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Active netv/orks allow user-controlled network programmability. A security framework has to assure that 
our infrastructure will bebave as expected and wiU efficiently deal with malicious attacks, unathorized 
attempts to execute active code etc. We present here a security architecture that is designed within the 
FAIN project and aitns at supporting multiple heterogeneous execution environments. We argue for the 
pros and cons as well as why we have selected the specific components and also take a look at their 
interworking in order to provide the security services to the execution environments our active network 
node hosts. 

A Introduction 

Basic AN principles have serious consequences have seri-
ous consequences for the operation of an Active Netvvork 
(AN). The possibiHty of loading and executing active code 
in Active Netvvork Nodes (ANNs) imposes considerable 
threats to expected operation of AN/ANN due to flaws in 
active code, malicious attacks by unauthorized users, and 
conflicted code execution. Thus, security in AN deals 
mainly with protecting system (AN infrastructure) from 
malicious (unauthorized) and erroneous use. The central 
objective of FAIN [7] security architecture is to guaran-
tee robust/secure operation of AN infrastructure despite the 
unintentional or intentional misbehaving of users, i.e. their 
respective active code/active packets. 

Fulfilling these objectives is fundamental for the usabil-
ity of ANs. Clearly, if it is trivial for any user to intention-
ally degrade the performance of an AN or any single ANN, 
or to bring down the AN/ANN, then ANs are not really us­
ahle. Note the difference betvveen degrading performance 
of (disabling) an ANN and that of an AN. It is possible that 
specific netvvork service, i.e. the respective active code, is 
consistent vvith local security policy of an ANN; hovvever, 
due to global, netvvork vvide behaviour of the protocoi, it 
can degrade the performance of (part of) netvvork or even 
completely disable it. Furthermore, if an unintentional er-
ror in the design of a nevv netvvork service, its implementa-
tion (active code), or its configuration can degrade perfor­
mance of an AN/ANN or disable an AN/ANN, then ANs 
are not really usable. 

Finally, if a malicious or unintentional misbehaving of 
any user can severely degrade or even disable the netvvork 
services perceived by other user(s) of an AN but vvith no 
affect on the ANN/AN, then again, ANs are not really us­

able. The threat model for active netvvorks covers three 
broad classes of security issues: protecting AN infrastruc­
ture from users and active code, protecting users and active 
code from other active code, and protecting users and ac­
tive code from AN infrastructure. Hovvever, the scope of 
initial FAIN security architecture is limited mainly to the 
first class, i.e. protecting AN infrastructure from users and 
active code. 

B FAIN Active Nodes 
The FAIN Reference Architecture consists mainly of AA, 
VE, EE and Node OS: 

- Active Applications/Services (AA) are applications 
executed in Active Nodes. An A A is often referred to 
also as Active Code (AC). 

- Execution Environments (EE) are environments 
vvhere application code is executed. A privileged EE 
manages and controls the Active node and it provides 
the environment vvhere netvvork policies are executed. 
Multiple and different types of EE are envisaged in 
FAIN. EEs are classified into Virtual Environments 
(VEs), vvhere services can be found and interact vvith 
each other. VEs are interconnected to form a truly vir-
tual netvvork. 

- NodeOS is an operating system for active node and 
includes facilities for setting up and management of 
channels for inter-EE and AA-EE Communications, 
manages the router resources and provides APIs for 
AA/EEs, isolates EEs from each other. Through its 
extensions the NodeOS offers: 
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Resource Control Facilities (RCF). Through 
resource control resource partitioning is pro-
vided. VEs are guaranteed that consumption 
stays Nvithin the agreed contract during an ad-
mission control phase static or dynamic. 

Security Facilities. Main part about security is 
authentication and authorisation of using the re-
sources and other objects of the node like inter-
faces and directories. Based on the poIicy profile 
of each VE security is enforced. 

Application/Service code depIoyment facili­
ties. As flexibility is one of the requirements for 
programmable netvvorks partly realised as ser-
vice deployment either on the fly or static, the 
NodeOS must support it. 

Deinultiplexing facilities. It filters, classify and 
divert active packets. Flows of packets arrive at 
the node and they should be delivered to the VE 
and consequently to the service inside the VE 
they are destined for. 
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u 
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Figure 1: FAIN active node reference architecture 

Figure 1 describes the main design features of the FAIN 
nodes. In FAIN a number of node prototypes are under 
development as follows: 

- A high performance active node, with a target of 150 
Mb/s. 

- A range of flexible and very functional active 
nodes/servers, with the objective of supporting mul-
tiple VEs and hosting heterogeneous EEs. 

The common part of the prototypes (the FAIN middievvare) 
is the NodeOS with the relevant extensions. 

