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We propose an adaptive learning machine-based branch predictor - the shadow dynamic finite state 
machine (SDFSM) - that enables more accurate branch predictions by learning unique branching 
patterns through a self-modifying technique. SDFSM states represent branch pattern bits. If a state 
mispredicts a branch, the state is swapped with its shadow state, which represents the correct branching 
pattern bit. Therefore, the prediction accuracy can reach 100% if the number of states matches a 
branch's pattern length. When compared to a 2-bit saturating counter using bimodal branch predictors, 
the SDFSM decreases average misprediction rates by 18.3%, with individual decreases as high as 55%. 

Povzetek: Predstavljena je metoda za učenje vejitvenih vzorcev v procesorju. 

1 Introduction and related work 
In order to meet high performance demands, modern 
processor architectures exploit varieties of dynamic 
branch prediction topologies ([4]-[6] provide an excellent 
introduction and research coverage) to increase 
instruction-level parallelism (ILP). 

Dynamic branch predictors use run-time branch 
execution history to predict branch direction. Most 
previous techniques use a branch pattern history table 
(known as PHTs, BHTs, or BPHTs) to record past branch 
behavior (e.g., global and/or local) and these tables are 
indexed using a function/subset of the branch address. 
Nearly all dynamic branch predictors explored in the last 
10 years have been based on tables containing 2-bit 
saturating counters [7][8]. Extensive simulations of 
branch predictors reveal that the 2-bit saturating counter 
performs the best on average [9][10], and thus are used in 
modern commercial processors. 

In recent years, research has explored more 
advanced branch prediction techniques such as neural 
networks [11][12] and other forms of machine learning. 
Despite their impressive simulation accuracy, to the best 
of our knowledge no commercial efforts have publicly 
announced incorporating such branch predictors because 
these branch predictors are commonly known to exhibit 
high prediction latency and long training periods with 
increased area and energy per prediction [13]. 

In order to provide increased branch prediction 
accuracy with low area and power overheads, in this 

paper we propose a novel adaptive learning machine-
based shadow dynamic finite state machine (SDFSM). 
The SDFSM learns/predicts an application's unique 
branching pattern using the prediction values (taken/not 
taken) stored in each state. Upon branch execution, state 
transition is input independent and the value of the target 
state predicts the branch outcome. Each state has a 
corresponding shadow state, which contains the alternate 
branch prediction value. In the event of a mispredicted 
branch, the SDFSM performs self-modification by 
swapping the current state with the current state's 
shadow state, which contains the correctly predicted 
branch outcome. This method of state swapping 
dynamically records unique branch patterns, thus 
specializing the branch predictor to the needs of an 
application. Extensive experimental results compare the 
SDFSM prediction accuracy to the commonly used 
bimodal [1][2] counter-based predictor and reveal that, 
for a subset of benchmarks, an SDFSM with six shadow 
states provides more accurate predictions than counter-
base predictors with one-to-one prediction latency. 

The remainder of this paper is organized as follows. 
Section 2 describes the proposed SDFSM as an 
alternative replacement for 2-bit saturating counters and 
presents the SDFSM architecture. Section 3 and Section 
4 present our simulation methodology setup and branch 
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predictor analysis, respectively. Section 5 compares 
counter-based predictors and SDFSM-based predictors. 
Section 6 presents a performance analysis and finally, 
section 7 gives conclusions and suggested future 
dynamic branch prediction development. 

2 Shadow dynamic finite state 
machine (SDFSM) branch 
prediction 

In this section, we present our shadow dynamic finite 
state machine (SDFSM) branch prediction technique for 
learning/predicting an application's unique branching 
patterns. 

