., [2,9] < 12. Then, for the next node

“Book2”, although node “Book2” covers node

“Jimmy(12)”, node “XML tech1(7)” is not covered by

node “Book2”. Then, we choose the next value node

“XML tech2(15)” and do the same inspection. Finally,

we find out node “Book2” is the result node.

Book1

1111
Books

Book2

John
XML
tech1

Jimmy
XML
tech2

0111 0111

0010 0001 0010 0001
Author1 Author2Publisher1 Publisher2

(1,18)

(2,9) (10,17)

(3,5) (6,8) (11,13) (14,16)

4 7 12 15

Book

Jimmy

0111

0010 0001
Author Publisher

Query: /Books/Book[Author = ‘Jimmy’]/Publisher = ‘XML tech’

BookBooks PublisherAuthor

T-Bitmap

XML

tech

Jimmy
XML
tech2

XML
tech1

V1 V2

V1 queue V2 queue

Books 1111

Figure 15: Value node processing.

SELECT extract(sys_nc_rowinfo$,'/Books
/Book[Title="How to know XML"]/Publisher
/Email=' John@hpdiy.zzn.com '')
FROM mv;

R

A

C

Query

11010

01010

00010

R

A3A2A1

B B C B D

11111

01100

00100 00100 00010 00100 00001

01110 01101

R A B C D

T-Bitmap

Figure 13: Navigation using T-Bitmap.

A

B

.......

......

Ancestor-descendant

relationship

intermedia nodes

Figure 14: Unnecessary intermediate nodes.

Accelerating XML Query Processing on Views Informatica 41 (2017) 305–315 311

4.3.4.2 Twig Query

Besides, for a query “/Book[Publisher]/Author” as shown

in Figure 16(a), we can also process it in the same way as

done in Section 4.3.2. As shown in Figure 16(b), two

solutions “Book, Publisher, Author1, Jim” and “Book,

Publisher, Author2, Jimmy” exist in the document. They

can be found by 1) merging Path1 and Path2, and 2)

merging Path1 and Path3, as shown in Figure 16(c).

Book

Publisher Author

Book

Publisher Author1 Author2

Jim Jimmy

PublisherBook Author

T-Bitmap

Book

Publisher

Book

Author1

Book

Author2

twig query

/Book[Publisher]/Author

(a)

XML document

(b) (c)

Path 1 Path 2 Path 3

Figure 16: Twig query processing.

5 Experiments
In this section, four experiments are conducted to show

the superiority of our approach proposed in this paper.

These experiments are written in Java (JDK1.7) and

conducted on an Intel Pentium4 3GHz CPU with 3G

main memory in Windows 7. In the first experiment, we

present the comparisons among different methods. In the

second experiment, we investigate the effect of query

types on different methods, especially on our method. In

the third experiment, we use synthesis documents to

analyze our method, and try to find some characteristics.

In the last experiment, we address the space vs. time

issue if multiple materialized views can be integrated

together to save the space; in other words, more than one

query would search from a materialized view.

5.1 Comparisons among different methods

In this experiment, we compare the search ways in

different methods as shown in Figure 17. The first

method is the original search way which is always from

the root of a document tree. The second method was

proposed by Godfrey et al. [1], which searches from the

root of a materialized view. The last method is ours

which also searches from the root of a materialized view,

but with the aid of auxiliary data structures.

To fairly compare with the method proposed by

Godfrey et al., an XML benchmark available on the

XMark site is used in the experiment, which has data size

113.794MB and 1,513,518 nodes. Also, we follow the

similar query types and comparison ways used in the

experiments conducted by Godfrey et al. As shown in

Table 2, there are twelve different types of queries tested

in the experiment. To contrast with the searching ways as

shown in Figure 17, the columns as shown in Table 3 are

1) query types, 2) searching time on the original tree, 3)

view creation time, 4) searching time using Godfrey et

al.' method, and 5) searching time using our method. The

experimental results show that our method performs

much better than the Godfrey et al.' method in all the

queries, especially for long-path and twig queries Q3,

Q7, Q8, Q9, and Q11. This is why our method uses the

T-Bitmap and index structures to accelerate query

processing.

