
Informatica 26 (2002) 211-221 211

An active networks security architecture

Arso Savanovič, Dušah Gabrijelčič, and Borka Jerman Blažič
Jožef Štefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
(arso|dusan|borka)@e5.ijs.si
AND Stamatis Karnouskos
Frauenhofer FOKUS, Kaiserin-Augusta-Alee 31,10589 Berlin, Germany
kamouskos@fokus.fhg.de

Keywords: active networks, security architecture, FAIN

Received: March 4,2002

Active netv/orks allow user-controlled network programmability. A security framework has to assure that
our infrastructure will bebave as expected and wiU efficiently deal with malicious attacks, unathorized
attempts to execute active code etc. We present here a security architecture that is designed within the
FAIN project and aitns at supporting multiple heterogeneous execution environments. We argue for the
pros and cons as well as why we have selected the specific components and also take a look at their
interworking in order to provide the security services to the execution environments our active network
node hosts.

A Introduction

Basic AN principles have serious consequences have seri-
ous consequences for the operation of an Active Netvvork
(AN). The possibiHty of loading and executing active code
in Active Netvvork Nodes (ANNs) imposes considerable
threats to expected operation of AN/ANN due to flaws in
active code, malicious attacks by unauthorized users, and
conflicted code execution. Thus, security in AN deals
mainly with protecting system (AN infrastructure) from
malicious (unauthorized) and erroneous use. The central
objective of FAIN [7] security architecture is to guaran-
tee robust/secure operation of AN infrastructure despite the
unintentional or intentional misbehaving of users, i.e. their
respective active code/active packets.

Fulfilling these objectives is fundamental for the usabil-
ity of ANs. Clearly, if it is trivial for any user to intention-
ally degrade the performance of an AN or any single ANN,
or to bring down the AN/ANN, then ANs are not really us­
ahle. Note the difference betvveen degrading performance
of (disabling) an ANN and that of an AN. It is possible that
specific netvvork service, i.e. the respective active code, is
consistent vvith local security policy of an ANN; hovvever,
due to global, netvvork vvide behaviour of the protocoi, it
can degrade the performance of (part of) netvvork or even
completely disable it. Furthermore, if an unintentional er-
ror in the design of a nevv netvvork service, its implementa-
tion (active code), or its configuration can degrade perfor­
mance of an AN/ANN or disable an AN/ANN, then ANs
are not really usable.

Finally, if a malicious or unintentional misbehaving of
any user can severely degrade or even disable the netvvork
services perceived by other user(s) of an AN but vvith no
affect on the ANN/AN, then again, ANs are not really us­

able. The threat model for active netvvorks covers three
broad classes of security issues: protecting AN infrastruc­
ture from users and active code, protecting users and active
code from other active code, and protecting users and ac­
tive code from AN infrastructure. Hovvever, the scope of
initial FAIN security architecture is limited mainly to the
first class, i.e. protecting AN infrastructure from users and
active code.

B FAIN Active Nodes
The FAIN Reference Architecture consists mainly of AA,
VE, EE and Node OS:

- Active Applications/Services (AA) are applications
executed in Active Nodes. An A A is often referred to
also as Active Code (AC).

- Execution Environments (EE) are environments
vvhere application code is executed. A privileged EE
manages and controls the Active node and it provides
the environment vvhere netvvork policies are executed.
Multiple and different types of EE are envisaged in
FAIN. EEs are classified into Virtual Environments
(VEs), vvhere services can be found and interact vvith
each other. VEs are interconnected to form a truly vir-
tual netvvork.

- NodeOS is an operating system for active node and
includes facilities for setting up and management of
channels for inter-EE and AA-EE Communications,
manages the router resources and provides APIs for
AA/EEs, isolates EEs from each other. Through its
extensions the NodeOS offers:

mailto:kamouskos@fokus.fhg.de

212 Informatica 26 (2002) 211-221 A. Savanovič et al.

Resource Control Facilities (RCF). Through
resource control resource partitioning is pro-
vided. VEs are guaranteed that consumption
stays Nvithin the agreed contract during an ad-
mission control phase static or dynamic.

Security Facilities. Main part about security is
authentication and authorisation of using the re-
sources and other objects of the node like inter-
faces and directories. Based on the poIicy profile
of each VE security is enforced.

Application/Service code depIoyment facili­
ties. As flexibility is one of the requirements for
programmable netvvorks partly realised as ser-
vice deployment either on the fly or static, the
NodeOS must support it.

Deinultiplexing facilities. It filters, classify and
divert active packets. Flows of packets arrive at
the node and they should be delivered to the VE
and consequently to the service inside the VE
they are destined for.

V

u

L - - -

CCM

Figure 1: FAIN active node reference architecture

Figure 1 describes the main design features of the FAIN
nodes. In FAIN a number of node prototypes are under
development as follows:

- A high performance active node, with a target of 150
Mb/s.

- A range of flexible and very functional active
nodes/servers, with the objective of supporting mul-
tiple VEs and hosting heterogeneous EEs.