2.1 SDFSM operation 
Figure 1 depicts the SDFSM using a 4-state SDFSM 
automaton (larger SDFSMs are similarly represented 
using more states). SDFSM state values record/predict 
branch outcomes. SDFSM operation consists of two 
phases: the training phase and the operational phase. 
During the training phase, SDFSM states are 
manipulated such that they learn the application's 
branching pattern. SDFSM state transition is 
deterministic upon each branch execution and the next 
state's value corresponds to the predicted branch 
outcome. In other words, branch prediction is determined 
by the branch history pattern and not by the input 
condition leading to the next state. If a state's prediction 
value is correct, no change is made to the SDFSM. If a 
state's prediction value is incorrect, the SDFSM self-
modifies to adapt to the branching pattern. 

In order to learn branching patterns, each state has a 
corresponding shadow state (positioned adjacent to the 
state), and the shadow state contains the opposite 
prediction value. Thus, if a state's value does not 
correspond to the branching pattern, the state is swapped 
with its shadow state in order to swap the state's branch 
prediction value. During the training phase, the states 
record the observed pattern and during the operational 
phase, the states predict taken/not taken. This implies 
that the SDFSM learns a distinct pattern on-the-fly and 
then predicts this pattern perfectly. Furthermore, the 
training and operational phases are not necessarily 
mutually exclusive as the SDFSM transitions to the 
training phase anytime there is a misprediction. 

Figure 2 illustrates the 4-state SDFSM using a 
repeated pattern of 1010, which is commonly known to 
produce poor prediction rates for saturating counter 
techniques [14]. All state values are initialized to 0. Upon 
first execution of the branch, the SDFSM enters the 
initial state (step 1), whose state value is 0 and predicts 
the branch as not taken. After branch resolution, if the 
state mispredicted the branch outcome, the state is 
swapped with its shadow state and the state's predicted 
value becomes 1. On the next execution of the branch, 
the SDFSM transitions to the next state (step 2), which 
correctly predicts the branch as not taken. On the next 
execution of the branch, the SDFSM transitions to the 
next state (step 3), which predicts the branch as not 

Initial 

Figure 1: The proposed shadow dynamic finite state 
machine (SDFSM) using four states. 

Figure 2: The SDFSM updates state predictions by 
swapping states with shadow states based on the 
observed pattern. 

taken. Again, branch resolution determines that the 
branch was mispredicted and the shadow state is 
swapped in. On the next execution of the branch, the 
SDFSM transitions to the next state (step 4), which 
correctly predicts the branch as not taken. On the next 
execution of the branch, the SDFSM transitions back to 
the initial state, which ends the training phase and begins 
the operational phase. The SDFSM now correctly 
predicts the branch outcome on every branch execution. 

Perfect branch pattern prediction only occurs if the 
pattern repeats itself with a repetition cycle equal to (or a 
divisor of) the number of states. A 4-state SDFSM can 
perfectly predict any 2- or 4-entry branch pattern. This 
restriction can be generalized to any x-entry pattern, 
which would require an SDFSM with x states or any 
multiple of x states. In Section 4, we provide an in-depth 
analysis of numerous SDFSM sizes. 

During context switching, in addition to traditional 
branch predictor state saving techniques, SDFSM 
operational state can be quickly saved and restored using 
special hardware to read and save state on a single clock 
cycle. State saving area overhead would be small, as only 
one n-bit counter is required for each context. 

Currently, SDFSM operation is not pipelined, thus 
mispredicted branches and branch overlap are not 
accounted for. However, these operational enhancements 
could be easily incorporated into the SDFSM by adding 
additional steering logic and mispredicted rollback 
capabilities. These additions would be straightforward 
and could be done such that the prediction accuracy 
would be unaffected, and are a focus of our future work. 

2.2 SDFSM architecture 
Figure 3 depicts the generalized SDFSM architecture 
(with N states) consisting of an array of N prediction 
states and a shift register to selectively enable the 
appropriate prediction state. Prediction state architectural 
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Component Type Number of 
components 

D-Type Flip-Flop 2N 
(DFF) 

Two-input Multiplexer N 
AND gate logic N 
XOR gate logic N 

Tri-state gate logic N 

Table 2: Total number of hardware components based 
on the number of SDFSM prediction states (N). 