5.2 Effect of query types on different

methods

In this experiment, we use the same XML benchmark as

the first experiment, but different queries as shown in

Table 4. For the searching axis, Q1 and Q2 are based on

the parent-child axis, Q3 and Q4 on the ancestor-

descendant axis, and the others on mixed axes. For the

query types, Q1, Q3, Q5, Q6, and Q7 are path queries,

whereas the others are twig queries. Furthermore, Q1,

Q3, Q4, Q5, Q6, Q7, and Q10 are with value predicates.

In this experiment, as shown in Table 5, our method

is still the best one among different methods in all the

queries. Even taking the worst case Q8 as an example,

our method is 206 times faster than the original way, and

88 times faster than the Godfrey et al.' method. The

reason is, as shown in Table 6, the number of nodes

visited for Q8 in our method is only 1/28 times of the

original way, and is only 1/10 times of the Godfrey et al.'

method.

For the path queries (i.e., Q1, Q3, Q5, Q6, and Q7),

both execution time of the Godfrey et al.' method and

ours is less than one second. For the twig queries (i.e.,

Q2, Q8, and Q9), they cost more execution time than the

path queries since a large amount of nodes are visited.

However, for the similar twig queries (i.e., Q4 and Q10),

they do not cost much execution time since only a very

small amount of nodes are required to visit. In summary,

the advantages of our method are 1) when dealing with

twig queries, we only need to check T-Bitmap and skip

an entire sub-tree if not matched, and 2) when dealing

with the queries with value predicates, we can use the

value index tree to achieve efficient processing.

From begining to end

rootOriginal search

Index search

Godfrey method Our method

Figure 17: Search ways in different methods.

312 Informatica 41 (2017) 305–315 Y.-F. Huang et al.

5.3 Experiments on synthesis documents

In this experiment, six synthesis documents with

different fanout are used to analyze our method for three

different types of queries as shown in Table 7. Q1 is

based on the parent-child axis, Q2 is based on the

ancestor-descendant axis, and Q3 is a twig query with

three predicates and based on mixed axes. As shown in

Table 8, we find that the execution time of each query

increases as the fanout increases. Moreover, regardless of

the complexity in Q3, it still costs almost the same time

as Q1 and Q2 using our method; i.e., its execution time

would not increase significantly even if it is a twig query

with three predicates. However, for Q3 using the original

way and/or the Godfrey et al.' method, their execution

time increases seriously as shown in Table 9. Especially

for the Godfrey et al.' method, the execution time for

fanout30 is 202 times slower than that for fanout5.

5.4 Experiments on space vs. time

In this experiment, we explore the space vs. time issue

when multiple materialized views are integrated together.

In order to achieve the premise that more than one query

can search from a materialized view, we reuse seven

queries (i.e., Q3, Q4, Q5, Q6, Q7, Q8 and Q10) as shown

in Table 4. Then, we find that 1) Q3, Q6, and Q7 can

search from the materialized view built based on Q3, 2)

Q4 and Q10 can search from the materialized view built

based on Q4, and 3) Q5 and Q8 can search from the

materialized view built based on Q8. Thus, after the

integration, we have three materialized views for these

seven queries. The data space and execution time

between no integration and integration are shown in

Table 10. Taking the group (Q3, Q6, Q7) as an example,

the overall data space is 3+1+3=7(KB) and the total

execution time is 3+2+12=17(ms) if each query has its

own materialized view; however, after the integration,

the data space is only 3(KB), but the total execution time

increases to 3+5+26=34(ms).

In order to explore the relationship between data

space and execution time for these two strategies (i.e.,

no-integration and integration), we define two terms: 1)

amount ratio for data space and 2) speed ratio for

execution time as follows.

Table 2: Twelve kinds of queries.

