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With the widespread use of the eXtensible Markup Language (XML), more and more applications store 

and query XML documents in XML database systems. Thus, how to efficiently process a query and find 

the specified patterns conforming the query from XML documents is a crucial issue. In this paper, some 

processing methods are employed on XML documents to improve document retrieval. First, a 

materialized view is built from an original document for each query. Then, on each materialized view, 

auxiliary structures such as T-Bitmap and indexes are also built to further accelerate query processing. 

Finally, four experiments are conducted to show the superiority of the proposed approach. 

Povzetek: Predstavljena je metoda za hitrejše iskanje po bazah XML dokumentov. 

1 Introduction 
Since XML (eXtensible Markup Language) was widely 

used to exchange data over the web, more and more 

applications store and query XML documents in XML 

database systems. Different from other data formats, an 

XML document is composed of elements and values with 

a nested structure, and could be modeled as a tree 

structure. XPath and XQuery are the standard XML 

query languages proposed by W3C. They can be used to 

describe patterns with specified predicates on multiple 

elements with tree structured relationships. However, 

how to efficiently process a query and find the specified 

patterns conforming the query from XML documents is a 

crucial issue. 

In the past, different methods have been proposed in 

querying XML documents. One of research directions 

was to build materialized views on XML documents. The 

goal is to reduce the number of visited nodes during tree 

traversing by searching from the root of a materialized 

view, rather than from the root of an original XML 

document tree. Another research direction was to 

construct index or access methods to query XML 

documents for facilitating query processing. In this 

paper, we integrate the methods from these two research 

directions as our motivation for accelerating XML query 

processing on views. The reason is that the performance 

of a materialized view is better than a non-materialized 

view because not only these data can be accessed without 

re-materialization, but also they can be fetched faster by 

building indexes on these data beforehand. Besides, a 

materialized view is usually used in accessing a large 

amount of data, such as data warehouse applications, in 

support of management’s decision-making process 

through OLAP queries, almost read operations In short, 

the motivation is for decision makers to accelerate XML 

query processing in a data warehouse. 

In summary, we highlight the contributions of this 

paper as follows: 

1) In this study, we build materialized views from an 

XML document for each query to reduce the search 

space of queries, and also build auxiliary structures 

such as T-Bitmap and indexes to further accelerate query 

processing. 

2) Comprehensive experiments are conducted to verify 

the superiority of the proposed approach. 

3) The space vs. time issue is explored when multiple 

materialized views are integrated together to save the 

space. 

The remainder of this paper is organized as follows. 

Section 2 presents the previous work proposed in 

querying XML documents. In Section 3, basic concepts 

such as query processing and materialized views on 

XML documents are introduced. In Section 4, we 

propose a system architecture consisting of view 

processing and query processing. In Section 5, four 

experiments are conducted to show the superiority of our 

approach. Finally, we make conclusions in Section 6. 

2 Previous work 
As mentioned in Section 1, one research direction on 

querying XML documents was to build materialized 

views on XML documents to reduce the number of 

visited nodes during tree traversing, thereby leading to 

faster query processing. Godfrey et al. [1], and Murthy 

and Banerjee [2] proposed SQL/XML syntax for query 

processing on views, whereas Halevy [3] and Jayavel et 

al. [4] proposed various query syntax such as join to 

handle views and focused on the problem of evaluating 

XML queries over XML views of relational data. 

However, users must be familiar with these various query 

syntax. Katsifodimos et al. [5] considered choosing the 

http://mdb.csie.yuntech.edu.tw/


306 Informatica 41 (2017) 305–315 Y.-F. Huang et al. 

best views to materialize within a given space budget to 

improve the performance of a query. Roantree and Liu 

[6] approach is to segment a materialized view into 

fragments to minimize the effect of view changes. 

Bonifati et al. [7] presented an algebraic approach for 

propagating source updates to materialized views. Wu et 

al. [8, 9] proposed a bitmapped materialized views 

approach for optimizing XML queries. Gosain et al. [10] 

provided a survey of materialized view evolution 

methods, which aims at studying the materialized view 

evolution in relational databases and data warehouses as 

well as in a distributed setting. Gosain and Sachdeva [11] 

drew several conclusions about the status quo of 

materialized view selection and a future outlook is 

predicted on bridging the large gaps that were found in 

the existing methods. 