Parameter Configuratio 
n 

BTB, assoc, cache line size 128KB, 4-way, 
32B 

L2 unified size, assoc, cache line 
size 

256KB, 4-way, 
64B 

LI data size, assoc, cache line size 8KB, 4-way, 32B 
LI instruction size, assoc, cache 

line size 8KB, 4-way, 32B 
Branch predictor techniques Bimodal 

Reorder buffer size 512 
L3 unified size, assoc, cache line 

size 
4 MB, 2-way, 

64B 
Pipeline depth 40 

Table 1: Architectural parameters. 

1. The shift register is responsible for selectively 

components include a single D-type flip-flop (DFF) to 
store the state's predicted value, a two input multiplexor 
to swap the predicted value (effectively implementing a 
swap with the shadow state), and several gate level 
components. Prediction state inputs are similar to those 
used for 2-bit saturating counters, which are initialize 
(IN), prediction input pattern (PIP), enable (Z), and the 
clock (CLK) signal. Prediction states have a single 
output, which is the predicted value. The outputs of all 
prediction states are connected to a common output 
(Prediction Output Value) using tri-state buffers. The 
shift register is composed of N DFFs, whose outputs Q 
(also denoted as Z) are connected to the adjacent DFFs 
inputs D and selectively enable the prediction states. The 
shift register is clocked using the BRANCH signal, which 
is asserted each time the branch associated with this 
predictor is fetched. 

At system startup, IN is asserted to reset the system. 
IN is connected to each DFF's reset (RES) port, 
effectively setting all register values to 0, except for the 
last DFF in the shift register. IN is connected to the set 
(SET) port of this DFF in order to set this DFF's value to 

enabling a single prediction state, thus only one bit in the 
shift register should ever have a value of 1. Each time the 
BRANCH signal is asserted, the shift register updates its 
values, which enables the next sequential prediction state 
via the Z signal. 

SDFSM prediction states consist of two operational 
phases: the predict operation and correct operation. The 
predict operation provides the branch prediction value 
while the correct operation swaps the branch prediction 
value with the shadow state value if the branch is 
mispredicted. During the predict operation, the enabled 
prediction state's output drives the Prediction Output 
Value using Z's assertion to enable the tri-state buffer. 
During this time, the PIP input value should correspond 
to the Prediction Output Value (not shown in Figure 3) 
so that the DFF value does not change. 

If a branch is mispredicted, the PIP value will 
change to the branch outcome value and the prediction 
state enters the correct operational phase. During this 
phase, simple logic gates controlling the multiplexor's 
inputs and select line swap the DFF's stored value with 
the shadow value. Thus, in order to swap the DFF's 
stored value, the PIP must be different than the currently 
stored value and Z must be asserted. 

The SDFSM has been architecturally designed to 
complete in one fast clock cycle. Assuming the DFFs are 
constructed using two levels of 3-input NAND gates and 
the multiplexor is constructed using standard two level 
logic gates, the longest register-register delay is seven 
gates (since DFF updating for the shift registers and 
prediction states is mutually exclusive, no phase flows 
through both DFFs). This situation occurs during the 
correct operational phase. 

Table 2 depicts hardware area estimates in number 
of hardware components based on the number of 
prediction states N, where total hardware area grows at a 
rate of O(N). To minimize the output steering logic, 
prediction state outputs share a common output wire 
using tri-state buffers. In addition, to minimize active 
power, the DFFs in each prediction state are only 
activated on a misprediction. Overall, the SDFSM 
architecture is highly cost-effective in terms of 
performance, area, and power. 
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Figure 4: Prediction accuracy for each benchmark using a 4k-entry BHT for the bimodal branch predictor using a 2-bit 
saturating counter (counter) and SDFSMs with 2, 3, 4, 6, 8, 10, and 12 states (SDFSM-A). 
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Figure 5: Prediction accuracy for the six advantageous benchmarks using a 4k-entry BHT for the bimodal branch 
predictor using a 2-bit saturating counter (counter) and SDFSMs with 2, 3, 4, 6, 8, 10, and 12 states (SDFSM-A"). 
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Figure 6: Arithmetic mean of the prediction accuracy for (a) all benchmarks and (b) for the six advantageous 
benchmarks for the bimodal branch predictor with a 2-bit saturating counter (Counter) and SDFSMs with 2, 3, 4, 6, 8, 
10, and 12 states (SDFSM-A) for BHT sizes ranging from 256 to 128k entries. 