The common part of the prototypes (the FAIN middievvare)
is the NodeOS with the relevant extensions.

C General FAIN Model and
Security Reqiiirements

The fundamental property of FAIN AN is the possibility
to dynamically inject active code known as active appli-
cation (AA), that implements new functionality, into the
netvvork. This code is executed or interpreted by specific
execution environment within ANNs and this way it pro-
vides end- user applications with appHcation specific net-
work services. Many different active applications can coex-
ist in an active network. We assume that FAIN AN consists
of unlimited number of network nodes and some of them
are active (ANN). Active code is injected into the network
via active packets, vvhich carry active code itself or its ref­
erence, which is used by ANNs to install the code from
code repository. Code can be executed in the nodes within
the packet path. Execution provides new functionality in
the network, which can be temporary or permanent. It can
also produce new packets. Each execution ušes some of
the ANN and AN resources, like CPU, storage and band-
width, again temporarily or permanently. Specific code in
an ANN can be injected, removed or replaced by explicit
or implicit request. Additionally, the following properties
apply to generalized AN model [1]:

- an AN is a distributed system

- an AN is a packet-switched network, as opposed to
circuit-switched

- not ali nodes in an AN need to be active

- an AN explicitly provides for computation inside the
network, but

- the primary goal of active netvvorks is communication,
not computation

- the contents of an active packet can legally change in­
side ANNs'

- not ali packets are active

- an AN consists of multiple domains, each controlled
by a different administration.

Active networking supplies the users with the ability to
install and execute program code within a network node.
That by its nature is a security critical activity. In such an
infrastructure the security implications are far more com-
plex than in current static environments. In AN the au-
thor of the active code, the user who deploys it, the owner
of the node hardvvare, the ovvner of the execution platform
can ali be different entities govemed by different security
policies. In such a heterogeneous environment security be-
comes an extremely sensitive issue. The possibility of load-
ing and executing active code in ANNs imposes consider-
able threats to expected operation of AN/ANN due to flavvs

' In ANNs the payload (data part) can be changed also, not just header
fieids.

AN ACTIVE NETWORKS SECURITV ARCHITECTURE Informatica 26 (2002) 211-221 213

in active code, malicious attacks by unauthorized users,
conflicted code execution etc. Thus, security in AN deals
mainly with protecting system (AN infrastructure) from
malicious (unauthorized) and erroneous use. The central
objective of FAIN security architecture is to guarantee ro-
bust/secure operation of AN infrastructure despite the un-
intentional or intentional misbehaving of users, i.e. their
respective active code/active packets.

Active Code (AC) is transferred to the node or is itself
mobile e.g. in the form of a mobile agent. Therefore the
attacks that AC and also the EE are susceptible to are more
than those in current passive netvvorks.

In general we can have:

- Misuse of an active network node by the active code

- Misuse of active code by other active code.

- Misuse of active code by an active network node.

- Misuse of active code and/or execution environment
by the underlying network infrastructure.

- Misuse of the Active Netvvork as an entity.

Finally a combination of the above categories is possible.
These kinds of attacks (the complex and coUaborative ones)
are very difficult to detect, let alone to prevent or effectively
tackle. Classical examples include the co-operation of var-
ious hosts and ACs against another EE or AC. Threats can
also be analysed from the perspective of a single ANN, and
from the network- wide perspective. Of course, threats to
a single ANN apply also to the whole AN (domain). How-
ever, network-wide threats can be more subtle and harder to
combat, since they are based on the global, distributed na-
ture of netvvork protocols, and thus, their respective active
codes.

In the initial phase of the FAIN project, only high prior-
ity security requirements have been addressed in detail:

- authentication

- authorization

- policy enforcement

- active code/packet integrity

- code verification

- audit.

We have compiled this list in light of the main objec­
tive of the FAIN security architecture, which is to provide
secure and robust operation of FAIN AN infrastructure in
spite of unintentional and malicious misbehaving of AN
users, i.e. their respective codes. From this perspective,
our criteria in assigning priorities can be summarized as
follows:

- How subtle is particular security requirement, i.e. the
respective threat "behind" the requirement?

- More subtle yields lower priority.

C.l Authentication, Authorization, and
Policy Enforcement

FAIN ANN is essentially a multi-user computing system.
As in any such system, enforcement of access control is a
requirement of high significance within every FAIN ANN.
On the other hand, FAIN aims at developing a flexible sys-
tem. In order to achieve the desired level of granularity we
decompose access control in authentication, authorization
and policy enforcement. These three security requirements
have the highest-priority within FAIN security architecture.

C.2 Active code/packet integrity
Active code is executed within an ANN and performs ac-
tions on behalf of a user. Therefore, active code is the "car-
rier of activity" and as such, it is a povverful tool when
misused by malicious users, which can potentially tam-
per with active code while it is in transit over the network.
For instance, the whole access control system could be cir-
cumvented, if the original active code can be modifled or
SNvapped with any other code. Similarly, there are ways
to obviate access control system by tampering with active
packets, such as cut and paste attacks and replay attacks.
This is why protecting integrity of active code and packets
deserves a high- priority.