Another research direction was to construct index or 

access methods to query XML documents, also 

improving query processing. Some studies investigated 

constructing index methods to query XML documents 

[12-15]. Bruno et al. [12] and Jiang et al. [13] used a 

structure join method to determine element relationships 

based on the numbering scheme. This method has good 

performances for an ancestor-descendant axis, but it 

might fetch useless nodes for a parent-child axis, because 

all descendant nodes must be accessed to check if they 

are real children. Therefore, Huang and Wang developed 

an efficient query processing algorithm for retrieving 

XML documents [14]. Hsu et al. also proposed a path 

clustering method based on the concept of summary 

indexes for the processing of both structural and content 

queries on XML documents [15]. Karthiga and 

Gunasekaran [16] used tree-based association rules to 

mine the semantics from XML documents, which 

provide information on both the structure and the content 

of XML documents. The mined knowledge is used to 

provide the quick answers to queries and an approach 

called path based indexing is used to improve the speed 

of data retrieval. Alghamdi et al. [17], and Thi Le et al. 

[18] proposed approaches to optimizing twig queries by 

utilizing the semantics/constraints defined in XML 

schemas. Furthermore, Ordonez focused on the 

optimization of linear recursive queries in SQL [19]. 

Subramaniam and Haw [20] proposed an XML labeling 

scheme that helps quick determination of structural 

relationship among XML nodes and supports dynamic 

updates without relabeling nodes in case of update 

occurrences. Belgamwar et al. [21] follows an upside 

down approach which explicitly stores the values and 

only reconstructs the internal nodes, if needed. As a 

solution, they proposed a compressed internal storage 

format for native XML database systems where the inner 

structure of the gathered documents is virtualized. Ferro 

and Silvello [22] introduced a new paradigm where 

traditional approaches based on traversing trees are 

replaced by a brand new one based on basic set 

operations which directly return the desired subtree, 

avoiding to create it. Tudor [23] proposed an 

optimization model for XML data processing based on a 

heuristic algorithm to extract data from XPath views. 

3 Basic concepts 

3.1 XML documents 

XML is a markup language which was proposed by W3C 

in 1996. The main purpose of the standard language is to 

provide data descriptions and data exchanges across 

different platforms. Like other markup languages, the 

contexts of XML are declared between start and end tags; 

however, especially different from others, the tags can be 

flexibly defined by users to describe data, and 

furthermore XML is supported in different platforms and 

systems. That is why it becomes the most common 

format for data exchanges. 

An XML document is with a nested structure, and it 

could be represented as a rooted, ordered, and labeled 

tree structure. Figure 1 and Figure 2 illustrate an XML 

document and its corresponding tree representation, 

respectively. In the document, there is a unique root 

element called “root” and one of the descendant 

elements, called “Book”, has seven child element nodes; 

i.e., Title, Chapter, Para, Author with an attribute node 

“Id”, Publisher, Name, Email, and their texts. The 

symbols as shown in Figure 2 are circles, rectangles, and 

triangles; they represent elements, texts, and attributes, 

respectively. 

 

<?xml version="1.0" standalone="yes"?>
<root>
   <store>
      <Books category="Technology">
         <Book>
            <Title>How to know XML</Title>
            <Chapter>
               Introduction to XML
               <Para>Your First XML</Para>
            </Chapter>
            <Author Id="Q345">John</Author>
            <Publisher>
               <Name>XML tech</Name>
               <Email>John@hpdiy.zzn.com</Email>
            </Publisher>
         </Book>
         <Book>
              

         </Book>
      </Books>
   </store>
</root>

...

 

Figure 1: XML document. 

3.2 XPath 

XPath (XML Path Language) is an expression language 

for addressing and querying an XML document. In 

XPath expressions, each step is separated by "/" and 

contains three components: axis, node test, and 

predicate. Axis defines the relationship to be followed in 

the document tree. Node test defines what kind of nodes 
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is required. Predicate is optional and provides the 

capability to filter nodes, according to selection criteria. 

Given an XPath example “//child::Publisher 

[child::Name='XML tech'] /child::Email” , it is to get the 

email of the publisher whose name is “XML tech”. When 

navigating the XML document, it must start from the 

root element “root”, then the descendant node 

“Publisher”. Beneath “Publisher”, we search the child 

nodes to find the node called “Email”. Besides, during 

the search, it must have a child node called “Name” 

whose text matches with the specified predicate “XML 

tech”. In general, the example above can be abbreviated 

to “//Publisher [Name ='XML tech'] /Email”. 

 

 

Figure 2: XML document tree. 

3.3 Labeling schemes 

One of the major query searches is to determine the 

relationships between nodes. In order to determine 

element relationships quickly, several different labeling 

schemes have been proposed. O'Connor and Roantree 

categorized labeling schemes into containment schemes, 

prefix schemes and prime number schemes [24]. Here, 

labeling schemes are classified into prefix-based ones 

and region-based ones (or containment schemes). 