C General FAIN Model and 
Security Reqiiirements 

The fundamental property of FAIN AN is the possibility 
to dynamically inject active code known as active appli-
cation (AA), that implements new functionality, into the 
netvvork. This code is executed or interpreted by specific 
execution environment within ANNs and this way it pro-
vides end- user applications with appHcation specific net-
work services. Many different active applications can coex-
ist in an active network. We assume that FAIN AN consists 
of unlimited number of network nodes and some of them 
are active (ANN). Active code is injected into the network 
via active packets, vvhich carry active code itself or its ref­
erence, which is used by ANNs to install the code from 
code repository. Code can be executed in the nodes within 
the packet path. Execution provides new functionality in 
the network, which can be temporary or permanent. It can 
also produce new packets. Each execution ušes some of 
the ANN and AN resources, like CPU, storage and band-
width, again temporarily or permanently. Specific code in 
an ANN can be injected, removed or replaced by explicit 
or implicit request. Additionally, the following properties 
apply to generalized AN model [1]: 

- an AN is a distributed system 

- an AN is a packet-switched network, as opposed to 
circuit-switched 

- not ali nodes in an AN need to be active 

- an AN explicitly provides for computation inside the 
network, but 

- the primary goal of active netvvorks is communication, 
not computation 

- the contents of an active packet can legally change in­
side ANNs' 

- not ali packets are active 

- an AN consists of multiple domains, each controlled 
by a different administration. 

Active networking supplies the users with the ability to 
install and execute program code within a network node. 
That by its nature is a security critical activity. In such an 
infrastructure the security implications are far more com-
plex than in current static environments. In AN the au-
thor of the active code, the user who deploys it, the owner 
of the node hardvvare, the ovvner of the execution platform 
can ali be different entities govemed by different security 
policies. In such a heterogeneous environment security be-
comes an extremely sensitive issue. The possibility of load-
ing and executing active code in ANNs imposes consider-
able threats to expected operation of AN/ANN due to flavvs 

' In ANNs the payload (data part) can be changed also, not just header 
fieids. 
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in active code, malicious attacks by unauthorized users, 
conflicted code execution etc. Thus, security in AN deals 
mainly with protecting system (AN infrastructure) from 
malicious (unauthorized) and erroneous use. The central 
objective of FAIN security architecture is to guarantee ro-
bust/secure operation of AN infrastructure despite the un-
intentional or intentional misbehaving of users, i.e. their 
respective active code/active packets. 

Active Code (AC) is transferred to the node or is itself 
mobile e.g. in the form of a mobile agent. Therefore the 
attacks that AC and also the EE are susceptible to are more 
than those in current passive netvvorks. 

In general we can have: 

- Misuse of an active network node by the active code 

- Misuse of active code by other active code. 

- Misuse of active code by an active network node. 

- Misuse of active code and/or execution environment 
by the underlying network infrastructure. 

- Misuse of the Active Netvvork as an entity. 

Finally a combination of the above categories is possible. 
These kinds of attacks (the complex and coUaborative ones) 
are very difficult to detect, let alone to prevent or effectively 
tackle. Classical examples include the co-operation of var-
ious hosts and ACs against another EE or AC. Threats can 
also be analysed from the perspective of a single ANN, and 
from the network- wide perspective. Of course, threats to 
a single ANN apply also to the whole AN (domain). How-
ever, network-wide threats can be more subtle and harder to 
combat, since they are based on the global, distributed na-
ture of netvvork protocols, and thus, their respective active 
codes. 

In the initial phase of the FAIN project, only high prior-
ity security requirements have been addressed in detail: 

- authentication 

- authorization 

- policy enforcement 

- active code/packet integrity 

- code verification 

- audit. 

We have compiled this list in light of the main objec­
tive of the FAIN security architecture, which is to provide 
secure and robust operation of FAIN AN infrastructure in 
spite of unintentional and malicious misbehaving of AN 
users, i.e. their respective codes. From this perspective, 
our criteria in assigning priorities can be summarized as 
follows: 

- How subtle is particular security requirement, i.e. the 
respective threat "behind" the requirement? 

- More subtle yields lower priority. 

C.l Authentication, Authorization, and 
Policy Enforcement 

FAIN ANN is essentially a multi-user computing system. 
As in any such system, enforcement of access control is a 
requirement of high significance within every FAIN ANN. 
On the other hand, FAIN aims at developing a flexible sys-
tem. In order to achieve the desired level of granularity we 
decompose access control in authentication, authorization 
and policy enforcement. These three security requirements 
have the highest-priority within FAIN security architecture. 