3 Simulation methodology and 
evaluation metrics 

In order to perform an in depth analysis of the SDFSM, 
we exhaustively simulated the SPEC2000 benchmark 
suite [16] (we simulated each application in its entirety 
for all provided input stimuli) using the SimpleScalar 
PISA processor simulator version 4 [15]. We modified 
sim-bpred to implement the SDFSM and simulated the 
SDFSM with 2, 3, 4, 6, 8, 10, and 12 states. Our 

comparison framework focused on comparing the 
SDFSM to a popular branch prediction technique 
(bimodal) using 2-bit saturating counters with branch 
prediction table sizes ranging from 256k- to 16k-entries. 
We compare with the bimodal predictor because the 
bimodal predictor is a branch predictor cornerstone and 
allows us to establish the fundamental contribution of our 
SDFSM. Table 1 summarizes the base system's 
architectural parameters, which represent common 
modern system parameters, yet are conservative with 
respect to future technologies. 
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Each branch prediction table entry contains an FSM, 
which can be either the SDFSM or a 2-bit saturating 
counter. Hence, the predictor storage budget (PSB) in 
bits is determined by: 

P S B = 2 n x [ l o g 2 ( n u m b e r of States F S M ) ] 

where N is the number of index bits used for the branch 
prediction table. In the conventional bimodal branch 
predictor, the low-order J bits of the branch address 
index into a branch history table (BHT) of size 2J entries. 
The BHT entries can either be 2-bit saturating counters 
or can be replaced with SDFSMs of any size. Since it is 
difficult to precisely compare predictors with exactly the 
same hardware budgets, we compare predictors based on 
number of table entries, which provides a fair 
performance comparison because these tables account for 
the majority of the hardware budget. 

Cumulative prediction rate accuracies are computed 
and analyzed using the arithmetic mean for averaging 
prediction rates, over all benchmarks, based on predictor 
storage budget. In addition, individual branch prediction 
accuracies for every benchmark and every branch 
prediction technique studied were measured for 
increasing hardware budgets, reflecting branch predictor 
sizes available in commercial microprocessors. 

Improving processor performance, measured in 
number of instructions executed per cycle (IPC), is 
considered the key motivation for combining improved 
branch prediction accuracy with low latency branch 
prediction. High prediction latency nullifies any 
prediction accuracy advantages due to decreased IPC. 
For a 2-bit saturating counter, since each up-down 
counter only requires 2 bits to record the branch 
behavior, the technique requires simple hardware and 
little storage space. In addition, the 2-bit saturating 
counter's inherent simplicity results in simple single-
cycle prediction computation, thus guaranteeing low 
prediction latency. In contrast, perceptron-based 
predictors require comparatively complicated 
computation using adder components. The prediction 
latency of the original perceptron predictor was more 
than 4 cycles [13], which required heavy pipelining to 
hide such latencies. This pipelining led to problems 
similar as those encountered when designing modern 
hyperpipelined execution cores [12]. Thus, since the 
SDFSM has the same access delay (single-cycle) as the 
2-bit saturating counter, the key evaluation metric is 
SDFSM prediction accuracy compared to 2-bit saturating 
counters with a fixed hardware budget. 