Dewey code [25] is a prefix-based labeling scheme 

that records the position information of a node, according 

to the path from the root to the node. For example, 

Dewey-id of node “Para” is 1.1.1.1.2.2, and indicates that 

we can get node “Para” if we search alone the path (the 

first node of level 1, the first node of level 2, the first 

node of level 3, the first node of level 4, the second node 

of level 5, the second node of level 6). Besides, since 

(1.1.1.1.2) is the prefix of (1.1.1.1.2.2), the relationship 

between node “Chapter” (1.1.1.1.2) and “Para” 

(1.1.1.1.2.2) can be deduced as a parent-child one. 

However, the drawback of the prefix-based labeling 

scheme is its lengthy Dewey codes, especially when the 

levels of an XML document tree are too deep. 

The region-based labeling scheme [12] is another 

numbering scheme. The label contains three elements 

(start, end, level) where the start value and end value 

forms a region. The region of an upper-level node (i.e., 

ancestor or parent) must cover those of lower-level nodes 

(i.e. children or descendants). In other words, if node A 

covers node B, then A.start < B.start and B.end < A.end. 

Besides, the level value represents the node level in a 

document tree. With the coverage information, we can 

determine the relationships between nodes quickly. As 

for the labeling, we can label each node by traversing an 

XML document tree in a depth-first search way. 

3.4 XML document storage 

An XML documents can be stored in a few different 

forms, such as in flat files, in relational databases, and in 

native XML databases. For an XML document to be 

stored in flat files, we need to parse the files in advance 

before accessing them. Although it is the simplest form, 

the parsing time would be very lengthy when the XML 

document size is too large. Besides, it also incurs multi-

user access and concurrency control problems. For an 

XML document to be stored in relational database, since 

the XML document is a tree structure, it must use some 

middleware to translate the XML format into relational 

tables. Besides, when querying the XML document, it is 

also necessary to translate a query into an SQL 

statement, and execute join operations repeatedly among 

different relation tables, so that it exposes lower 

efficiency. Native XML databases aim to provide 

complete XML document storage and manipulation. 

Different from other database systems, native XML 

databases use an XML document as a basic unit of 

storage, and defines an XML model used to store and 

retrieve XML documents. 

3.5 Materialized views 

A view is a virtual and derived table defined by users for 

facilitating to express a complicated query. Rather than 

physically stored as parts of a database, a view definition 

is merely recorded by the database system. It is evaluated 

only when a user issues a query involving this view. 

However, a materialized view is the one which is 

physically stored in the database, in addition to its 

definition. Absolutely, the performance of a materialized 

view is better than a non-materialized view because not 

only these data can be accessed without re-

materialization, but also they can be fetched faster by 

building indexes on these data beforehand. Thus, a 

materialized view is usually used in accessing a large 

amount of data, such as a data warehouse or in business 

intelligence applications, where we need to take more 

time to query them. A data warehouse is a subject-

oriented, integrated, time-variant, and nonvolatile 

collection of data in support of management’s decision-

making process. It can be accessed by decision makers 

through OLAP queries, almost read operations. In short, 

our design is for decision makers to accelerate XML 

query processing in a data warehouse. 

In this paper, based on native XML databases, we 

use materialized views to query required data from an 

original document. Here, a materialized view can be 

defined using the “CREATE MATERIALIZED VIEW” 
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function and an XPath expression. For the materialized 

views on an original document, we build auxiliary files 

and construct indexes using numbering schemes to avoid 

unnecessary sub-tree traversal, thereby improving the 

navigation efficiency of a query. 

4 System architecture 

4.1 Overview 

In order to achieve faster query processing on the views 

defined in a native XML database, we propose a system 

architecture consisting of an offline phase and an online 

phase, as shown in Figure 3. In the offline phase called 

view processing, we build view-relevant structures such 

as T-Bitmap and indexes to accelerate later query 

processing. In the online phase called query processing, 

the system can promptly respond to view-based queries, 

utilizing the T-Bitmap and indexes built beforehand. 

 

 

Figure 3: System architecture. 

4.2 View processing 

In this section, the motivation of view materialization is 

introduced first. Then, we build relevant structures such 

as T-Bitmap and indexes on materialized views to further 

accelerate query processing. 

4.2.1 View pre-processing 

Usually, an Xpath expression is used to address and 

query an XML document. However, for the query 

execution, the system always searches an XML 

document tree from the root. When a query is frequently 

executed, the system performance would be degraded 

since a large amount of unnecessary sub-tree traversal 

cannot be avoided. For the query with an Xpath 

expression as shown in Figure 4, we can define a 

materialized view beforehand, which is rooted from node 

“Books” with an attribute “category” matching with the 

specified predicate “Technology”, as shown in Figure 5. 

Then, the materialized view can be created from the 

original document, as shown in Figure 6. Thus, rather 

than traversing the original document tree always from 

the root, the system only needs to search the materialized 

view, thereby improving the navigation efficiency of the 

query. 

 

 

Figure 4: Query with an XPath expression. 