C.2 Active code/packet integrity 
Active code is executed within an ANN and performs ac-
tions on behalf of a user. Therefore, active code is the "car-
rier of activity" and as such, it is a povverful tool when 
misused by malicious users, which can potentially tam-
per with active code while it is in transit over the network. 
For instance, the whole access control system could be cir-
cumvented, if the original active code can be modifled or 
SNvapped with any other code. Similarly, there are ways 
to obviate access control system by tampering with active 
packets, such as cut and paste attacks and replay attacks. 
This is why protecting integrity of active code and packets 
deserves a high- priority. 

C.3 Code verification 
Protecting the active code integrity is a first step to ensure 
non- modification of the transient code. Hovvever this is 
considered pretty basic and we need to go beyond that in 
order to achieve a high level of security. The active code 
has to be somehow marked and tightly coupled with one 
or more entities, based on which further security decisions 
can be made. The code carries credentials from these en­
tities, which have to be verified in order to set the security 
context within which this active code can execute. As code 
verification is critical into taking further security decisions, 
this is considered a high-priority requirement for the FAIN 
security architecture. 

C.4 Audit 
The Audit Manager component is an integrated part of the 
security architecture. Via this component 

- ali events occurring from the usage of the security sub-
system are implicitly logged for further future usage. 

- It also provides an interface to explicitly log any other 
events coming from other parts of the FAIN architec­
ture in a clear and homogeneous way. 

Modern computer systems do not emphasize enough on 
the significance of the audit facilities. Hovvever audit tools 
help in realizing possible security leaks (or even preventing 
some) and make sure that mistakes are not repeated. We 
feel that within the AN community special čare has to be 
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taken with audit activities and therefore it is also considered 
a high-priority security requirement. 

D Technical aspects of active 
network security 

D.l Authentication 
Authentication is a process of verifying an identity ciaimed 
by or for a system entity. Symmetric or asymmetric cryp-
tography can be used for authentication. Symmetric cryp-
tography is suitable only for closed systems due to its scala-
biiity problems. Thus, we use asymnietric cryptography in 
FAIN. This requires every AN user to have a public/private 
key pair and a valid public key certificate. Nevertheless, 
common remote authentication protocols employ a hand-
shake, i.e. a two way communication in order to perform 
authentication. In active networks this vvould require an 
end-host to perform an authenticating handshake protocol 
with every ANN en route, which is clearly unacceptable. 
Thus, we propose the use of "unidirectional" procedure, 
where authentication is based on digital signatures and one-
way communication from end-host to an ANN. Overview 
of this authentication scenario: 

- User employs its private key to digitally sign the static 
part of an active packet and adds a signature to the 
packet it transmits 

- ANN ušes the public key certificate to verify the va-
lidity of the user's public key. 

- If valid, ANN employs user's public key to verify the 
digital signature of the packet 

A PKI infrastructure is needed to support authentication 
based on digital signatures. 

D.2 Authorization 
There will be several enforcement engines in FAIN ANN, 
each of them residing in a different FAIN ANN subsystem 
and responsible for mediating access to functions and re-
sources of the respective subsystem. On the other hand, au­
thorization component can be either integrated with policy 
enforcement or separated from it. In the former čase, there 
vvould also have to be one authorization engine per ANN 
subsystem. In the latter čase, only one, general-purpose 
authorization engine can be implemented and used by ali 
policy enforcement engines. 

We have adopted the latter approach for FAIN due to the 
following reasons: 

- no duplication of work; this is especially important 
if we consider that design and implementation of any 
security component is a difficult and subtle task 

- inherent flexibility as a consequence of separation of 
authorization from enforcement 

- possibility of reuse of existing tools. 

D.3 Policy enforcement 
In the initial phase our discussion is limited to enforce­
ment mechanisms up to and including FAIN Node facil-
ities level, i.e. we currently omit the discussion of pol-
icy enforcement vvithin EEs/VEs. Policy enforcement is 
the active component of security architecture that enforces 
authorization decisions and thus enforces the use of ANN 
resources, which is consistent with local security policies. 
We distinguish two types of resources, hardvvare and func-
tional resources. Hardware resources include basic low-
level ANN resources such as memory, storage capacity, 
CPU cycles and link bandwidth. Functional resources are 
high-level resources in the sense that they consume some 
portion of hardware resources. However, with functional 
resources it is not important how much memory or stor­
age space they consume but rather what purpose they serve 
within an ANN, i.e. what function they provide. Examples 
of functional resources include: 

- special purpose files, such as configuration files, 

- policy entries in the policy database, 

- ANN State, 

- ANN API functions themselves, etc. 

We note that ali resources in an ANN, hardware and 
functional, are accessible at certain node interface. In or­
der to prevent unauthorized use of ANN resources, policy 
enforcement has to be scattered across different ANN sub-
systems that provide specific subsets of ANN API func­
tions. Thus, basic technical approach to policy enforce­
ment is to add an "adaptation" software layer on top of ev-
ery subsystem API, which then mediates access to node 
API functions. Whenever an ANN function is called by an 
"eKternal" entity (such as VE, EE, active code), this soft-
ware layer: 

- intercepts the request (call to node function) and sus-
pends it 

- provides call parameters to authorization engine ef-
fectively asking for authorization decision; parame­
ters include caller ID, called function name, object(s) 
name, amount of requested hardvvare resources, etc. 