C.3 Code verification
Protecting the active code integrity is a first step to ensure
non- modification of the transient code. Hovvever this is
considered pretty basic and we need to go beyond that in
order to achieve a high level of security. The active code
has to be somehow marked and tightly coupled with one
or more entities, based on which further security decisions
can be made. The code carries credentials from these en­
tities, which have to be verified in order to set the security
context within which this active code can execute. As code
verification is critical into taking further security decisions,
this is considered a high-priority requirement for the FAIN
security architecture.

C.4 Audit
The Audit Manager component is an integrated part of the
security architecture. Via this component

- ali events occurring from the usage of the security sub-
system are implicitly logged for further future usage.

- It also provides an interface to explicitly log any other
events coming from other parts of the FAIN architec­
ture in a clear and homogeneous way.

Modern computer systems do not emphasize enough on
the significance of the audit facilities. Hovvever audit tools
help in realizing possible security leaks (or even preventing
some) and make sure that mistakes are not repeated. We
feel that within the AN community special čare has to be

214 Informatica 26 (2002) 211-221 A. Savanovič et al.

taken with audit activities and therefore it is also considered
a high-priority security requirement.

D Technical aspects of active
network security

D.l Authentication
Authentication is a process of verifying an identity ciaimed
by or for a system entity. Symmetric or asymmetric cryp-
tography can be used for authentication. Symmetric cryp-
tography is suitable only for closed systems due to its scala-
biiity problems. Thus, we use asymnietric cryptography in
FAIN. This requires every AN user to have a public/private
key pair and a valid public key certificate. Nevertheless,
common remote authentication protocols employ a hand-
shake, i.e. a two way communication in order to perform
authentication. In active networks this vvould require an
end-host to perform an authenticating handshake protocol
with every ANN en route, which is clearly unacceptable.
Thus, we propose the use of "unidirectional" procedure,
where authentication is based on digital signatures and one-
way communication from end-host to an ANN. Overview
of this authentication scenario:

- User employs its private key to digitally sign the static
part of an active packet and adds a signature to the
packet it transmits

- ANN ušes the public key certificate to verify the va-
lidity of the user's public key.

- If valid, ANN employs user's public key to verify the
digital signature of the packet

A PKI infrastructure is needed to support authentication
based on digital signatures.

D.2 Authorization
There will be several enforcement engines in FAIN ANN,
each of them residing in a different FAIN ANN subsystem
and responsible for mediating access to functions and re-
sources of the respective subsystem. On the other hand, au­
thorization component can be either integrated with policy
enforcement or separated from it. In the former čase, there
vvould also have to be one authorization engine per ANN
subsystem. In the latter čase, only one, general-purpose
authorization engine can be implemented and used by ali
policy enforcement engines.

We have adopted the latter approach for FAIN due to the
following reasons:

- no duplication of work; this is especially important
if we consider that design and implementation of any
security component is a difficult and subtle task

- inherent flexibility as a consequence of separation of
authorization from enforcement

- possibility of reuse of existing tools.

D.3 Policy enforcement
In the initial phase our discussion is limited to enforce­
ment mechanisms up to and including FAIN Node facil-
ities level, i.e. we currently omit the discussion of pol-
icy enforcement vvithin EEs/VEs. Policy enforcement is
the active component of security architecture that enforces
authorization decisions and thus enforces the use of ANN
resources, which is consistent with local security policies.
We distinguish two types of resources, hardvvare and func-
tional resources. Hardware resources include basic low-
level ANN resources such as memory, storage capacity,
CPU cycles and link bandwidth. Functional resources are
high-level resources in the sense that they consume some
portion of hardware resources. However, with functional
resources it is not important how much memory or stor­
age space they consume but rather what purpose they serve
within an ANN, i.e. what function they provide. Examples
of functional resources include:

- special purpose files, such as configuration files,

- policy entries in the policy database,

- ANN State,

- ANN API functions themselves, etc.

We note that ali resources in an ANN, hardware and
functional, are accessible at certain node interface. In or­
der to prevent unauthorized use of ANN resources, policy
enforcement has to be scattered across different ANN sub-
systems that provide specific subsets of ANN API func­
tions. Thus, basic technical approach to policy enforce­
ment is to add an "adaptation" software layer on top of ev-
ery subsystem API, which then mediates access to node
API functions. Whenever an ANN function is called by an
"eKternal" entity (such as VE, EE, active code), this soft-
ware layer:

- intercepts the request (call to node function) and sus-
pends it

- provides call parameters to authorization engine ef-
fectively asking for authorization decision; parame­
ters include caller ID, called function name, object(s)
name, amount of requested hardvvare resources, etc.