4 Experimental results 

Figure 4 shows the prediction accuracy for all 
benchmarks for the bimodal branch predictor with a 2-bit 
saturating counter (counter) and SDFSMs with 2, 3, 4, 6, 
8, 10, and 12 states (SDFSM-^) using a 4k-entry BHT. 
On average over all benchmarks, the 2-bit saturating 
counter outperforms all SDFSMs. However, we reiterate 

that branch predictors behave differently for all 
applications, and there is no one branch predictor that 
outperforms all other branch predictors for all 
applications. 

Figure 5 subsets the results and depicts the six 
applications where the SDFSM shows improved 
prediction accuracy over the 2-bit saturating counter. On 
average, the 6-state SDFSM provides the largest 
prediction accuracy improvements with an average 
misprediction rate decrease of 18.3%, with individual 
decreases ranging from 6.3% to 55%. Figure 5 also 
reveals that for each benchmark, the optimal sized 
SDFSM is quite different. The optimal SDFSM sizes for 
ammp, equake, gzip_graphic, mcf, mesa, and 
perlbmk_makerand are the 6-state, 12-state, 8-state, 2-
state, 12-state, and 6-state SDFSMs, respectively. 

(a) 
Figure 6 (a) depicts the arithmetic mean of the 

prediction accuracy for all benchmarks for the bimodal 
branch predictor with a 2-bit saturating counter (counter) 
and SDFSMs with 2, 3, 4, 6, 8, 10, and 12 states 
(SDFSM-^) for BHT sizes ranging from 256 to 128k-
entries. The prediction accuracy increases as BHT size 
increases and saturates asymptotically. On average, the 
2-bit saturating counter still outperforms all SDFSMs, 
with the 2-bit predictors prediction accuracy saturating at 
92.3% and the next accurate predictor (6-state SDFSM) 
saturating at 91%. On average, the 2-bit saturating 
counter with 16k-entries (a practical hardware budget) 
provides 1.7% more accuracy than the next most accurate 
predictor. 

(a) 
Figure 6 (b) subsets the results from 
Figure 6 (a) and averages the six applications where 

the SDFSM shows improved prediction accuracy over 
the 2-bit saturating counter. For these benchmarks, the 6-
state SDFSM is 1.2% more accurate than the 2-bit 
saturating counter, saturating asymptotically at 93.5%. 
This figure also shows that both the 6- and 12-state 
SDFSMs outperform the 2-bit saturating counter. 

Overall, results reveal that our SDFSM has the 
potential to further enhance the accuracy of 2-bit 
saturating counters. Since literature shows that the most 
advanced branch prediction methods adopt neural or 
saturating elements, the SDFM has the potential to 
improve on these methods as a replacement for the 
saturating elements. The SDFSM is intended to enhance 
branch prediction for certain applications that exhibit 
particular behaviors such as aliasing, damping, and other 
irregularities such as those found in artificial intelligence 
and gaming applications (see Section 5 for details). 

5 Comparison analysis 
In this section, we analyze the exhaustive results 
presented in Section 4 and discuss comparative 
advantages and disadvantages of the 2-bit and SDFSM 
branch predictors considering aliasing interference, 
damping, adaptability, training time, and latency. 
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5.1 Aliasing interference and damping 
Since the BHT size is generally much less than the total 
number of branches in an application, the bimodal branch 
predictor uses the low-order J bits to index into the BHT. 
Therefore, if two conditional branches have the same 
low-order J bits, their branch streams will be 
intermingled and sent to the same predictor. We define 
this situation as aliasing interference. Due to aliasing 
interference, and because we use the bimodal branch 
predictor, both the 2-bit saturating counter and our 
SDFSM-based predictor generally result in lower 
prediction accuracy in the presence of significant aliasing 
interference. Aliasing interference can be alleviated 
through two methods. Simply increasing the BHT size 
can significantly reduce aliasing interference. 
Additionally, using other branch prediction techniques 
such as per-address branch predictors (PAs) can reduce 
aliasing interference by using a two level indexing 
method [14]. The first level is indexed using a subset of 
H bits of the branch address to index into a pattern 
history table of size 2H, which stores the unique local 
branch history pattern of that branch. This pattern is then 
used to index into the second level, which contains either 
global pattern histories (PAg) or per-address pattern 
histories (PAp) [3]. 