- when authorization decision is returned 

- if request is authorized, enforcement layer re-
sumes the execution of the request 

- if request is not authorized, enforcement layer 
discards the request and thus prevents unautho­
rized actions from taking plače 
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In addition to this "high-Ievel" operation, policy en-
forcement also has to operate at Iow-leveI in order to en-
force proper usage of low-level hardware resources. At the 
"lower level" enforcement is embodied in a more complex 
policing algorithm(s), which can control the scheduler(s) 
for specific resource and thus impose Hmits on resource 
usage by an entity. 

D.4 Active packet/code integrity 
In general, protecting integrity of active packet/code while 
in transit over netvvork involves cryptographic operations. 
The most common approach is as follovvs: 

- at the sending end—generale integrity protection to-
ken (data): 

- calculate a hash of the packet/code 
- encrypt the hash to protect it from modifications 
- send the encrypted hash together with the active 

packet/code 

- at the receiving end—verify the integrity of the 
packet/code: 

- decrypt the hash that accompanies the received 
active packet/code 

- calculate a hash of the active packet/code, 
- compare the two hashes; if they differ active 

packet/code has been modified and should not 
be processed or allowed execution. 

The hash value, vvhich is carried along with active 
packet/code and is used for integrity, can be protected ei-
ther by applying asymmetric encryption or symmetric en-
cryption. 

If asymmetric encryption is used, integrity protection 
is provided by digital signatures and there is no need for 
ANNs to maintain a private/public.key pair.^ ANNs only 
need to be able to obtain the certificate chain, vvhich veri-
fies the validity of the public key of the party signing the 
active packet/code. Thus, the advantage of asymmetric en-
cryption is that it eases management of encryption and de-
cryption keys. Hovvever, the dovvnside is that asymmetric 
encryption is on the order of two magnitudes slower than 
symmetric encryption. 

In čase symmetric encryption is used, the encrypted hash 
is known as a MAC^ value. Hovvever, this requires each 
ANN to maintain a non-compromised private/public key 
pair and a public key certificate. ANN ušes asymmetric en-
cryption to establish a shared secret key with the sending 
end. Thus, asymmetric encryption in this čase is stili used, 
but this tirne only to set- up a secret key for symmetric en-
cryption. Additional dovvnside of symmetric encryption is 
that integrity protection requires a negotiation phase before 
active packet/code can be injected into the AN. 

N̂ote that other security requirements may/will impose this. 
^Message Authentication Code. 

In FAIN we have used a combination of asymmetric and 
symmetric encryption for active packet/code integrity, in 
order to leverage the advantages of both. The proposed 
approach is as follovvs: 

- each ANN has a public/private key pair and a public 
key certificate 

- each ANN maintains a shared secret key with every 
of its direct neighbouring ANNs; neighbouring ANNs 
employ asymmetric cryptography for establishing and 
updating shared keys 

- the sending end signs active packet/code (using asym-
metric encryption) and injects it into the AN 

- the ingress ANN fetches the public key of the signer 
and verifies it against its certificate 

- the ingress ANN then ušes this key to check integrity 
of the received active code 

- if active code is intact, ingress ANN calculates a MAC 
value, using a secret key it shares with the next hop 
ANN 

- ingress ANN sends MAC value along with active 
packet/code and its signature 

- every subsequent ANN 

- ušes the secret key it shares with previous-hop 
ANN and checks integrity 

- calculates new MAC values using the secret key 
it shares with the next hop ANN 

- sends the new MAC value along with the active 
packet/code 

This approach represents a trade-off between FAIN goals 
of security and performance. On one hand, the described 
approach is based on the assumption that trust exists be-
tween ANNs, vvhich obviously reduces the level of secu-
rity. Hovvever, this is a valid assumption at least in a sin-
gle domain, vvhich is under the control of a single author-
ity. The trust vvithin domain is applied by per-hop sym-
metric encryption. On the other hand, this approach is ad-
vantageous for ANN performance, since it leverages high 
speed of symmetric encryption algorithms. Furthermore, 
because (pre-established) per-hop shared keys are used, it 
effectively eliminates the symmetric key negotiation phase. 
Note that per ANN public/private keys and per-hop crypto-
graphic calculations are used. Hovvever, since some parts 
of an active packet are dynamic, i.e. they can change at 
every hop, they cannot be protected vvith digital signatures 
and, thus, per hop integrity vvill have to be used, anyway. 
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D.5 Code verification 
Verification can enable us to trust to some extent that the 
active code will bebave safely and properly and that we can 
have some guarantees on its resource usage on the node and 
in the network. But we shall say in general that verification 
provides only enhanced trust in proper and safe code exe-
cution, which is usually not related to the trust in the user 
on behalf of which the code is executing. Code verification 
can help an ANN decide vvhether to run the newly received 
code. If the code fails the verification test, it is not trusted 
and it is dropped or altematively it can run in an EE with 
minimal facilities available. In the latter čase the EE is the 
same one that will be used to run anonymous active code. 
Broadly, code verification techniques can be classified into 
two groups: 