Q1 /site/regions/europe/item/mailbox/mail

Q2 /site//item/mailbox/mail

Q3 /site//africa/item/description/parlist/listitem

Q4 /site//person/profile/interest[@category]

Q5 /site//person/profile[age]/interest[@category="category620"]

Q6 /site//person/profile[contains(age,"18")]/education

Q7 /site//open_auction[@id="open_auction5"]//date

Q8 /site//category/description[text]/parlist/listitem

Q9 /site//category/description[text/keyword]/parlist/listitem

Q10 /site/*/*/item/mailbox/mail

Q11 /site//*//africa/item/name

Q12 /site//item/mailbox[count(mail)]

Table 3: Comparisons among different methods.

Time(ms)

Query Original tree
% View

creation

* View non-

indexed

View

indexed

Q1 193718 30131 64980 5752
Q2 195146 32147 84574 20599
Q3 310315 31137 100130 593
Q4 185361 32890 99890 29436
Q5 193474 31147 147344 6865
Q6 191034 29702 65248 9106
Q7 203447 27112 132522 279
Q8 212511 28317 60353 232
Q9 241417 30169 64384 916

Q10 185357 31603 80727 19811
Q11 199274 28417 65059 320
Q12 209115 31731 99283 20687

 % View creation: Views created for both methods
 * View non-indexed: Godfrey et al.' method

 # View indexed: Ours

Accelerating XML Query Processing on Views Informatica 41 (2017) 305–315 313

()

()
strategy

space strategy
amount ratio

space original
  (1)

()

()
strategy

time strategy
speed ratio

time original
  (2)

where space(strategy) is the overall data space used in

the no-integration or integration strategies, time(strategy)

is the total execution time required in the no-integration

or integration strategies, space(original) is the data space

of the original document, and time(original) is the

execution time on the original document.

Then, we can use these two terms to judge which

strategy is better for the system performance as follows.

integration no integration

no integration integration

amount ratio speed ratio

amount ratio speed ratio





 


 

(3)

or
() ()

() ()

space integration time no integration

space no integration time integration





 (4)

For Equation (4), the former term represents that the

data space benefits for the integration strategy can be

Table 4: Different kinds of queries.

Q1

Q2

/site/open_auctions/open_auction[@id="open_auction5"]/initial

/site/open_auctions/open_auction[annotation/author]/bidder/date

Q3

Q4

//site//open_auctions//open_auction[@id="open_auction0"]//current

//person[@id="person0"][creditcard]//watch

Q5

Q6

Q7

Q8

Q9

Q10

/site/regions//item[@id="item0"]//mail

//open_auction[@id="open_auction0"]/bidder/date

/site/open_auctions/open_auction[@id="open_auction0"]/../end

/site/regions//item[//text/bold]//location

//closed_auctions/closed_auction[//description/text]/seller

//people/person[@id="person0"][//business]/name

Table 5: Execution time.

Time(ms)

Query Original tree
View

creation

View non-

indexed

View

indexed

Q1 31818 14920 193 8

Q2 68769 15731 37949 1883

Q3 29718 11787 140 3

Q4 30989 10056 103 3

Q5 27976 10705 119 3

Q6 30123 11723 48 2

Q7 32680 12135 139 12

Q8 4344137 222996 1853537 21111

Q9 1560306 246697 201444 16185

Q10 28425 10374 70 2

Table 6: Number of nodes visited.

Nodes

Query Original tree
View non-

indexed

View

indexed

Q1 48005 57 5

Q2 259604 87331 23794

Q3 24001 64 3

Q4 31502 24 8

Q5 34124 50 3

Q6 25960 8 5

Q7 24005 64 3

Q8 1204343 432651 43502

Q9 736217 102736 39003

Q10 25647 24 5

Table 7: Three kinds of queries.

Q1 /root/L1/R

Q2 //root//R

Q3 /root//L1[//R][//Q][//S]

314 Informatica 41 (2017) 305–315 Y.-F. Huang et al.

gained (i.e., data space reduced) whereas the latter term

represents that the execution time benefits for the no-

integration strategy can be gained (i.e., execution time

reduced). If Equation (4) with the equal weighting

between space and time is true, the integration strategy

should be adopted. According to the data taken from

Table 10, we can calculate the former term and latter

term in Equation (4), as shown in Table 11. From the

statistical data, we find that the integration strategy is

better for group (Q3, Q6, Q7) and group (Q4, Q10), but

the no-integration strategy is better for group (Q5, Q8).