- when authorization decision is returned

- if request is authorized, enforcement layer re-
sumes the execution of the request

- if request is not authorized, enforcement layer
discards the request and thus prevents unautho­
rized actions from taking plače

AN ACTIVE NETWORKS SECURITV ARCHITECTURE Informatica 26 (2002) 211-221 215

In addition to this "high-Ievel" operation, policy en-
forcement also has to operate at Iow-leveI in order to en-
force proper usage of low-level hardware resources. At the
"lower level" enforcement is embodied in a more complex
policing algorithm(s), which can control the scheduler(s)
for specific resource and thus impose Hmits on resource
usage by an entity.

D.4 Active packet/code integrity
In general, protecting integrity of active packet/code while
in transit over netvvork involves cryptographic operations.
The most common approach is as follovvs:

- at the sending end—generale integrity protection to-
ken (data):

- calculate a hash of the packet/code
- encrypt the hash to protect it from modifications
- send the encrypted hash together with the active

packet/code

- at the receiving end—verify the integrity of the
packet/code:

- decrypt the hash that accompanies the received
active packet/code

- calculate a hash of the active packet/code,
- compare the two hashes; if they differ active

packet/code has been modified and should not
be processed or allowed execution.

The hash value, vvhich is carried along with active
packet/code and is used for integrity, can be protected ei-
ther by applying asymmetric encryption or symmetric en-
cryption.

If asymmetric encryption is used, integrity protection
is provided by digital signatures and there is no need for
ANNs to maintain a private/public.key pair.^ ANNs only
need to be able to obtain the certificate chain, vvhich veri-
fies the validity of the public key of the party signing the
active packet/code. Thus, the advantage of asymmetric en-
cryption is that it eases management of encryption and de-
cryption keys. Hovvever, the dovvnside is that asymmetric
encryption is on the order of two magnitudes slower than
symmetric encryption.

In čase symmetric encryption is used, the encrypted hash
is known as a MAC^ value. Hovvever, this requires each
ANN to maintain a non-compromised private/public key
pair and a public key certificate. ANN ušes asymmetric en-
cryption to establish a shared secret key with the sending
end. Thus, asymmetric encryption in this čase is stili used,
but this tirne only to set- up a secret key for symmetric en-
cryption. Additional dovvnside of symmetric encryption is
that integrity protection requires a negotiation phase before
active packet/code can be injected into the AN.

N̂ote that other security requirements may/will impose this.
^Message Authentication Code.

In FAIN we have used a combination of asymmetric and
symmetric encryption for active packet/code integrity, in
order to leverage the advantages of both. The proposed
approach is as follovvs:

- each ANN has a public/private key pair and a public
key certificate

- each ANN maintains a shared secret key with every
of its direct neighbouring ANNs; neighbouring ANNs
employ asymmetric cryptography for establishing and
updating shared keys

- the sending end signs active packet/code (using asym-
metric encryption) and injects it into the AN

- the ingress ANN fetches the public key of the signer
and verifies it against its certificate

- the ingress ANN then ušes this key to check integrity
of the received active code

- if active code is intact, ingress ANN calculates a MAC
value, using a secret key it shares with the next hop
ANN

- ingress ANN sends MAC value along with active
packet/code and its signature

- every subsequent ANN

- ušes the secret key it shares with previous-hop
ANN and checks integrity

- calculates new MAC values using the secret key
it shares with the next hop ANN

- sends the new MAC value along with the active
packet/code

This approach represents a trade-off between FAIN goals
of security and performance. On one hand, the described
approach is based on the assumption that trust exists be-
tween ANNs, vvhich obviously reduces the level of secu-
rity. Hovvever, this is a valid assumption at least in a sin-
gle domain, vvhich is under the control of a single author-
ity. The trust vvithin domain is applied by per-hop sym-
metric encryption. On the other hand, this approach is ad-
vantageous for ANN performance, since it leverages high
speed of symmetric encryption algorithms. Furthermore,
because (pre-established) per-hop shared keys are used, it
effectively eliminates the symmetric key negotiation phase.
Note that per ANN public/private keys and per-hop crypto-
graphic calculations are used. Hovvever, since some parts
of an active packet are dynamic, i.e. they can change at
every hop, they cannot be protected vvith digital signatures
and, thus, per hop integrity vvill have to be used, anyway.

216 Informatica 26 (2002) 211-221 A. Savanovič et al.

D.5 Code verification
Verification can enable us to trust to some extent that the
active code will bebave safely and properly and that we can
have some guarantees on its resource usage on the node and
in the network. But we shall say in general that verification
provides only enhanced trust in proper and safe code exe-
cution, which is usually not related to the trust in the user
on behalf of which the code is executing. Code verification
can help an ANN decide vvhether to run the newly received
code. If the code fails the verification test, it is not trusted
and it is dropped or altematively it can run in an EE with
minimal facilities available. In the latter čase the EE is the
same one that will be used to run anonymous active code.
Broadly, code verification techniques can be classified into
two groups:

1. Digitally signed code, so we trust the user, organiza-
tion or repository that has signed the code. Digital
signature can be checked at the NodeOS level, imme-
diately after it is available.

2. Various other mechanisms that can enhance the trust
in proper and safe execution. These mechanisms
mainly operate within EEs, and include techniques
like proof carrying code, JAVA bytecode verification,
and restricted languages.