1. Digitally signed code, so we trust the user, organiza-
tion or repository that has signed the code. Digital 
signature can be checked at the NodeOS level, imme-
diately after it is available. 

2. Various other mechanisms that can enhance the trust 
in proper and safe execution. These mechanisms 
mainly operate within EEs, and include techniques 
like proof carrying code, JAVA bytecode verification, 
and restricted languages. 

If there is resource consumption estimate available, sim-
ple resource check is also possible. Since the scope of ini-
tial FAIN security architecture is limited to the NodeOS 
level, we propose the use of first approach, which employs 
digital signatures for code certification. 

D.6 Audit 

The Information gathered by the audit manager are stored 
into the audit database and via a policy controlled way are 
available for further use. Decomposition of auditing ac-
tivity in this way allovvs the active node base code to be 
simpler as it does not have to implement complex handling 
of audit messages. Audit logs should be securely stored not 
only locally on the node but also in a distributed scheme as 
this offers better survivability to attacks against the node. 
Apart from the node audit, the active code may perform its 
own auditing and possibly report it via an interface to the 
node's audit facilities. 

E FAIN Security Architecture 
Figure 2 depicts a FAIN active network node; ali shaded 
components are part of security architecture. As depicted, 
FAIN security architecture roughly comprises three parts: 
security subsystem, other ANN security components, and 
extemal security support facilities. Note that the scope of 
initial FAIN security architecture does not include EE layer 
of FAIN ANN architecture. 

E.l Security subsystem 
Most of security critical decisions are made by security 
subsystem, which is one of several subsystems within an 
ANN. The Security subsystem is also responsible for man-
agement of security critical data, such as encryption keys, 
credentials, and policies. 

This subsystem is the core of FAIN security architecture 
and includes the following components: 

1. Crypto Engine: performs the actual cryptographic 
operations, such as symmetric encryption/decryption, 
asymmetric encryption/decryption, and hashing. It 
implements various cryptographic algorithms, which 
are used by other components in the security subsys-
tem. 

2. Security Environment (SE): in a secure fashion 
Stores various encryption keys, which are required by 
crypto engine. For example, SE stores ANN's pub-
lic key pair (private and public key) and ali secret 
keys that an ANN shares with its neighbours (one per 
neighbour). 

3. SE Manager: is used for managing the keys in SE. 
SE manager can provide facilities for manual config-
uration of encryption keys and can also automatically 
manage keys, e.g. by triggering a key exchange pro-
tocol with neighbouring ANN. 

4. Integrlty Engine: checks the integrity of active pack-
ets and active code. It depends on integrity protection 
data contained within an active packet and on crypto 
engine to do the necessary cryptographic operations. 

5. Verification Engine: performs code verification (at 
NodeOS level), if any. It may depend on special data 
contained within an active packet and on crypto en­
gine to do the necessary cryptographic operations. 

6. Authentication Engine: verifies the authenticity of 
active packets. It depends on authentication data con­
tained within an active packet and on crypto engine to 
do the necessary cryptographic operations. 

7. Authorization Engine: is responsible for making a 
decision vvhether a given user request to execute spe-
cific action or to access/manipulate particular object 
within an ANN is authorized or not. Authorization en­
gine provides this "service" to ali policy enforcement 
engines in an ANN. 

8. Policy database: stores security policies, vvhich gov-
ern who can do what in an ANN. 

9. Policy Manager: when asked by the authorization en­
gine, searches policy DB and returns aH security poli­
cies, that are relevant for a particular request, which 
is currently subject to authorization. It also provides 
facilities for editing entries in policy DB, either manu-
ally by an authorized user, or automatically, i.e. down-
load policies from a centralized policy server. 
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Figure 2: FAIN security architecture. 

10. Credential database: stores users' credentials, such 
as public key certificates and attribute certificates. 

11. Credential Manager: when asked by authorization 
engine, searches credential DB and returns ali creden­
tials, that are relevant for a particular request, which 
is currently subject to authorization. It also provides 
facilities for editing credential database, either manu-
ally by an authorized user, or automatically, i.e. search 
and download credentials from an external credential 
repository. 

