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Abstract. In the spin-charge-family theory there are in d-dimensional space 2¢ Clifford
vectors, describing internal degrees of freedom of fermions — their families and family
members. Due to two kinds of the Clifford algebra objects, defined in this theory as vy and
¥ [2-7], each vector carries two kinds of indices. Operators y* v® determineind = (3+1)
space the spin and all the charges of quarks and leptons, ¥* ¥° determine families of
quarks and leptons. In this contribution basis in d = (3 + 1) Clifford space is chosen in a
way that the matrix representation of the y® matrices and of the generators of the Lorentz
transformations in internal space Sab — %(yayb —vPy%) coincide for each family quantum
number, determined with $¢° = %(T/C‘f/b —7°9%), with Dirac matrices. We do not take here
into account the second quantization requirements [?], which reduce the number of states
from 29 t0 2%~ families of 2%~ family members each, but this is the case for d = 2(2n+1),
since in the spin-charge-family theory d > 4.

Povzetek. V teoriji spinov-nabojev-druZin je v d-razsenem prostoru 2¢ Cliffordovih vektor-
jev, ki opisujejo notranje prostostne stopnje fermionov, to je njihove druZine in ¢lane druzin.
Ker imamo dve vrsti Cliffordovih objektov, ki so v tej teoriji definirani kot y® in ¥ [2-7],
ima vsak vektor dve vrsti indeksov. Operatorji S*° = % (y*y®—vy®y*) dolo¢ajov d = (3+1)-
razseZnem prostoru spin in vse naboje kvarkov in leptonov, $¢° = I (y*y® —y°y°) pa
kvantna $tevila njihovih druZin. V tem prispevku je baza v d = (3 + 1) Cliffordovem
prostoru izbrana tako, da matri¢ne upodobitve operatorjev y* in generatorjev Lorent-
zovih transformacij S®° v notranjem prostoru sovpadajo z Diracovimi matrikami za vsako
druzinsko kvantno $tevilo, dolo¢eno s 5¢°. V prispevku ne upostevamo zahtev druge
kvantizacije [8], ki zmanj$ajo $tevilo stanj z 2¢ na 29" druZins po 2% &lani. Vendar velja
v teoriji spinov-nabojev-druZin tole za d = 2(2n + 1), kjer je d > 4.

* This contribution is written to help readers of the Bled proceedings and participants
at future Bled Workshops “What Comes Beyond the Standard Models” to understand
the difference between the Dirac Y matrices and the ¥ matrices, which are all defined
in 2¢ space and used in the spin-charge-family theory to describe families and family
members [2-7].
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16.1 Introduction

In the spin-charge-family theory there are in d-dimensional space two kinds of
operators, y® and ¥¢, which operate on 2¢ Clifford vectors, describing internal
degrees of freedom of fermions; ¥¢ determine family quantum numbers, y¢
determine family members. Due to these two kinds of the Clifford algebra objects
each vector carries two kinds of indexes [2-7]. Operators ziya v® determine in
d = (3+ 1) space the spin and all the charges of quarks and leptons, $y¢ ¥°
determine families of quarks and leptons.

Here only basis in d = (3 + 1) Clifford space is discussed, which in the spin-
charge-family theory is only a part of d = (13 + 1). The basis is chosen in a way that
the matrix representation of the y“ matrices and of the generators of the Lorentz
transformations in internal space S4° = }(yayb —v®y%) coincide for each family
quantum number, determined with $¢° = I (y2y® — y°y9), with Dirac matrices.

This contribution is written to help the reader of the proceedings of Bled
workshops “What comes beyond the standard models” to realize the differences
between the Dirac matrices (operators) y* and the operators ¢ [2].

We do not take here into account the second quantization requirements [8],
which reduce the number of states from 29 to 2%~ families of 22~ family mem-
bers each, since these requirements concern the states in d = 2(2n + 1), and not at
all the particular subspace, in our case d = (3 + 1).

We use in this contribution 2¢ vectors in Clifford space, expressible with y¢
with the properties

v v° = me®. (16.1)

A general vector can correspondingly be written as

d
B = Z Qajas...ax Ya]yaz . -’Yaklll)oc >, ai < Ait+1, (162)
k=0

where [\p, > is the vacuum state. We arrange these vectors as products of nilpotents
and projectors

ab ] TAlaa

k): = =(y* b

(k) z(v oY )y

i = 114 Tyayy (16.3)
=3 YY), .

where k? =1%9n®?, their Hermitian conjugate values are

abJr ab ab]L ab
(k) =n® (—=k), [kl =k, (16.4)
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and that they all are eigenstates of the Cartan subalgebra of the generators of the

Lorentz transformations $°° = 1 (y%y® = y2Py9) in this internal space

§03 §12 g56 ... gd-1d
(16.5)
with the eigenvalues
ab ] ab ab 1 ab
S (k) = 5k (k), S =5k [Kl . (16.6)