 

Figure 5: View definition. 

<?xml version="1.0" standalone="yes"?>
      <Books category="Technology">
         <Book>
            <Title>How to know XML</Title>
            <Chapter>
               Introduction to XML
               <Para>Your First XML</Para>
            </Chapter>
            <Author Id="Q345">John</Author>
            <Publisher>
               <Name>XML tech</Name>
               <Email>John@hpdiy.zzn.com</Email>
            </Publisher>
         </Book>
         <Book>
            <Title>Small World</Title>
            <Chapter>
               Q&A
               <Para>The One</Para>
            </Chapter>
            <Author Id="A854">Jimmy</Author>
            <Publisher>
               <Name>Network</Name>
               <Email>Jimmy@hpdiy.zzn.com</Email>
            </Publisher>
         </Book>

      </Books>

...

  

Figure 6: Materialized view. 

Before building T-Bitmap and indexes on a 

materialized view to further accelerate query processing, 

we must determine the relationships between nodes (i.e., 

parent-child axes and ancestor-descendant axes) in a 

materialized view using the region-based labeling 

scheme as mentioned in Section 3.3. We traverse a 

materialized view and label nodes in a depth-first search 

way. When a node is visited first, its start value is 

created; when we leave the node, the end value is 

labeled. After traversing the whole materialized view, all 

the nodes in the view are completely labeled as shown in 

Figure 7. 

 

CREATE MATERIALIZED VIEW mv AS( 
SELECT extract(sys_nc_rowinfo$, 
'/root/store/Books[@category="Technology"]') 
FROM XMLTABLE); 

XPath:/root/store/Books[@category="Technology"] 
/Book[Title="How to know XML"]/Publisher 
/Email=‘John@hpdiy.zzn.com’ 
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Book(1,25)

Title(2,4)

How to know 
XML
(3,3)

Introduction 
to XML

(6,6)

Para(7,9)

Your First 
XML
(8,8)

Chapter(5,10)

Id(12,14)

Q345
(13,13)

John(15,15)

Author(11,16)

Publisher(17,24)

Name(18,20)

XML tech
(19,19)

John@hpdiy.zzn.com
(22,22)

Email(21,23)

Books(0,251)

…

 

Figure 7: Labeling nodes in a depth-first search way. 

4.2.2 Building T-Bitmap 

T-Bitmap is a bit string type, which is used to record 

what descendant nodes are beneath a current node. First, 

a dictionary recording the positions in T-Bitmap and the 

corresponding tags is created, as shown in Table 1. Then, 

the T-Bitmap value on each node can be calculated using 

OR operators. For an example as shown in Figure 8, the 

T-Bitmap of node “Publisher” can be calculated by 

combining the T-Bitmaps of “Name”, “Email”, and itself 

using OR operators. 

Table 1: Dictionary: positions in T-Bitmap and 

corresponding tags. 

Position 0 1 2 3 

Tag Books Book Title Chapter 

Position 4 5 6 7 

Tag Para Author Id Publisher 

Position 8 9 - - 

Tag Name Email - - 

 

        Name         0000000010
OR   Email         0000000001
-----------------------------------------------------

                            0000000011
OR  Publisher   0000000100
-----------------------------------------------------

                                 0000000111

                         (b)
Title(2,4)

(0010000000)

Chapter

(5,10) Author(11,16) Publisher(17,24)

Book(1,25)

(0111111111)

Para(7,9)

(0000100000)
Id(12,14)

(0000001000)

Name(18,20)

(0000000010)

Email(21,23)

(0000000001)

(0000000111)(0000011000)(0001100000)

OR operator

OR operator

Level2

Level3

Level4

(a)

Level1

...

Books(0,251)

(1111111111)

OR operator

 

Figure 8: Combing T-Bitmaps using OR operators. 

4.2.3 Building index 

Here, we use labeling codes to build two kinds of index 

trees; i.e., tag index trees and value index trees. To 

illustrate the tag index construction, we extend the 

storage model in Figure 7. As shown in Figure 9, we can 

see a lot of nodes with the same tag names but with the 

different labeling codes; e.g., node “Email(21, 23)” and 

“Email(46, 48)”. We can build the index tree of each tag 

using the start values in labeling codes as keys and the 

well-known B+-tree algorithm, as shown in Figure 10 

where the pointers of a leaf node in the tag index tree 

indicate the positions of corresponding nodes in the 

materialized view. For the query with an XPath: 

“Book//Email”, when processing the current node 

“Book(26, 50)”, we can use the tag index tree of “Email” 

to locate each leaf node by following the dotted path, and 

find out node “Email(46, 48)” covered by node 

“Book(26, 50)”. 

  

Figure 9: Extended storage model. 

  

Figure 10: Tag index tree. 