12. Audit database: stores an audit log of security critical 
events. 

13. Audit Manager: will be the plače where aH security 
architecture's components audit their function in order 
to be used later in resolution of problems or even to 
make decisions. E.g. an Intrusion Detection System 
would use a view of the audit DB in order to recognize 
attacks against the system. The audit could be also 
distributed for survivability reasons. 

E.2 Other ANN Security Components 
The second part of security architecture includes compo­
nents that are part of ANN but are external to security sub-
system. This includes policy enforcement engines and var-

ious components providing environment variables, e.g. re­
source usage monitor. Various subsystems within an ANN 
offer their services and objects for use by users via their in-
terfaces. Access to these objects and services is governed 
by security policies. Thus, enforcement of node security 
policies has to be performed at the point where they can be 
violated, i.e. at interfaces. At every ANN subsystem in­
terface, a policy enforcement engine acts as an adaptation 
layer, which is responsible for mediating access to subsys-
tem services and objects based on the authorization deci-
sion. While authorization is only a decision making, en­
forcement is an active process that prevents access to ser­
vices and objects by unauthorized users. The Enforcement 
engine suspends the request at interface, asks the authoriza­
tion engine vvhether this request is allowed and acts upon 
authorization decision, i.e. either ailows or denies execu-
tion of the request. 

In addition to these "high-level" enforcement engines, 
there are also "low- level" enforcement engines, which are 
tightly coupled vvith specific hardvvare resources available 
within an ANN and therefore they are considered as part 
of Resource Control Framevvork (RCF). Finally, there are 
some components in an ANN, which provide authorization 
engine with necessary data to make authorization decision. 
For example, resource usage monitor provides data on cur-
rent hardvvare resource consumption by particular user, and 
a clock provides current time and date. 
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E.3 External Security Support Facilities 
In the initial security architecture, we envisage these secu-
rity support facilities: 

- Certification Authority (CA) 

- Authorization Authority 

- Credential repository 

Authentication based on digital signatures requires a 
user to have a public key pair and a valid public key certifi-
cate. Public key certificate binds a public key and an iden-
tity of its owner; these certificates are issued by a trusted 
third party called Certification Authority (CA). When a 
user enters an ANN, he must present his public key cer­
tificate to authentication engine. Alternatively, he can pro-
vide a pointer to his public key certificate in the form of a 
reference to certificate repository. 

In the initial phase of FAIN, a single CA is sufficient for 
demonstration and testing purposes. This can be later ex-
tended with more CAs forming a fully-fledged Public Key 
Infrastructure (PKI). 

Similarly, a scalable approach to authorization requires 
a user to have one or more attribute certificates. Attribute 
certificates bind public keys directiy to privileges, which 
can be exercised by the owner of the key. Attribute Cer­
tificates are issued by a trusted party called Authorization 
Authority, which may not necessarily be the same as the 
Certification Authority. When a user enters an ANN, he 
must present one or more attribute certificates either di-
rectly or by reference to a repository. Later, when a user 
tries to execute an action, attribute certificates are used by 
the authorization engine to decide whether he has the nec-
essary privileges. 

The Credential repository can store both, public key cer­
tificates and attribute certificates. Repository can be imple-
mented in many ways, such as a directory service or a web 
repository. 

F Operation of security architecture 
Basically, there are two checkpoints where security func-
tionality from figure 2 is employed to protect an ANN: 
when a user enters an ANN and when a user tries to execute 
some action vvithin an ANN. The former is represented by 
an arrival of an active packet in ANN and we call it entry-
level protection. The latter occurs when a request for cer-
tain operation arrives at NodeOS interface and we call it 
execution-level protection. 

In addition to these two types of security protections, 
one can distinguish two operations, which do not directly 
provide any security protections. Rather, these two are a 
sort of "backplane" operations, which support entry- and 
execution-level security protections. These support oper­
ations are: setup of a shared secret key between neigh-
bouring ANNs and obtaining the missing credentials from 

a node external repository. A secret key, which is shared by 
a pair of neighbour ANNs, is used for hop-by-hop symmet-
ric encryption of portions of active packet, which is lever-
aged e.g. for integrity protection. To setup a shared secret 
key between two ANNs, any key exchange protocol can be 
used. Key exchange has to be performed when a new ANN 
is added to/removed from the AN and whenever the key 
lifetime expires. 

On some occasions, a situation may arise, when the 
credentials needed to make authorization decision are not 
present in an ANN. In this čase, the missing credentials 
have to be searched for and obtained from somewhere in 
the network, usually from a repository service. 

Finally, there is an audit facility vvithin FAIN ANN, 
which is responsible for keeping a log of aH security criti-
cal events within an ANN. This information is required for 
activities such as intrusion detection and analysis and as-
sessment of security breaches. 