We find in this Clifford algebra space two kinds of the Clifford algebra objects,
besides y® also ¥ [2-7], which anticommute with y¢

{Ya>‘y~b}+ =0,
{ya){b}# =1 zﬂab» for (1,b E{O>1)2a3»5)"' »d}) (167)

for any d, even or odd. I is the unit element in the Clifford algebra. One of the
authors (N.S.M.B.) recognized these two possibilities in Grassmann space [2]. But
one can as well as understand the appearance of the two kinds of the Clifford
algebra object by recognizing

YEBhWo > =(aoy® +aq, YV +Qaya, VYV Y2+ +
Aayeag YOV o ¥9 4 ) o >,

YiBho > =(iaoy® —iaq, v" ¥ +ida,a, Y Y2 ¥+ +
=1 aa, ag ¥ vy ) o > . (16.8)

The nilpotents and projectors oof Eq. (16.3) are the eigenstates also of the generators
of the Cartan subalgebra

§03 §12 §56 Sdfl d (169)
with the eigenvalues
_ ab k ab _ ab k ab
S ()= 5 (k), SP=—J10. (16.10)

One finds the relations

ab ab ab ab ab ab ab ab
v¢ (K)=n [k, ¥° (k)= —ik [k, v KI=(=k), v° [k]= —ikn®® (=k),
5 ab ab . ab ab 5 ab ab . ab ab
ve (k)= —in? [k], ¥® (k)= —k [k], @ [k]= i (k), ¥® [k]= —kn*® (k) .

(16.11)

We discuss in what follows the representations of the operators y®, ¥¢, S¢°
and $%® onlyind = (3 +1).

In Ref. [8], as well as in this proceedings, the second quantization in Clifford
and in Grassmann space is discussed. There the restrictions on the choices of
products of nilpotents and projectors, which can be recognized as independent
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states in the Clifford space, and yet allow the second quantization, is analyzed.
The restrictions reduce, as noticed above, the number of states from 29 to 251
families with 27~ family members each. All the states of this contribution appear
as a part of states (included as factors) already in d = (5 + 1).

In what follows we shall notpay attention on these limitations. We only
present matrices of the operators Y%, ¥¢, S®® and 5¢° for all possible states.

16.2 Basisind = (3+ 1)

There are 2* = 16 basic states in d = (3 + 1). We make a choice of products of
nilpotents and projectors, which are eigenstates of the Cartan subalgebra operators
as presented in Egs. (16.6, 16.10). The family members are reachable by S°, or by
v¢ representing twice two vectors of definite handedness rMdind=(3+1)

M =@v2 I (vn®y%), if d=2n. (16.12)

a

Each vector carries also the family handedness

Mo =@ J[ (va®ey®), if d=2n. (16.13)

a

In what follows we first define the basic states and then represent all the
operators — y¢, $4°, ¥4, §ab T(d) (= —4{593512 in d = 4), D) (= —4i5035812 in
d =4) — as 16 x 16 matrices in this basis. We see that the operators have a 4 x 4
diagonal or off diagonal or partly diagonal and partly off diagonal substructure.

Let us start with the definition of the basic states, presented in Table 16.1.

As seen in Table 16.1 y® change handedness. $%?, which do not belong to
Cartan subalgebra, generate all the states of one representation of particular hand-
edness, Eq. (16.12), and particular family quantum number. $¢®, which do not
belong to Cartan subalgebra, transform a family member of one family into the
same family member of another family, ¥¢ change the family quantum number as
well as the handedness "3+1), Eq. (16.13).

Dirac matrices vy and $°° do not distinguish among the families, they “see”
all the families in the same way and correspondingly ”see” only four states —
instead of 4x four states. The operators Y and S®° are correspondingly 4 x 4
matrices.

Let us define, to simplify the notation, the unit 4 x 4 submatrix and the
submatrix with all the matrix elements equal to zero as follows

10 00
1= (o ]> , 0= (0 o)' (16.14)

We also use (2 x 2) Pauli matrices:

1 (01 > (0—i 3 (10
0'(10, oo=1{i0) o =o_1) (16.15)
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d=4 ¥: Yoll)inllJinllﬁiY31b1701b11711bi?21bif/311)1503512§°3§12r3+] 3+
VD] i) wa] wa] wi[—wi[—i ] wil=dl 3] 3] 3] 2] 1] 1
L L 2 e 511 o L A . 1 AL B
3] wr] —0z|=ia| —r| w3 Wi w3 w5 o 3 7| 1] 1
G N2 I R R R e e 0 R 0 e 1 A e 4 S e .
7] W3]~z w3 Wy i =i 3| S[-3] 3] 1] T
S G 24 3L i 21 s O 2 L 2 e 1 1 L
SEE] Wil w3l wa] =i s w3 w3 3[-3] 3] 1] -7
A R Ot R 1 A Y 4 M 4 1 e 1 L A
VD] W3] —wal—ia] w3 wi—ier| —ei] Wil 3] 3] 3[-3] 1] -7
S L G 2 AL 4 1 R 21 1 1 1 L
U] Wil ws| Wi i3] i wi[-ws[-5| 3| 33| -1 T
G o IR e IR R S R A B 2 i 2 B S I e T I 4 M
T U w3 ] wd] wi[—iwi] Wil i Wy 3] 333 1] 7
2 |[(FO)] WG] 3| —is| g 3| i3] —p3|—ibd|—5|—g|—5|-5] 1] 1
W3 [ i s [—is| =i Wi —iws| —w3|—wi|—3] 3[-3[-3] -1 7
i [ W) i Wt e3[—iwd| iws| i W] F|-5|-3[-3] 1] 1

Table 16.1. In this table 2¢ = 16 vectors, describing internal space of fermionsind = (3+1),
are presented. Each vector carries the family member quantum number — determined by
$% and S'?, Egs. (16.6) — and the family quantum number — determined by 5% and S'?,

Eq. (16.10).

Looking in Table 16.1 one easily finds the matrix representations for v°, y',

v? and y3

0 o
o' 0

(16.16)

(16.17)

(16.18)

(16.19)
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One sees as well the 4 x 4 substructure along the diagonal of 16 x 16 matrices.
The representations of the ¢, these do not appear in the Dirac case, manifest
the off diagonal structure as follows

0 s 00
—1i0 0
. °, 0 0 0
’YOZ 0 ic? _io® o , (16.20)
0 0 0 ic?
. 3 0
0 1% —io? 0
—io® 0
0 io? . 300
0 0 0 i
V= 0 —io? | (16.21)
0 ic? 0 0 0
30
L
0 0 *53 o5 0
72 = 0 0 0 %3 e (16.22)
¥ = %3 o o 0 0 , ,
0 *g‘ 5 0 0
—ic® 0
o 0 ioc? 0 0
—to 0 0 0
yP=| o i . . 16.23
Y 0 0 0 o0 o (16.23)
o o 0 —io
0 0 0 —io? 0

Matrices S° have again the 4 x 4 substructure along the diagonal structure,
as expected, manifesting the repetition of the Dirac 4 x 4 matrices, since the Dirac
$2% do not distinguish among families.

ig! 0
R ? 0 0
N o 0 0 0
$O1 = . e . , (16.24)
0 %01 : X
so
0 0 0l
i 2
BN 0 0
2
i 2
0 P 0
§02 _ 27 e g , (16.25)
0 0 0 7%0‘2 ?
Y
0 0 0 A
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i 0
N i 0 0 0
i 3
o 0 N fgg 0 0
§03 _ 2Ty , (16.26)
0 0 2 R 0
0 —50 %63 .
0 0 0 0 o
1.3
N %‘;3 0 0 0
153 0
12 0 Zg 13 0 0
S = 75, , (16.27)
0 0 S 0
2 153 0
0 0 0 2 1o?
1.2
N %‘;2 0 0 0
_ 152 0
s 0 20" 142 0 0
S = T e, , (16.28)
0 0 AN 0
: 162 0
0 0 0 2 Jo?
1.1
N %‘;1 0 0 0
_147 0
2 0 ZO“ 1 0 0
§23 = 2T a0 o . (16.29)
0 0 AR 0
: %0‘1 0
0 0 0 o 1o
I~ ]00 0 0
0 0 o0
3+1 . 4;cQ03 12: 0 —1
r3+1 = —44803g o 0 10 o (16.30)
0

0o o0 o0 )9

The operators $¢° have again off diagonal 4 x 4 substructure, except 5°3 and
S$'2, which are diagonal.

0 0 0 —31
< 0 0 —%1 0
§OT = L2 (16.31)
0 310 o [’
—310 0 o0
0 0 011
< 0 o0 110
§92 — 142 (16.32)
q —310 0 |°
—31 0 00
1.0 0 0
< 0 —-i10 o
593 = 2% (16.33)
0 0 i1 0 [
0 0 0 —i1
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110 0 o
& 031 0 0
12 = z 16.34
> 0 0-11 0 |° (1634)
00 0 —11
0 0 0 —31
& 0 0 31 0
13 _ T2
S 0 -i10 0 , (16.35)
1.0 0 0
0 00 —J1
. 0 0310
§% = 2 16.
0 110 o0 (16.36)
1
—510 0 O
10 00
- 503 & 0-100
r‘3+1 = 4 03 ]2: 16.37
1§%°S 00 —10 (16.37)
00 01
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