If there is resource consumption estimate available, sim-
ple resource check is also possible. Since the scope of ini-
tial FAIN security architecture is limited to the NodeOS
level, we propose the use of first approach, which employs
digital signatures for code certification.

D.6 Audit

The Information gathered by the audit manager are stored
into the audit database and via a policy controlled way are
available for further use. Decomposition of auditing ac-
tivity in this way allovvs the active node base code to be
simpler as it does not have to implement complex handling
of audit messages. Audit logs should be securely stored not
only locally on the node but also in a distributed scheme as
this offers better survivability to attacks against the node.
Apart from the node audit, the active code may perform its
own auditing and possibly report it via an interface to the
node's audit facilities.

E FAIN Security Architecture
Figure 2 depicts a FAIN active network node; ali shaded
components are part of security architecture. As depicted,
FAIN security architecture roughly comprises three parts:
security subsystem, other ANN security components, and
extemal security support facilities. Note that the scope of
initial FAIN security architecture does not include EE layer
of FAIN ANN architecture.

E.l Security subsystem
Most of security critical decisions are made by security
subsystem, which is one of several subsystems within an
ANN. The Security subsystem is also responsible for man-
agement of security critical data, such as encryption keys,
credentials, and policies.

This subsystem is the core of FAIN security architecture
and includes the following components:

1. Crypto Engine: performs the actual cryptographic
operations, such as symmetric encryption/decryption,
asymmetric encryption/decryption, and hashing. It
implements various cryptographic algorithms, which
are used by other components in the security subsys-
tem.

2. Security Environment (SE): in a secure fashion
Stores various encryption keys, which are required by
crypto engine. For example, SE stores ANN's pub-
lic key pair (private and public key) and ali secret
keys that an ANN shares with its neighbours (one per
neighbour).

3. SE Manager: is used for managing the keys in SE.
SE manager can provide facilities for manual config-
uration of encryption keys and can also automatically
manage keys, e.g. by triggering a key exchange pro-
tocol with neighbouring ANN.

4. Integrlty Engine: checks the integrity of active pack-
ets and active code. It depends on integrity protection
data contained within an active packet and on crypto
engine to do the necessary cryptographic operations.

5. Verification Engine: performs code verification (at
NodeOS level), if any. It may depend on special data
contained within an active packet and on crypto en­
gine to do the necessary cryptographic operations.

6. Authentication Engine: verifies the authenticity of
active packets. It depends on authentication data con­
tained within an active packet and on crypto engine to
do the necessary cryptographic operations.

7. Authorization Engine: is responsible for making a
decision vvhether a given user request to execute spe-
cific action or to access/manipulate particular object
within an ANN is authorized or not. Authorization en­
gine provides this "service" to ali policy enforcement
engines in an ANN.

8. Policy database: stores security policies, vvhich gov-
ern who can do what in an ANN.

9. Policy Manager: when asked by the authorization en­
gine, searches policy DB and returns aH security poli­
cies, that are relevant for a particular request, which
is currently subject to authorization. It also provides
facilities for editing entries in policy DB, either manu-
ally by an authorized user, or automatically, i.e. down-
load policies from a centralized policy server.

AN ACTIVE NETWORKS SECURITV ARCHITECTURE Informatica 26 (2002) 211-221 217

FAlNActive Netvvork Node
High

perfor-
mance EE

DPE
based

EE

Mobile
agent EE

SNAP

NodeOS Interface

e nfor ce

Figure 2: FAIN security architecture.

10. Credential database: stores users' credentials, such
as public key certificates and attribute certificates.

11. Credential Manager: when asked by authorization
engine, searches credential DB and returns ali creden­
tials, that are relevant for a particular request, which
is currently subject to authorization. It also provides
facilities for editing credential database, either manu-
ally by an authorized user, or automatically, i.e. search
and download credentials from an external credential
repository.

12. Audit database: stores an audit log of security critical
events.

13. Audit Manager: will be the plače where aH security
architecture's components audit their function in order
to be used later in resolution of problems or even to
make decisions. E.g. an Intrusion Detection System
would use a view of the audit DB in order to recognize
attacks against the system. The audit could be also
distributed for survivability reasons.

E.2 Other ANN Security Components
The second part of security architecture includes compo­
nents that are part of ANN but are external to security sub-
system. This includes policy enforcement engines and var-

ious components providing environment variables, e.g. re­
source usage monitor. Various subsystems within an ANN
offer their services and objects for use by users via their in-
terfaces. Access to these objects and services is governed
by security policies. Thus, enforcement of node security
policies has to be performed at the point where they can be
violated, i.e. at interfaces. At every ANN subsystem in­
terface, a policy enforcement engine acts as an adaptation
layer, which is responsible for mediating access to subsys-
tem services and objects based on the authorization deci-
sion. While authorization is only a decision making, en­
forcement is an active process that prevents access to ser­
vices and objects by unauthorized users. The Enforcement
engine suspends the request at interface, asks the authoriza­
tion engine vvhether this request is allowed and acts upon
authorization decision, i.e. either ailows or denies execu-
tion of the request.