In general, aliasing interference does not directly 
imply prediction accuracy penalties. For example, if two 
branches alias to the same BHT entry but their 
executions are mutually exclusive, (the first branch 
executes 1000 times followed by 1000 executions of the 
second branch) the prediction accuracy lost due to 
aliasing interference is negligible. However, if two 
branch executions are not mutually exclusive (the worst 
case being that the two branches alternate executions), 
then aliasing interference may lead to a significant 
decrease in prediction accuracy. To analyze the effects of 
aliasing interference in the case of two interfering 
branches, we define the most frequently executing 
branch as the majority branch and the least frequently 
executing branch as the minority branch. We further 
define a majority run as consecutive majority branch 
executions with no intervening minority branch 
executions. Minority runs are similarly defined. 

Smith [1] observed that 2-bit saturating counters 
implicitly provided an appropriate amount of damping 
(or hysteresis) which alleviated some of the aliasing 

1 2 3 4 5 6 7 8 
Pa t t e rn Length 

Figure 7: Bimodal predictor misprediction rates for 
various pattern lengths. 

interference. The damping mechanism in 2-bit saturating 
counters requires two consecutive mispredictions before 
the prediction value changes, thus ignoring minority runs 
of length one. Damping trades off adaptability for 
vulnerability to short minority runs. In addition, damping 
also allows loop branches to incur just one misprediction 
per loop iteration, instead of two mispredictions (one on 
loop exit and one on loop entry). 

On the other hand, the SDFSM's implicit damping 
mechanism is quite different than the 2-bit saturating 
counter. The SDFSM simply learns the branching pattern 
that maps to a particular BHT entry. Therefore, as long 
as the combined patterns of the interfering branches 
produce a learnable pattern, the SDFSM will learn that 
pattern. However, since these combined patterns are 
likely longer than individual branching patterns, this 
implies that SDFSMs with more states provide increased 
damping. The SDFSM predictor actually provides 
high/perfect prediction accuracy for applications with 
short minority runs as well as long minority/majority 
runs, by minimizing or even eliminating aliasing 
interference. On the contrary, in the presence of aliasing 
interference, damping in saturating counters only works 
well for long minority runs. 

Literature shows that the bimodal predictor is widely 
known to have a significant amount of aliasing 
interference even as the hardware budget increases 
[2][4]. In our experiments, since both the 2-bit saturating 
counter and the SDFSMs use a bimodal predictor, large 
amounts of aliasing interference will favor the counter-
based predictor since the counter based predictor can 
better tolerate aliasing interference. 

Figure 4 shows that on average the 2-bit saturating 
counter can reduce the misprediction rate by 14.3% over 
the best SDFSM predictor (SDFSM-6). On the other 
hand, for the six benchmarks where SDFSMs are 
advantageous, short minority runs (which are considered 
a limitation of counter-based predictors) favor the 
SDFSM predictor. For these six benchmarks, Figure 5 
shows that the SDFSM can decrease misprediction rates 
by 18.3% on average. 

5.2 Recurring patterns 
Researchers have shown that aliasing in the pattern 
history tables can significantly degrade the performance 
of bimodal branch predictors. [3][4][21][23] showed that 
a repeating pattern of length one (i.e., "1111...1" or 
"0000...0") was detected for approximately 50% of the 
branches, indicating that a significant amount of branch 
inference may occur if the PHTs are updated for these 
branches. For these situations, a simple predictor such as 
a bimodal predictor would typically outperform the 
SDFSM predictor, which would incur every interference 
update. 

