
Informatica 18 (1994) 183-195 183 

ON BAYESIAN NEURAL NETWORKS 

Igor Kononenko 
University of Ljubljana, Faculty of electrical engineering & computer science, 
Tržaška 25, SI-61001 Ljubljana, Slovenia 
Phone: +386 61 1231121, Fax: +386 61 264990 
e-mail: igor.kononenko@ninurta.fer.uni-lj.si 

Keywords: Bayesian neural netvvork, Hopfield's neural network, naive Bayesian classifier, continuous 
neural netvvork, probability, entropy, machine learning, artificial intelligence, overview 

Edited by: Matjaž Gams 

Received: September 15, 1993 Revised: January 11, 1994 Accepted: April 12, 1994 

In the paper the contribution ofthe work on Bayesian neural networks is discussed with 
respect to previous, current, and potential future research in machine learning. 
The discrete and the continuous Bayesian neural netv/ork model is compared with Hop-
field's models. It is shown that the Bayesian neural network's equations are analogous 
to equations used to describe Hopfield's model. Two different models ofthe Bayesian 
neural netv/ork are compared with Hopfield's model, one based on Shannon's entropy 
(probability) and the other based on Good's plausibility (odds). A generalization of 
the naive-Bayesian classifier is described that enable the basic algorithm to detect the 
dependencies betv/een neurons. 

1 Introduction 

Machine learning is a subfield of artificial in­
telligence (Al) research field (Michalski et al., 
1983;1986). Al researchers are concerned with al-
gorithms that would enable computers to behave 
intelligently. As intelligence is strongly related to 
learning, especially in recent years machine learn­
ing is becoming of central importance for Al re­
search. Although opinions are not unique, ma­
chine learning can be defined as subsuming, be-
sides symbolic learning approaches, also parts of 
pattern recognition and neural networks. 

An artificial neural netv/ork is constructed from 
a set of artificial neurons connected with synapses. 
Artificial neurons are simple elements able to cal-
culate the weighted sum of the contributions of 
other neurons. The output from a neuron is usu-
ally binary, with possible values O or 1. The fea-
tures of artificial neural networks are: biological 
similarity, high scale parallelism, robustness with 
respect to missing and incorrect data and with re­
spect to the damage of the network, locally avail-
able information, modest software requirements, 
and the ability of adaptation through learning. 

The main problems when designing an artificial 
neural network are the selection of the appropri-
ate topology, the selection of the learning rule, 
the convergence of learning, and the convergence 
of the execution. A major weakness is the inabil-
ity of the explanation of the execution and the 
results. 

The work on Bayesian neural networks 
(Kononenko, 1990a) tries to unify probabilis-
tic, symbolic, and neural netvvorks approaches to 
learning. Various results of the work on Bavesian 
neural networks were published in several journals 
and conference proceedings (Kononenko, 1989-
1993; Kononenko k Bratko, 1991). Due to the 
"Jožef Štefan Golden Badge" reward for a distin-
guished Ph.D. dissertation in technical sciences in 
Slovenia I was asked by the editor of this paper 
to answer the following questions about my dis­
sertation: 

— How did the work come about? 

^ - What was the key intellectual contribution of 
the dissertation? 
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- What was critically left out that is stili an 
open issue? 

- What could people build more easily as a re-
sult of this work? 

- What part would I have done differently 
given what is known today? 

- What current papers reflect the future of that 
work? 

The next section introduces the Bayesian neural 
networks based on probability and some other 
contributions of the thesis (Kononenko, 1990a). 
In section 3 each of the subsections answers one of 
the above questions. The appendix describes the 
Bayesian neural network models based on proba-
bility ratio. 

2 Bayesian neural networks 

This section introduces work on Bayesian neural 
networks. The next subsection gives an overview 
of the thesis. Subsections 2.2 and 2.3 define dis-
crete and continuous models of Bayesian neural 
networks based on probability and show the anal-
ogy with discrete and continuous Hopfield's mod­
els. In subsection 2.4 the information score of 
classifier's answers is defined. Subsection 2.5 de-
fines the semi-naive Bayesian classifier. 

2.1 Overview of the thesis 

In (Kononenko, 1990a) it is shown that the 
"naive" Bayesian classifier can be implemented 
with an artificial neural network. A Bayesian clas­
sifier is called "naive" if it disregards the inter-
dependences between attributes. Bayesian neu­
ral networks use for learning the basic Hebbian 
learning rule. This rule states that the weight 
of a synapse is increased if both connected neu-
rons are active. The convergence of the execution 
of the multidirectional feedback Bayesian neural 
network is proved. The interpretation of the exe-
cution of one neuron is defined as the summation 
of information gains from other neurons. 

A multidirectional feedback Bayesian neural 
network based on probability ratio is also defined 
and the convergence of the execution is proved .̂ 
The execution of one neuron of such netvrork is 

interpreted as the summation of the weights of 
evidence. The relation with systems for inductive 
learning of decision trees is given. 