In addition to these "high-level" enforcement engines,
there are also "low- level" enforcement engines, which are
tightly coupled vvith specific hardvvare resources available
within an ANN and therefore they are considered as part
of Resource Control Framevvork (RCF). Finally, there are
some components in an ANN, which provide authorization
engine with necessary data to make authorization decision.
For example, resource usage monitor provides data on cur-
rent hardvvare resource consumption by particular user, and
a clock provides current time and date.

218 Informatica 26 (2002) 211-221 A. Savanovič et al.

E.3 External Security Support Facilities
In the initial security architecture, we envisage these secu-
rity support facilities:

- Certification Authority (CA)

- Authorization Authority

- Credential repository

Authentication based on digital signatures requires a
user to have a public key pair and a valid public key certifi-
cate. Public key certificate binds a public key and an iden-
tity of its owner; these certificates are issued by a trusted
third party called Certification Authority (CA). When a
user enters an ANN, he must present his public key cer­
tificate to authentication engine. Alternatively, he can pro-
vide a pointer to his public key certificate in the form of a
reference to certificate repository.

In the initial phase of FAIN, a single CA is sufficient for
demonstration and testing purposes. This can be later ex-
tended with more CAs forming a fully-fledged Public Key
Infrastructure (PKI).

Similarly, a scalable approach to authorization requires
a user to have one or more attribute certificates. Attribute
certificates bind public keys directiy to privileges, which
can be exercised by the owner of the key. Attribute Cer­
tificates are issued by a trusted party called Authorization
Authority, which may not necessarily be the same as the
Certification Authority. When a user enters an ANN, he
must present one or more attribute certificates either di-
rectly or by reference to a repository. Later, when a user
tries to execute an action, attribute certificates are used by
the authorization engine to decide whether he has the nec-
essary privileges.

The Credential repository can store both, public key cer­
tificates and attribute certificates. Repository can be imple-
mented in many ways, such as a directory service or a web
repository.

F Operation of security architecture
Basically, there are two checkpoints where security func-
tionality from figure 2 is employed to protect an ANN:
when a user enters an ANN and when a user tries to execute
some action vvithin an ANN. The former is represented by
an arrival of an active packet in ANN and we call it entry-
level protection. The latter occurs when a request for cer-
tain operation arrives at NodeOS interface and we call it
execution-level protection.

In addition to these two types of security protections,
one can distinguish two operations, which do not directly
provide any security protections. Rather, these two are a
sort of "backplane" operations, which support entry- and
execution-level security protections. These support oper­
ations are: setup of a shared secret key between neigh-
bouring ANNs and obtaining the missing credentials from

a node external repository. A secret key, which is shared by
a pair of neighbour ANNs, is used for hop-by-hop symmet-
ric encryption of portions of active packet, which is lever-
aged e.g. for integrity protection. To setup a shared secret
key between two ANNs, any key exchange protocol can be
used. Key exchange has to be performed when a new ANN
is added to/removed from the AN and whenever the key
lifetime expires.

On some occasions, a situation may arise, when the
credentials needed to make authorization decision are not
present in an ANN. In this čase, the missing credentials
have to be searched for and obtained from somewhere in
the network, usually from a repository service.

Finally, there is an audit facility vvithin FAIN ANN,
which is responsible for keeping a log of aH security criti-
cal events within an ANN. This information is required for
activities such as intrusion detection and analysis and as-
sessment of security breaches.

F.l Entry-level security protections
Figure 3 depicts a sequence of security operations that are
performed for every packet that arrives at ANN. These se-
curity checks are aimed at detecting anything suspicious
about this particular packet and, if so, discarding it. A
packet is only delivered to appropriate EE if it passes aH
checks. Upon entering an ANN, an active packet is first
processed in order to extract information needed for secu-
rity checks. This information includes:

- Digital signatures, which are used for authentication,
integrity, and verification

- MAC values, which are used for integrity protection

- Public key certificate(s), vvhich are used for checking
digital signatures

- Attribute certificates, which are used for authorization

After this information has been provided to security sub-
system, entry-level security checks are triggered. The secu-
rity subsystem verifies credentials, checks integrity of ac­
tive packet and active code, performs code verification (if
any), and performs authentication and returns the result of
these operations to the de-multiplexing subsystem. Only
if ali these checks are successful, the packet is anowed to
"enter" an ANN, i.e. it is first processed at NodeOS level
(e.g. IP processing) and then forwarded to appropriate EE
for further processing. If any of security checks fails, this
is reported to de-multiplexing system, vvhich discards the
packet.