Absolutely, different strategies can be adopted for

different query groups at the same time to make the

system performance in the best status.

6 Conclusions
In this paper, we employ some processing methods on

XML documents to improve document retrieval. The

goal is to reduce the number of visited nodes during tree

traversing, thereby leading to faster query processing. To

achieve this goal, we focus on the usage of database

views. First, we build a materialized view from an

original document for each query. Then, on each

materialized view, we also build auxiliary structures such

as T-Bitmap and indexes to further accelerate query

processing. According to different axes specified in an

Xpath expression, we have different techniques to handle

them. Finally, through the experiments, we 1) compare

the performances among different methods, 2)

investigate the effect of query types on them, 3) use

Table 8: Comparisons for different fanout in our method.

Time(ms)

 Q1 Q2 Q3

Fanout5 358 326 392
Fanout10 571 554 569
Fanout15 1065 969 1023
Fanout20 1514 1432 1486
Fanout25 2164 2023 2137
Fanout30 2701 2579 2658

Table 9: Comparisons for different fanout in different methods.

Q3 Time(ms)

Original tree

View non-

indexed

View

indexed

Fanout5 143618 419 392

Fanout10 278615 796 569

Fanout15 436672 2700 1023

Fanout20 655059 10815 1486

Fanout25 678379 38339 2137

Fanout30 879231 84779 2658

Table 10: Comparisons between no integration and integration.

No integration Space(KB) Time(ms)

Q3 3 3

Q4 1 3

Q5 2 3

Q6 1 2

Q7 3 12

Q8 56226 21111

Q10 1 2

Integration Space(KB) Time(ms)

(Q3, Q6, Q7) 3 3+5+26

(Q4, Q10) 1 3+2

(Q5, Q8) 56226 16491+21111

Table 11: Comparisons based on Equation (4).

 (Q3, Q6, Q7) (Q4, Q10) (Q5, Q8)

Former term 3/7=0.43 1/2=0.5 56226/56228=1

Latter term 17/34=0.5 5/5=1 21114/37602=0.56

Accelerating XML Query Processing on Views Informatica 41 (2017) 305–315 315

synthesis documents to analyze our method, and 4)

address the space vs. time issue if materialized views are

integrated together.

References
[1] Godfrey P, Gryz J, Hoppe A, et al. Query rewrites

with views for XML in DB2. In: Ioannidis Y, Lee

D, Ng R, eds. Proceedings of the IEEE 25th

International Conference on Data Engineering,

Shanghai, China, 2009. 1339-1350

[2] Murthy R, Banerjee S. XML schemas in Oracle

XML DB. In: VLDB Endowment, eds. Proceedings

of the 29th International Conference on Very Large

Data Bases, Berlin, Germany, 2003. 1009-1018

[3] Halevy Y. Answering queries using views: a

survey. Very Large Data Bases Journal, 2001, 10:

270-294

[4] Jayavel S, Jerry K, Eugene S, et al. Querying XML

views of relational data. In: VLDB Endowment,

eds. Proceedings of the 27th International

Conference on Very Large Data Bases, Rome, Italy,

2001. 261-270

[5] Katsifodimos A, Manolescu I, Vassalos V.

Materialized view selection for XQuery workloads.

In: Fuxman A, eds. Proceedings of ACM SIGMOD

International Conference on Management of Data,

Scottsdale, Arizona, USA, 2012. 565-576

[6] Roantree M, Liu J. A heuristic approach to

selecting views for materialization. Software:

Practice and Experience, 2014, 44: 1157-1179

[7] Bonifati A, Goodfellow M, Manolescu I, et al.

Algebraic incremental maintenance of XML views.

ACM Transactions on Database Systems, 2013, 38:

14:1-14:45

[8] Wu X, Theodoratos D, Wang W H, et al.