Besides, we can also build a value index tree 

according to the text values of nodes in the document, as 

shown in Figure 11. The construction method is the same 

as that used to build tag index trees. However, we 

generate only one value index tree for each materialized 

view, and the records of a leaf node are with the [text, 

start, pointer] format where the pointers also indicate the 

positions of corresponding nodes in the materialized 

view. 

4.3 Query processing 

In this section, the query transformation based on a 

materialized view is introduced first. Then, according to 

different axes specified in the transformed query, we 

make use of the T-Bitmap and indexes built in the view 

processing to accelerate query processing. Finally, we 

also introduce subsequent processing for a query 

specifying the particular predicate in an Xpath 

expression. 
John,15

Introduction to XML,6 Q345,13 The One,33

pA854,38

pHow to know XML,3

pIntroduction to XML,6

pJimmy@hpdiy.zzn.com,47

pJimmy,40

pJohn,15

pNetwork,44

pJohn@hpdiy.zzn.com,22

pQ345,13

pSmall World,28

pQ&A,31

pThe One,33

PYour First XML,8

pXML,19

 

Figure 11: Value index tree. 
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4.3.1 Query pre-processing 

After materialized views are created, a query should be 

transformed based on its corresponding materialized 

view. For the query as shown in Figure 4, its Xpath 

expression (traversing from node root) is transformed 

into a new one (traversing from node “Books”) as shown 

in Figure 12. 

 

 

Figure 12: Query transformation based on a materialized 

view. 

Before utilizing T-Bitmap and indexes to accelerate 

query processing, we must deal with parent-child axes 

and/or ancestor-descendant axes specified in the 

transformed query. We execute navigation or indexing 

according to different axes, and recursively check nodes 

in the document tree. 

4.3.2 Navigation 

For a parent-child axis, we use a navigation way to 

search nodes in the document tree. Here, T-Bitmap can 

be used to avoid unnecessary search during the 

navigation, since it provides the information whether 

result nodes are beneath the current processing node. For 

a query “/R/A/C” as shown in Figure 13, we can use an 

AND operator to determine whether node C is beneath 

the current processing node. First, for current node R, 

Query(11010)^R(11111)=Query(11010) indicates node 

C is beneath node R. Then, for the next node A1, 

Query(01010)^A1(01100)Query(01010) indicates node 

C cannot be beneath node A1, and we do not need to 

search the sub-tree rooted at node A1. Next, for node A2, 

Query(01010)^A2(01110)=Query(01010) indicates node 

C is beneath node A2. Finally, we recursively check 

nodes in the document tree until node C is found. 

4.3.3 Indexing 

For a query “/A//B∙ ∙ ∙” specifying an ancestor-

descendant axis as shown in Figure 14, although we can 

also use T-Bitmap to search node B, the search based on 

a parent-child axis would go through a lot of unnecessary 

intermediate nodes. Therefore, we use indexes to directly 

search a descendant node, instead of using T-Bitmap. As 

mentioned in Section 4.2.3, we use the start value in the 

labeling code of the ancestor as the key to search the tag 

index tree of the descendant. Then, we check whether the 

descendant node is covered by the ancestor node; if yes, 

we fetch the descendant node and proceed to parse the 

query downward. 

4.3.4 Subsequent processing 

In this section, we investigate the processing for the 

query specifying a particular predicate. One is the query 

specifying values, and another is the twig query. 

4.3.4.1 Query specifying values 

For a query “/Books/Book[Author = ‘Jimmy’]/Publisher 

= ‘XML tech’ ”, two values are specified for filtering 

nodes in the document. As shown in Figure 15, we use 

the value index tree as mentioned in Section 4.2.3 to find 

out value nodes “Jimmy(12)”, “XML tech1(7)”, and 

“XML tech2(15)”, and then put them into their 

corresponding queues, respectively. When processing 

node “Book” in the query, we fetch node “Book1”, and 

find that node “Jimmy(12)” is not covered by node 

“Book1”; i.e., [2,9] < 12. Then, for the next node 

“Book2”, although node “Book2” covers node 

“Jimmy(12)”, node “XML tech1(7)” is not covered by 

node “Book2”. Then, we choose the next value node 

“XML tech2(15)” and do the same inspection. Finally, 

we find out node “Book2” is the result node. 

Book1

1111
Books

Book2

John
XML
tech1

Jimmy
XML
tech2

0111 0111

0010 0001 0010 0001
Author1 Author2Publisher1 Publisher2

(1,18)

(2,9) (10,17)

(3,5) (6,8) (11,13) (14,16)

4 7 12 15

Book

Jimmy

0111

0010 0001
Author Publisher

Query: /Books/Book[Author = ‘Jimmy’]/Publisher = ‘XML tech’

BookBooks PublisherAuthor

T-Bitmap

XML

tech

Jimmy
XML
tech2

XML
tech1

V1 V2

V1 queue V2 queue

Books 1111

 

Figure 15: Value node processing. 