F.l Entry-level security protections 
Figure 3 depicts a sequence of security operations that are 
performed for every packet that arrives at ANN. These se-
curity checks are aimed at detecting anything suspicious 
about this particular packet and, if so, discarding it. A 
packet is only delivered to appropriate EE if it passes aH 
checks. Upon entering an ANN, an active packet is first 
processed in order to extract information needed for secu-
rity checks. This information includes: 

- Digital signatures, which are used for authentication, 
integrity, and verification 

- MAC values, which are used for integrity protection 

- Public key certificate(s), vvhich are used for checking 
digital signatures 

- Attribute certificates, which are used for authorization 

After this information has been provided to security sub-
system, entry-level security checks are triggered. The secu-
rity subsystem verifies credentials, checks integrity of ac­
tive packet and active code, performs code verification (if 
any), and performs authentication and returns the result of 
these operations to the de-multiplexing subsystem. Only 
if ali these checks are successful, the packet is anowed to 
"enter" an ANN, i.e. it is first processed at NodeOS level 
(e.g. IP processing) and then forwarded to appropriate EE 
for further processing. If any of security checks fails, this 
is reported to de-multiplexing system, vvhich discards the 
packet. 

F.1.1 Active packet integrity 

Integrity protection is based on cryptography. Every packet 
carries along at least one special token, vvhich is used for in-
tegrity protection. This token is in the form of a digital sig-
nature and/or a MAC (Message Authentication Code). In 
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Figure 3: Entry-level Security Checks 

FAIN bothe techniques are used for packet integrity. This 
is due to the fact that digital signatures are required for au-
thentication, so it is sensible to leverage digital signatures 
for integrity as well. However, this applies only to static 
parts of an active packet, which do not change en route and 
can be signed by the source of the packet. For the dynamic 
parts of an active packet, which can change vvithin an ANN, 
per hop integrity protections based on MAC must be used. 

Integrity engine checks integrity in three steps. Firstly, it 
asks crypto engine, vvhich performs ali cryptographic cal-
culations, to decrypt the integrity token, in this čase a MAC 
value; crypto engine needs to get appropriate decryption 
key from ANN's security environment. This decryption 
process returns a hash of the packet as it was scen by its 
sender. Secondly, it asks crypto engine to calculate hash 
of the packet. The last step is to compare this hash against 
the decrypted token. If they are equal, then integrity of the 
packet can be assumed. If these two values differ, however, 
then integrity check has failed. 

F.1.2 Active code integrity and code verification 

Here we check the integrity of the newly received active 
code. Note that integrity checks for active packet and ac­
tive code need to be separate because of the fact that these 
protections are in most cases provided by different encryp-
tion keys, i.e. different actors. The reason for this is that 
active code can be tampered with even before it is included 
in any active packet. Thus, digital signature generated by 
packet source at packet creation does not suffice for ac­
tive code. Every active code is accompanied by at least 
one special token, vvhich is used for integrity protection. 
This token has a form of a digital signature and/or a MAC 
(Message Authentication Code). It is envisaged that both 
approaches to integrity will be used in FAIN. Digital signa­
tures by code provider/manufacturer can provide integrity 
protection until code is injected into the active network. 
From there per-hop MAC protection can be used, vvhich 
is expected to yield performance gains. Additionally, the 
advantage of per-hop MAC protection is that it covers both 
packet and code at the same tirne. Note that we omit the 
discussion of multi-domain issues in the initial phase. 

When active code integrity is provided with digital sig­
nature generated by code provider, the integrity engine 
must first process code provider's public key certificate in 
order to extract and validate providers public key. After ex-
tracting a valid public key integrity engine checks integrity 
in three steps, similar to active packets. First, it asks crypto 
engine to decrypt the integrity token, in this čase a digi­
tal signature. This decryption process returns a hash of the 
code as it was seen by the code provider. Second, it asks 
crypto engine to calculate hash of the code. The last step 
is to compare this hash against the decrypted token. If they 
are equal, then integrity of the code can be assumed. If 
these two values differ, hovvever, then integrity check has 
failed. 

The majority of active code verification techniques are 
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specific to particular EE. Since we have limited our cur-
rent scope to NodeOS only, we do not address these mech-
anisms. The only general verification mechanism, which 
can be placed in the NodeOS is based on digital signatures 
by trusted parties. For the initial FAIN security architec­
ture we use code providers as these trusted parties. This ef-
fectively eliminates the need for distinct code verification 
process within the NodeOS, since code provider's digital 
signature is checked as part of code integrity check. 

F.2 Execution-level Security Protections 
Once an active packet has successfully passed entry-level 
checks, active code(s) can execute and perform operations 
within an ANN on behalf of some user. Obviously, some 
users will have more privileges than others, i.e. security 
policies define who can do what in an ANN. In order to 
protect an ANN it is necessary to prevent users from abus-
ing their privileges and violating security policies. 