F.1.1 Active packet integrity

Integrity protection is based on cryptography. Every packet
carries along at least one special token, vvhich is used for in-
tegrity protection. This token is in the form of a digital sig-
nature and/or a MAC (Message Authentication Code). In

AN ACTIVE NETWORKS SECURITV ARCHITECTURE Informatica 26 (2002) 211-221 219

^
: Customer : Demux

Secuiitv&gine
:EE

hject Packet | I
T
Parse Packet

Bctract Security Data

H

security dh&ck

checl packet integiity

\enf/credentials

3

Code integrity
H

J
X irifĵ code

fc curitycheck result m process packet

authenticalion

deli >jer packet Mor execution

Figure 3: Entry-level Security Checks

FAIN bothe techniques are used for packet integrity. This
is due to the fact that digital signatures are required for au-
thentication, so it is sensible to leverage digital signatures
for integrity as well. However, this applies only to static
parts of an active packet, which do not change en route and
can be signed by the source of the packet. For the dynamic
parts of an active packet, which can change vvithin an ANN,
per hop integrity protections based on MAC must be used.

Integrity engine checks integrity in three steps. Firstly, it
asks crypto engine, vvhich performs ali cryptographic cal-
culations, to decrypt the integrity token, in this čase a MAC
value; crypto engine needs to get appropriate decryption
key from ANN's security environment. This decryption
process returns a hash of the packet as it was scen by its
sender. Secondly, it asks crypto engine to calculate hash
of the packet. The last step is to compare this hash against
the decrypted token. If they are equal, then integrity of the
packet can be assumed. If these two values differ, however,
then integrity check has failed.

F.1.2 Active code integrity and code verification

Here we check the integrity of the newly received active
code. Note that integrity checks for active packet and ac­
tive code need to be separate because of the fact that these
protections are in most cases provided by different encryp-
tion keys, i.e. different actors. The reason for this is that
active code can be tampered with even before it is included
in any active packet. Thus, digital signature generated by
packet source at packet creation does not suffice for ac­
tive code. Every active code is accompanied by at least
one special token, vvhich is used for integrity protection.
This token has a form of a digital signature and/or a MAC
(Message Authentication Code). It is envisaged that both
approaches to integrity will be used in FAIN. Digital signa­
tures by code provider/manufacturer can provide integrity
protection until code is injected into the active network.
From there per-hop MAC protection can be used, vvhich
is expected to yield performance gains. Additionally, the
advantage of per-hop MAC protection is that it covers both
packet and code at the same tirne. Note that we omit the
discussion of multi-domain issues in the initial phase.

When active code integrity is provided with digital sig­
nature generated by code provider, the integrity engine
must first process code provider's public key certificate in
order to extract and validate providers public key. After ex-
tracting a valid public key integrity engine checks integrity
in three steps, similar to active packets. First, it asks crypto
engine to decrypt the integrity token, in this čase a digi­
tal signature. This decryption process returns a hash of the
code as it was seen by the code provider. Second, it asks
crypto engine to calculate hash of the code. The last step
is to compare this hash against the decrypted token. If they
are equal, then integrity of the code can be assumed. If
these two values differ, hovvever, then integrity check has
failed.

The majority of active code verification techniques are

220 Informatica 26 (2002) 211-221 A. Savanovič et al.

specific to particular EE. Since we have limited our cur-
rent scope to NodeOS only, we do not address these mech-
anisms. The only general verification mechanism, which
can be placed in the NodeOS is based on digital signatures
by trusted parties. For the initial FAIN security architec­
ture we use code providers as these trusted parties. This ef-
fectively eliminates the need for distinct code verification
process within the NodeOS, since code provider's digital
signature is checked as part of code integrity check.

F.2 Execution-level Security Protections
Once an active packet has successfully passed entry-level
checks, active code(s) can execute and perform operations
within an ANN on behalf of some user. Obviously, some
users will have more privileges than others, i.e. security
policies define who can do what in an ANN. In order to
protect an ANN it is necessary to prevent users from abus-
ing their privileges and violating security policies.

According to the previous paragraph, execution-level
protection includes two steps:

- Evaluating every execution request against node se-
curity policies, which is performed by authentication
engine and

- AUovving or denying execution based on positive or
negative authorization decision, respectively; policy
enforcement engines are responsible for this.

F.2.1 Policy enforcement

Crucial to policy enforcement is the subsystem specific en­
forcement engine, which is implemented as an adaptation
layer mediating requests at subsystem interface. Every re-
quest at subsystem interface is intercepted and suspended
by this adaptation layer. Before execution a request has to
be evaluated against local security policies. Enforcement
engine does not itself evaluate whether the request is com-
pliant with local security policies. Instead it invokes the
authorization procedure within the security subsystem and
feeds it with request information, such as: requested ac-
fion, name of target object and requesting caller ID. Only
after authorization returns, "request authorized" does an en­
forcement engine allow execution of the request by the un-
derlying subsystem. Obviously, if authorizafion returns a
negative answer, i.e. "request not authorized", then en­
forcement engine simply discards the suspended request.
This way, it prevents execution of unauthorized requests
and essentially enforces users to adhere to local security
policies.

F.2.2 Authorization

Here we check everything that is required to authorize the
request, i.e. to decide whether to grant it or not. In flexible
access control systems, authorization is not integrated with

enforcement. Instead it is separated logically and in imple-
mentation. In this way, a single authorization engine can
be used by multiple poIicy enforcement engines.