In addition, research showed bimodal predictors 
could accurately predict branches with short repeating 
patterns, while branches with a repeating pattern of 
length six tended to have higher mispredication rates 
[21][22][23], as is show in Figure 7 from [23]. Since 
Section 4 revealed that the 6-state SDFSM was the best 
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performing number of states on average, the 6-steate may 
provide improved performance for these branching 
patterns of length 6. In addition, our results demonstrated 
that SDFSMs with a smaller number of states suffered 
less branch interference penalty as compared to SDFMs 
with a larger number of states, which could explain why 
the 6-state SDFSM outperformed the 12-state SDFSM 
(or for any SDFSM with a multiple of 6 states). 

5.3 Adaptability and training time 
Branches typically exhibit high biasing (usually 70% 

[4]) towards one outcome (taken or not taken). This bell 
distribution (bell peaks at 70%) is key to a counter-based 
predictor's high prediction accuracy and explains why 
the 2-bit saturating counter outperforms the SDFSM for 
the majority of the benchmarks. To provide better 
prediction accuracy for low biasing applications, 
previous work shows [3][5] that applications with 
branches that show low biasing require dynamic 
adaptability in order to achieve high prediction 
accuracies. This dynamic adaptability enables the 
predictor to specialize itself to a branch's biasing during 
application execution. Dynamic adaptability provides the 
added benefits of not requiring any static profiling or 
branch predictor training during system/application 
design time. The 2-bit saturating counter lacks dynamic 
adaptability. On the other hand, our N-state SDFSM-
based predictor can dynamically adapt to any branch 
pattern of length equal to (or a divisor of) N. The larger 
the number of states, the more flexibility the SDFSM has 
for adapting to different pattern lengths. 

However, SDFSMs with a large number of states can 
negatively impact the prediction accuracy due to longer 
training times. Figure 5 exemplifies this impact with the 
6- and 12-state SDFSMs. Ammp, gzip_graphic, mcf, and 
perlbmk makerand show increased prediction accuracy 
for a 6-state SDFSM even though the 12-state SDFSM 
captures the same branching pattern. On the other hand, 
equake and mesa show decreased prediction accuracy for 
the 6-state SDFSM because these benchmarks likely 
have longer branch patterns, thus requiring more SDFSM 
states. On average, the 6- and 12-state SDFSMs decrease 
misprediction rates by 18.3% and 15.4% compared to the 
2-bit saturating counter, respectively. The 6-state 
SDFSM decreases misprediction rates by 4% compared 
to the 2-bit saturating counter. This overhead is due to 
the 12-state SDFSM's increased training time. Similar 
trends are evident when comparing 2- and 6-state 
SDFSMs, as well as any other SDFSM with common 
divisors. 

5.4 Latency 
Few hardware resources are required to implement 

both the 2-bit saturating counter and the SDFSM 
predictors and thus these techniques require only modest 
storage space. In addition, this inherent simplicity results 
in simple predictions and computations, which 
guarantees low prediction latency (a critical component 
for high performance in processors). The SDFSM-based 
predictor requires only a single cycle for training and 

prediction, while 2-bit saturating counter-based 
predictors require two cycles for training and predicting. 
Thus, the overall prediction latency of the SDFSM-based 
predictor is 50% less than that of the 2-bit saturating 
counter-based predictor, resulting in a higher instruction-
per-cycle (IPC). 

6 Performance evaluation 
(a) 

Figure 6 (a) showed that the counter-based predictor was 
more accurate on average than the SDFSM with respect 
to the arithmetic mean. However, the counter-based 
predictor's misprediction latency cycles is twice that of 
the SDFSM, as was described in Section 5.4. The 
additional misprediction cycle adversely affects overall 
processor performance due to stalls while waiting for the 
training and subsequent prediction. Therefore, in order to 
more fairly compare complete predictor performance, we 
must consider the mispenalty latency in conjunction with 
the misprediction rate. 