SELECT extract(sys_nc_rowinfo$,'/Books 
/Book[Title="How to know XML"]/Publisher 
/Email=' John@hpdiy.zzn.com '') 
FROM mv; 

R

A

C

Query

11010

01010

00010

R

A3A2A1

B B C B D

11111

01100

00100 00100 00010 00100 00001

01110 01101

R A B C D

T-Bitmap

 

Figure 13: Navigation using T-Bitmap. 

A

B

.......

......

Ancestor-descendant 

relationship

intermedia nodes

 
Figure 14: Unnecessary intermediate nodes. 
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4.3.4.2 Twig Query 

Besides, for a query “/Book[Publisher]/Author” as shown 

in Figure 16(a), we can also process it in the same way as 

done in Section 4.3.2. As shown in Figure 16(b), two 

solutions “Book, Publisher, Author1, Jim” and “Book, 

Publisher, Author2, Jimmy” exist in the document. They 

can be found by 1) merging Path1 and Path2, and 2) 

merging Path1 and Path3, as shown in Figure 16(c). 

 

Book

Publisher Author

Book

Publisher Author1 Author2

Jim Jimmy

PublisherBook Author

T-Bitmap

Book

Publisher

Book

Author1

Book

Author2

twig query

/Book[Publisher]/Author

(a)

XML document

(b) (c)

Path 1 Path 2 Path 3

 

Figure 16: Twig query processing. 

5 Experiments 
In this section, four experiments are conducted to show 

the superiority of our approach proposed in this paper. 

These experiments are written in Java (JDK1.7) and 

conducted on an Intel Pentium4 3GHz CPU with 3G 

main memory in Windows 7. In the first experiment, we 

present the comparisons among different methods. In the 

second experiment, we investigate the effect of query 

types on different methods, especially on our method. In 

the third experiment, we use synthesis documents to 

analyze our method, and try to find some characteristics. 

In the last experiment, we address the space vs. time 

issue if multiple materialized views can be integrated 

together to save the space; in other words, more than one 

query would search from a materialized view. 

5.1 Comparisons among different methods 

In this experiment, we compare the search ways in 

different methods as shown in Figure 17. The first 

method is the original search way which is always from 

the root of a document tree. The second method was 

proposed by Godfrey et al. [1], which searches from the 

root of a materialized view. The last method is ours 

which also searches from the root of a materialized view, 

but with the aid of auxiliary data structures. 

To fairly compare with the method proposed by 

Godfrey et al., an XML benchmark available on the 

XMark site is used in the experiment, which has data size 

113.794MB and 1,513,518 nodes. Also, we follow the 

similar query types and comparison ways used in the 

experiments conducted by Godfrey et al. As shown in 

Table 2, there are twelve different types of queries tested 

in the experiment. To contrast with the searching ways as 

shown in Figure 17, the columns as shown in Table 3 are 

1) query types, 2) searching time on the original tree, 3) 

view creation time, 4) searching time using Godfrey et 

al.' method, and 5) searching time using our method. The 

experimental results show that our method performs 

much better than the Godfrey et al.' method in all the 

queries, especially for long-path and twig queries Q3, 

Q7, Q8, Q9, and Q11. This is why our method uses the 

T-Bitmap and index structures to accelerate query 

processing. 

5.2 Effect of query types on different 

methods 

In this experiment, we use the same XML benchmark as 

the first experiment, but different queries as shown in 

Table 4. For the searching axis, Q1 and Q2 are based on 

the parent-child axis, Q3 and Q4 on the ancestor-

descendant axis, and the others on mixed axes. For the 

query types, Q1, Q3, Q5, Q6, and Q7 are path queries, 

whereas the others are twig queries. Furthermore, Q1, 

Q3, Q4, Q5, Q6, Q7, and Q10 are with value predicates. 

In this experiment, as shown in Table 5, our method 

is still the best one among different methods in all the 

queries. Even taking the worst case Q8 as an example, 

our method is 206 times faster than the original way, and 

88 times faster than the Godfrey et al.' method. The 

reason is, as shown in Table 6, the number of nodes 

visited for Q8 in our method is only 1/28 times of the 

original way, and is only 1/10 times of the Godfrey et al.' 

method. 

For the path queries (i.e., Q1, Q3, Q5, Q6, and Q7), 

both execution time of the Godfrey et al.' method and 

ours is less than one second. For the twig queries (i.e., 

Q2, Q8, and Q9), they cost more execution time than the 

path queries since a large amount of nodes are visited. 