Authorization decision is based on the foilovving set of
data:

- request information (action, object name, caller ID)

- local security policies, which govern the way in which
particular object can be used

- credentials associated with particular caller ID

- current values of environment variables, such as time
of day and amount of resources used by subject

Enforcement engine provides the request information
when it asks for authorization decision. This information
is used as an "index" by poiicy and credential managers
for fetching appropriate policies and credentials, respec-
tively. Environment variables are provided to authoriza­
tion engine upon request by facilities, such as system clock
and resource monitoring module within Resource Control
Framework (RCF) subsystem. Finally, after gathering ali
the required information, authorization engine processes
this data according to its internal rules, which return a sim-
ple result, either saying, "request authorized" or" request
not authorized." This is returned to the calling policy en­
forcement engine, which then acts accordingly.

G Related work
FAIN aims to develop a heterogeneous ANN, allovving
coexistence of various technologies that enable installa-
tion and execution of active code within an ANN. Conse-
quently, FAIN security architecture is aimed at providing
a more general solution vvhich provides necessary protec­
tions for such an heterogeneous system. This is reflected
by the fact that security architecture we have presented
does not incorporate details of specific EEs that exist in
the FAIN ANN. Its goal is to be as EE independent as pos-
sible and provide a common set of basic security services
required by ali AN enabling technologies.

Some research projects on active networks have already
tried to tackle the issue of security, in various ways and
at different levels of completeness [3,4,6,8]. In contrast
to FAIN, ali these security architectures are tied to the
specifics of the respective model of active netvvorks and,
consequently, reflect the original design decisions and,
more importantly, trade-offs chosen by developers of the
respective model. Java Security Architecture [5] proved to
be useful for AN security, but it has some drawbacks in this
context [6]. There has also been some more general work
on AN security [2], but this work is stili in the early phase.

Some research projects on active networks have already
tried to tackle the issue of security [3] [4] [5] [6]. Contrary to
FAIN, ali these approaches are tied to specifics of particular
model of programmability. When designing a more general

AN ACTIVE NETVVORKS SECURITV ARCHITECTURE Informatica 26 (2002) 211-221 221

AN security architecture, which is the čase in FAIN, these
specifics can not be assumed. Java Security Architecture
[7] proved to be useful for AN security, but again it is tech-
nology specific and it also has some drawbacks [5]. There
has also been some more general work on AN security [8].
This work is stili in the early phase.

H Conclusion
We have presented in this paper a security architecture for
future IP active netvvorks as it is done in the context of
FAIN project. We try to tackle the high priority security
requirements such as authentication, authorization, policy
enforcement, active code and active packet integrity and
verification and last but not least audit. We have anal-
ysed the main design decisions that we have taken and
the reasons why we decided to follovv them. Subsequently
we have presented the components of a security architec­
ture that will be used by multiple heterogeneous execution
environments within the same active node. We also pro-
vide a look in the interworkings of the architecture and its
decision-making logic. A prototype implementation of the
presented active netvvork security architecture is currently
under development, which will be used for exploring the
advantages and drawbacks of our approach.

[4] B. Branden, B. Lindell, and S. Bernson. A Proposed
ABone Network Security Architecture. ABone-draft,
Nov 1999.

[5] Li Gong. Java security architecture (JDKl.2). Techni-
cal report, Sun Microsystems, Oct 1998.

[6] Active Networks Working Group. SANTS Security
Overvievv, May 2000.

[7] Future Active IP Netvvorks (FAIN) Project.
http://www.ist-fain.org.

[8] Stephen Schwab, Richard Yee, and Rishi Dandekar.
AMP Security Overview. Technical report, NAI Labs,
May 2000.

Acknowledgement
This paper describes work undertaken and in progress
in the context of the FAIN - IST 10561, a 3 year
project during 2000-2002. The IST program is par-
tially funded by the Commission of the European
Union. The FAIN consortium consists of University
College London—UK, Jožef Štefan Institute—Slovenia,
NTUA—Greece, Universitat Politecnica de Catalunya—
Spain, Deutsche Telekom Berkom—Germany, France
Telecom/CNET—France, KPN—The Netherlands, Hitachi
Europe Ltd.—UK, Hitachi, Ltd.—Japan, Siemens AG—
Germany, ETH—Switzerland, Fraunhofer FOKUS—
Germany, IKV-i-4- GmbH—Germany, INTERGAsys—
Spain, University of Pennsylvania—USA.

References
[1] Active Network Working Group. Architectural Frame-

work for Active Networks, Jul 1999.

[2] Active Networks Security Working Group. Security
Architecture for Active Nets, May 2001.

[3] D. Scott Alexander, Wiliam A. Arbough, Angelos D.
Keromytis, and Jonathan M. Smith. A Secure Ac­
tive Network Environment Architecture: Realisation in
SwitchWare. IEEE Network, Special Issue: Active and
Programmable Networks:37—45, May/Jun 1998.

http://www.ist-fain.org