We evaluate the SDFSM and counter-based bimodal 
type predictors with respect to the misprediction per 
cycle (MPC) and the prediction accuracy rates (PAs) as 
determined by simulation. In order to provide an analysis 
that is independent of the processor clock speed, the 
misprediction rate is normally measured in cycles rather 
than in seconds, such that: 

M P C c o u n t e r = [100% - P A c o u n t e r ]x 2 cycles 
and: 
MPCSDFSm = [ 1 0 0 % - PASDFSm ]x 1 cycles 

Figure 8 shows the MPCs with respect to hardware 
budget in number of entries and Figure 10 subsets these 
results as in (a) 
Figure 6 (a) (i.e., those where the SDFSM showed 
improvement over the counter-based predictor with 
respect to misprediction rates), Similarly to the 
misprediction rates for these subsetted benchmarks, the 
MPCs for all SDFSMs improves with respect to counter 
predictor, with an average overall performance increase 
of 37%. However, on average over all benchmarks the 
counter-based predictor still had the lowest misprediction 
rate. 

Branch predictor performance can also be evaluated 
using the misprediction speedup, as derived in [17], such 
that: 

M P C 
Speedup = ^ ^ 

M P C 1V±± ^ SDFSM 

Figure 9 shows the misprediction speedup verses 
hardware budget in number of entries for various 
SDFSM sizes compared to the counter-based predictor. 
These speedups are in line with speedups obtained for 
other recent innovations in branch predictors [18]-[20]. 
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Figure 8: Mispredictions per cycle per benchmark with a hardware budget of 4KB. 

7 Conclusion and future work 
This paper proposes the shadow dynamic finite state 
machine (SDFSM), a new branch predictor where the 
FSM states are dynamically trained during rum-time to 
learn unique branch pattern behaviors. Whereas the 
SDFSM can be generalized to any arbitrary number of 
states, we explored several SDFSM sizes and compared 
extensive simulation results on the SPEC2000 
benchmark suite with 2-bit saturating counters using a 
conventional bimodal-based branch predictor. Results 
revealed that the SDFSM decreases average 
misprediction rate for six benchmarks, which have 
irregular branching tendencies (i.e. those seen in artificial 
intelligence and gaming applications). Furthermore, in 
the situations where the SDFSM was slightly less 
accurate than the 2-bit predictor, this reduced accuracy 
was due to the nature of the bimodal predictor 
architecture (and not a failure of the SDFSM), which 
inhibits a large percentage of aliasing phenomena that 
severely affects the performance of our SDFSM 
automaton on prediction accuracy. The SDFSM will 

likely show marked improvements when coupled with 
predictors that are less affected by aliasing such as PAs 
and GAs. 

In addition, the SDFSM uses a simple hardware 
structure, which provides single cycle training and 
prediction latency; in contrast, the 2-bit counter predicts 
and corrects in two cycles. This single cycle advantage 
for the SDFSM offsets the accuracy advantage of the 2-
bit counter by trading off performance with respect to the 
instructions-per-cycle (IPC) rate. 

Finally, we explored and analyzed the number of 
SDFSM states in the scope of adaptability, training, 
damping, and aliasing in order to determine their affect 
on prediction accuracy. Results show that a 6-state 
SDFSM is a good average configuration for optimal 
length for bimodal predictor topology. Thus, our results 
encourage researchers to explore the SDFSM combined 
with more advanced predictor methods, thus improving 
the accuracy of those predictors. 

Our future work is motivated by the per-application 
variation in optimal SDFSM size as shown in Figure 5. 
Consequently, choosing the best number of states is a 
key design decision since the SDFSM structure does not 
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Figure 10: Average mispredictions per cycle verses 
hardware budget in number of entries. 
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Figure 9: Misprediction speedup verses hardware budget 
in number of entries for various SDFSM state sizes 
compared to the counter-based predictor. 
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dynamically alter its number of states based on pattern 
entries. Therefore, our future work includes architecting 
an adaptive SDFSM capable of dynamically altering its 
number of states based on actual branch pattern length. 
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