However, for the similar twig queries (i.e., Q4 and Q10), 

they do not cost much execution time since only a very 

small amount of nodes are required to visit. In summary, 

the advantages of our method are 1) when dealing with 

twig queries, we only need to check T-Bitmap and skip 

an entire sub-tree if not matched, and 2) when dealing 

with the queries with value predicates, we can use the 

value index tree to achieve efficient processing. 

From begining to end

rootOriginal search

Index search

Godfrey method Our method

 

Figure 17: Search ways in different methods. 
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5.3 Experiments on synthesis documents 

In this experiment, six synthesis documents with 

different fanout are used to analyze our method for three 

different types of queries as shown in Table 7. Q1 is 

based on the parent-child axis, Q2 is based on the 

ancestor-descendant axis, and Q3 is a twig query with 

three predicates and based on mixed axes. As shown in 

Table 8, we find that the execution time of each query 

increases as the fanout increases. Moreover, regardless of 

the complexity in Q3, it still costs almost the same time 

as Q1 and Q2 using our method; i.e., its execution time 

would not increase significantly even if it is a twig query 

with three predicates. However, for Q3 using the original 

way and/or the Godfrey et al.' method, their execution 

time increases seriously as shown in Table 9. Especially 

for the Godfrey et al.' method, the execution time for 

fanout30 is 202 times slower than that for fanout5. 

5.4 Experiments on space vs. time 

In this experiment, we explore the space vs. time issue 

when multiple materialized views are integrated together. 

In order to achieve the premise that more than one query 

can search from a materialized view, we reuse seven 

queries (i.e., Q3, Q4, Q5, Q6, Q7, Q8 and Q10) as shown 

in Table 4. Then, we find that 1) Q3, Q6, and Q7 can 

search from the materialized view built based on Q3, 2) 

Q4 and Q10 can search from the materialized view built 

based on Q4, and 3) Q5 and Q8 can search from the 

materialized view built based on Q8. Thus, after the 

integration, we have three materialized views for these 

seven queries. The data space and execution time 

between no integration and integration are shown in 

Table 10. Taking the group (Q3, Q6, Q7) as an example, 

the overall data space is 3+1+3=7(KB) and the total 

execution time is 3+2+12=17(ms) if each query has its 

own materialized view; however, after the integration, 

the data space is only 3(KB), but the total execution time 

increases to 3+5+26=34(ms). 

In order to explore the relationship between data 

space and execution time for these two strategies (i.e., 

no-integration and integration), we define two terms: 1) 

amount ratio for data space and 2) speed ratio for 

execution time as follows. 

Table 2: Twelve kinds of queries. 

Q1 /site/regions/europe/item/mailbox/mail 

Q2 /site//item/mailbox/mail 

Q3 /site//africa/item/description/parlist/listitem 

Q4 /site//person/profile/interest[@category] 

Q5 /site//person/profile[age]/interest[@category="category620"] 

Q6 /site//person/profile[contains(age,"18")]/education 

Q7 /site//open_auction[@id="open_auction5"]//date 

Q8 /site//category/description[text]/parlist/listitem 

Q9 /site//category/description[text/keyword]/parlist/listitem 

Q10 /site/*/*/item/mailbox/mail 

Q11 /site//*//africa/item/name 

Q12 /site//item/mailbox[count(mail)] 

Table 3: Comparisons among different methods. 

Time(ms) 

Query Original tree 
% View 

creation 

* View non-

indexed 

# View 

indexed 

Q1 193718 30131 64980 5752 
Q2 195146 32147 84574 20599 
Q3 310315 31137 100130 593 
Q4 185361 32890 99890 29436 
Q5 193474 31147 147344 6865 
Q6 191034 29702 65248 9106 
Q7 203447 27112 132522 279 
Q8 212511 28317 60353 232 
Q9 241417 30169 64384 916 

Q10 185357 31603 80727 19811 
Q11 199274 28417 65059 320 
Q12 209115 31731 99283 20687 

  % View creation: Views created for both methods 
  * View non-indexed: Godfrey et al.' method 

  # View indexed: Ours 
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( )

( )
strategy

space strategy
amount ratio

space original
                         (1) 

( )

( )
strategy

time strategy
speed ratio

time original
                               (2) 

where space(strategy) is the overall data space used in 

the no-integration or integration strategies, time(strategy) 

is the total execution time required in the no-integration 

or integration strategies, space(original) is the data space 

of the original document, and time(original) is the 

execution time on the original document. 

Then, we can use these two terms to judge which 

strategy is better for the system performance as follows. 

integration no integration

no integration integration

amount ratio speed ratio

amount ratio speed ratio





 


 
 

(3) 

or  
( ) ( )

( ) ( )

space integration time no integration

space no integration time integration





  (4) 

For Equation (4), the former term represents that the 

data space benefits for the integration strategy can be 

Table 4: Different kinds of queries. 