According to the previous paragraph, execution-level 
protection includes two steps: 

- Evaluating every execution request against node se-
curity policies, which is performed by authentication 
engine and 

- AUovving or denying execution based on positive or 
negative authorization decision, respectively; policy 
enforcement engines are responsible for this. 

F.2.1 Policy enforcement 

Crucial to policy enforcement is the subsystem specific en­
forcement engine, which is implemented as an adaptation 
layer mediating requests at subsystem interface. Every re-
quest at subsystem interface is intercepted and suspended 
by this adaptation layer. Before execution a request has to 
be evaluated against local security policies. Enforcement 
engine does not itself evaluate whether the request is com-
pliant with local security policies. Instead it invokes the 
authorization procedure within the security subsystem and 
feeds it with request information, such as: requested ac-
fion, name of target object and requesting caller ID. Only 
after authorization returns, "request authorized" does an en­
forcement engine allow execution of the request by the un-
derlying subsystem. Obviously, if authorizafion returns a 
negative answer, i.e. "request not authorized", then en­
forcement engine simply discards the suspended request. 
This way, it prevents execution of unauthorized requests 
and essentially enforces users to adhere to local security 
policies. 

F.2.2 Authorization 

Here we check everything that is required to authorize the 
request, i.e. to decide whether to grant it or not. In flexible 
access control systems, authorization is not integrated with 

enforcement. Instead it is separated logically and in imple-
mentation. In this way, a single authorization engine can 
be used by multiple poIicy enforcement engines. 

Authorization decision is based on the foilovving set of 
data: 

- request information (action, object name, caller ID) 

- local security policies, which govern the way in which 
particular object can be used 

- credentials associated with particular caller ID 

- current values of environment variables, such as time 
of day and amount of resources used by subject 

Enforcement engine provides the request information 
when it asks for authorization decision. This information 
is used as an "index" by poiicy and credential managers 
for fetching appropriate policies and credentials, respec-
tively. Environment variables are provided to authoriza­
tion engine upon request by facilities, such as system clock 
and resource monitoring module within Resource Control 
Framework (RCF) subsystem. Finally, after gathering ali 
the required information, authorization engine processes 
this data according to its internal rules, which return a sim-
ple result, either saying, "request authorized" or" request 
not authorized." This is returned to the calling policy en­
forcement engine, which then acts accordingly. 

G Related work 
FAIN aims to develop a heterogeneous ANN, allovving 
coexistence of various technologies that enable installa-
tion and execution of active code within an ANN. Conse-
quently, FAIN security architecture is aimed at providing 
a more general solution vvhich provides necessary protec­
tions for such an heterogeneous system. This is reflected 
by the fact that security architecture we have presented 
does not incorporate details of specific EEs that exist in 
the FAIN ANN. Its goal is to be as EE independent as pos-
sible and provide a common set of basic security services 
required by ali AN enabling technologies. 

Some research projects on active networks have already 
tried to tackle the issue of security, in various ways and 
at different levels of completeness [3,4,6,8]. In contrast 
to FAIN, ali these security architectures are tied to the 
specifics of the respective model of active netvvorks and, 
consequently, reflect the original design decisions and, 
more importantly, trade-offs chosen by developers of the 
respective model. Java Security Architecture [5] proved to 
be useful for AN security, but it has some drawbacks in this 
context [6]. There has also been some more general work 
on AN security [2], but this work is stili in the early phase. 

Some research projects on active networks have already 
tried to tackle the issue of security [3] [4] [5] [6]. Contrary to 
FAIN, ali these approaches are tied to specifics of particular 
model of programmability. When designing a more general 
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AN security architecture, which is the čase in FAIN, these 
specifics can not be assumed. Java Security Architecture 
[7] proved to be useful for AN security, but again it is tech-
nology specific and it also has some drawbacks [5]. There 
has also been some more general work on AN security [8]. 
This work is stili in the early phase. 

H Conclusion 
We have presented in this paper a security architecture for 
future IP active netvvorks as it is done in the context of 
FAIN project. We try to tackle the high priority security 
requirements such as authentication, authorization, policy 
enforcement, active code and active packet integrity and 
verification and last but not least audit. We have anal-
ysed the main design decisions that we have taken and 
the reasons why we decided to follovv them. Subsequently 
we have presented the components of a security architec­
ture that will be used by multiple heterogeneous execution 
environments within the same active node. We also pro-
vide a look in the interworkings of the architecture and its 
decision-making logic. A prototype implementation of the 
presented active netvvork security architecture is currently 
under development, which will be used for exploring the 
advantages and drawbacks of our approach. 
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