Optimizing XML queries: bitmapped materialized

views vs. indexes. Information Systems, 2013, 38:

863-884

[9] Wu X, Theodoratos D, Kementsietsidis A.

Configuring bitmap materialized views for

optimizing XML queries. World Wide Web, 2015,

18: 607-632

[10] Gosain A, Sabharwal S, Gupta R. Architecture

based materialized view evolution: a review.

Procedia Computer Science, 2015, 48:256-262

[11] Gosain A, Sachdeva K. A systematic review on

materialized view selection. In: Satapathy S et al.,

eds. Proceedings of the 5th International

Conference on Frontiers in Intelligent Computing:

Theory and Applications. Advances in Intelligent

Systems and Computing, Vol. 515. Springer,

Singapore, 2017. 663-671

[12] Bruno N, Koudas N, Srivastava D. Holistic twig

joins: optimal XML pattern matching. In: Franklin

M J, eds. Proceedings of ACM SIGMOD

International Conference on Management of Data,

Madison, WI, USA, 2002. 310-321

[13] Jiang H, Wang W, Lu H, et al. Holistic twig joins

on indexed XML documents. In: VLDB

Endowment, eds. Proceedings of the 29th

International Conference on Very Large Data

Bases, Berlin, Germany, 2003. 273-284

[14] Huang Y F, Wang S H. An efficient XML

processing based on combining T-Bitmap and index

techniques. In: Biaz S, Bellaachia A, eds.

Proceedings of the IEEE International Symposium

on Computers and Communication, Marrakech,

Morocco, 2008. 858-863

[15] Hsu W C, Liao I E, Wu S Y, et al. An efficient

XML indexing method based on path clustering. In:

Alhajj R S, eds. Proceedings of the 20th IASTED

International Conference on Modeling and

Simulation, Banff, Alberta, Canada, 2009. 339-344

[16] Karthiga D, Gunasekaran S. Optimization of query

processing in XML document using TAR and path

based indexing. International Journal of Computer

Science and Network Security, 2013, 13: 119-127

[17] Alghamdi N S, Rahayu W, Pardede E. Object-based

semantic partitioning for XML twig query

optimization. In: Barolli L et al., eds. Proceedings

of the IEEE 27th International Conference on

Advanced Information Networking and

Applications, Barcelona, Spain, 2013. 846-853

[18] Thi Le D X, Maghaydah M, Orgun M A, et al.

Optimization of XML queries by using semantics in

XML schemas and the document structure. In: Lin

X et al., eds. Proceedings of the 14th International

Conference on Web Information Systems

Engineering, Nanjing, China, 2013. 343-353

[19] Ordonez C. Optimization of linear recursive queries

in SQL. IEEE Transactions on Knowledge and Data

Engineering, 2010, 22: 264-277

[20] Subramaniam S, Haw S C. ME labeling: a robust

hybrid scheme for dynamic update in XML

databases. In: Ismail M, Ramli N, eds. Proceedings

of the IEEE 2nd International Symposium on

Telecommunication Technologies, Langkawi,

Malaysia, 2014. 126-131

[21] Belgamwar H C, Dhore S M, Rathod P U,

Deshmukh S S, Nandanwar G S. Review on storing

and indexing XML documents upside down.

International Journal for Engineering Applications

and Technology, 2015, Manthan-15

[22] Ferro N, Silvello G. Descendants, ancestors,

children and parent: a set-based approach to

efficiently address XPath primitives. Information

Processing & Management, 2016, 52:399-429

[23] Tudor N L. Query optimization against XML data.

Studies in Informatics and Control, 2016, 25:173-

180

[24] O’Connor M F, Roantree M. Desirable properties

for XML update mechanisms. In: Proceedings of

the 2010 EDBT/ICDT Workshops, Lausanne,

Switzerland, 2010

[25] Lu J, Ling T W, Chan C Y, et al. From region

encoding to extended Dewey: on efficient

processing of XML twig pattern matching. In:

VLDB Endowment, eds. Proceedings of the 31st

International Conference on Very Large Data

Bases, Trondheim, Norway, 2005. 193-204