Q1 

Q2 

/site/open_auctions/open_auction[@id="open_auction5"]/initial 

/site/open_auctions/open_auction[annotation/author]/bidder/date 

Q3 

Q4 

//site//open_auctions//open_auction[@id="open_auction0"]//current 

//person[@id="person0"][creditcard]//watch 

Q5 

Q6 

Q7 

Q8 

Q9 

Q10 

/site/regions//item[@id="item0"]//mail 

//open_auction[@id="open_auction0"]/bidder/date 

/site/open_auctions/open_auction[@id="open_auction0"]/../end 

/site/regions//item[//text/bold]//location 

//closed_auctions/closed_auction[//description/text]/seller 

//people/person[@id="person0"][//business]/name 

Table 5: Execution time. 

Time(ms) 

Query Original tree 
View 

creation 

View non-

indexed 

View 

indexed 

Q1 31818 14920 193 8 

Q2 68769 15731 37949 1883 

Q3 29718 11787 140 3 

Q4 30989 10056 103 3 

Q5 27976 10705 119 3 

Q6 30123 11723 48 2 

Q7 32680 12135 139 12 

Q8 4344137 222996 1853537 21111 

Q9 1560306 246697 201444 16185 

Q10 28425 10374 70 2 

Table 6: Number of nodes visited. 

Nodes 

Query Original tree 
View non-

indexed 

View 

indexed 

Q1 48005 57 5 

Q2 259604 87331 23794 

Q3 24001 64 3 

Q4 31502 24 8 

Q5 34124 50 3 

Q6 25960 8 5 

Q7 24005 64 3 

Q8 1204343 432651 43502 

Q9 736217 102736 39003 

Q10 25647 24 5 

Table 7: Three kinds of queries. 

Q1 /root/L1/R 

Q2 //root//R 

Q3 /root//L1[//R][//Q][//S] 
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gained (i.e., data space reduced) whereas the latter term 

represents that the execution time benefits for the no-

integration strategy can be gained (i.e., execution time 

reduced). If Equation (4) with the equal weighting 

between space and time is true, the integration strategy 

should be adopted. According to the data taken from 

Table 10, we can calculate the former term and latter 

term in Equation (4), as shown in Table 11. From the 

statistical data, we find that the integration strategy is 

better for group (Q3, Q6, Q7) and group (Q4, Q10), but 

the no-integration strategy is better for group (Q5, Q8). 

Absolutely, different strategies can be adopted for 

different query groups at the same time to make the 

system performance in the best status. 

6 Conclusions 
In this paper, we employ some processing methods on 

XML documents to improve document retrieval. The 

goal is to reduce the number of visited nodes during tree 

traversing, thereby leading to faster query processing. To 

achieve this goal, we focus on the usage of database 

views. First, we build a materialized view from an 

original document for each query. Then, on each 

materialized view, we also build auxiliary structures such 

as T-Bitmap and indexes to further accelerate query 

processing. According to different axes specified in an 

Xpath expression, we have different techniques to handle 

them. Finally, through the experiments, we 1) compare 

the performances among different methods, 2) 

investigate the effect of query types on them, 3) use 

Table 8: Comparisons for different fanout in our method. 

Time(ms) 

 Q1 Q2 Q3 

Fanout5 358 326 392 
Fanout10 571 554 569 
Fanout15 1065 969 1023 
Fanout20 1514 1432 1486 
Fanout25 2164 2023 2137 
Fanout30 2701 2579 2658 

Table 9: Comparisons for different fanout in different methods. 

Q3 Time(ms) 

 
Original tree 

View non-

indexed 

View 

indexed 

Fanout5 143618 419 392 

Fanout10 278615 796 569 

Fanout15 436672 2700 1023 

Fanout20 655059 10815 1486 

Fanout25 678379 38339 2137 

Fanout30 879231 84779 2658 

Table 10: Comparisons between no integration and integration. 

No integration Space(KB) Time(ms) 

Q3 3 3 

Q4 1 3 

Q5 2 3 

Q6 1 2 

Q7 3 12 

Q8 56226 21111 

Q10 1 2 

 
Integration Space(KB) Time(ms) 

(Q3, Q6, Q7) 3 3+5+26 

(Q4, Q10) 1 3+2 

(Q5, Q8) 56226 16491+21111 

Table 11: Comparisons based on Equation (4). 

 (Q3, Q6, Q7) (Q4, Q10) (Q5, Q8) 

Former term 3/7=0.43 1/2=0.5 56226/56228=1 

Latter term 17/34=0.5 5/5=1 21114/37602=0.56 
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synthesis documents to analyze our method, and 4) 

address the space vs. time issue if materialized views are 

integrated together. 
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