It is shown that the naive Bayesian formula 
can be transformed into the weighted sum which 
shows the analogy with the Hopfield's feed­
back neural network model. Analogously to 
the Hopfield's continuous model, both types of 
Bayesian neural networks are generalized to con­
tinuous neuron states together with the conver­
gence proof. 

For the comparison of the performance of differ-
ent classifiers on different classification problems 
a method for estimating the information score of 
a classifier's ansvver was developed. This mea-
sure excludes the influence of prior probabilities 
of classes and allows the estimation of incomplete 
answers. 

It was shown experimentally that the Bayesian 
neural network significantb/ outperforms Hop-
field's model with respect to the classification ac-
curacy and the information score while the com-
plexities of the learning and the execution remain 
equal. In experiments with four medica! diagnos-
tic problems the Bayesian neural network slightly 
outperformed the naive Bayesian classifier as the 
iterations make the netvvork less sensitive to noise 
and missing dat a. The naive Bayesian classifier 
and the network outperformed the diagnostic ac-
curacy of physicians specialists. 

To overcome the naivety of the Bayesian neural 
network which stems from the independence as-
sumption, an algorithm was developed for learn­
ing "semi-naive" feedforward Bayesian neural net-
works. The idea is to optimize the tradeoff be-
tween the reliability of approximations of proba­
bilities and the naivety with respect to the inde­
pendence assumption. It was shown experimen-
tally that the algorithm performs better than the 
naive Bayesian classifier. 

2.2 Discrete Bayesian neural networks 
based on probability 

Let objects in a given domain be describecl with 
a set of attributes, each having a fixed number 
of values. Let each value of an attribute be rep-
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resented with one Boolean variable. Therefore, 
an object is described with a set of variables 
Vi, i = l..n. Let the value of the Vj be unknown. 
If the independence of infiuences of other vari­
ables to the j-th variable is assumed the proba-
bility that Vj — 1 given the values of other vari­
ables can be computed with the following 'naive' 
Bayesian formula derived from the Bayesian rule 
(Good, 1950; Kononenko, 1989c) (for brevity con-
ditions Vj- = 1 will be written simply as Vi): 

p(vj\v1,...,vn) = p(vj) n Qa (!) 
Vi=l,i& 

where 

P(Vj\Vi) P{VjkVi) 
W " ~ P(V-) P(Vj)xP(Vi)

 w 

The 'naive' Bayesian classifier proved to be very 
efficient in classification problems when compared 
to other classification methods and to human ex-
perts (Kononenko, 1993; 1993a). It can be nat-
urally implemented by a neural network. In the 
Bayesian neural netivork (Kononenko, 1989a) ev-
ery neuron in a network is connected with ev-
ery other neuron via bi-directional connections, 
called synapses. The learning phase changes the 
weights associated with synapses according to the 
basic Hebbian learning rule (Hebb, 1949) so that 
each neuron can use (1) as a combination func­
tion to compute its activation level. Each neu­
ron represents a single value of one attribute, i.e. 
an attribute with iV; values is represented with 
Ni neurons. Classes are represented as one ad-
ditional attribute with one value for each class. 
Note that the network makes no difference be-
tween the attribute that represents classes and 
other attributes. 

The condition i ^ j in (1) is optional, de-
pending on whether each neuron is connected to 
itself with a feedback connection or not. Here, 
for brevitv, feedback connections are omitted. 
Their influence is studied in more details in 
(Kononenko, 1989a). 

In (Kononenko, 1991b) the following interpre-
tation of one neural network's iteration is pro-
posed. The minus logarithm of (1) gives 

" —log2P(Event)n is interpreted as the amount 
of information (in bits) necessary to find out that 
Event has happened (or the entropy of the Event 
(Shannon & Weaver, 1949)). Therefore, (3) is in­
terpreted as follows: the amount of information 
necessary to find out that j - th neuron is active, 
given the values of other neurons, is equal to that 
amount before knovving the values of other neu­
rons minus the sum of information gains from ac­
tive neurons for the same conclusion. 

If -log2Qji is replaced with Tj,, —log2P{Vj) 
with I j and the left-hand side of (3) with Aj ("A" 
stands for activation level), the classical weighted 
sum is obtained from (3) which is used as a com­
bination function in Hopfield's (1982) model: 

Aj — 2_^ Tji + I j 
Vi=i,t¥j 

^ViTji + Ij (4) 

In Hopfield's model T ji are elements of the mem-
ory matrix obtained as the sum of outer products 
of training patterns (corrected so that states 0 are 
changed to -1) and I j is a constant input to the j -
th neuron. Note that the model with no feedback 
connections (i ^ j) corresponds to the memory 
matrix with zero-diagonal (Ta = 0 for ali i). Here 
Vi can be 0 or 1, like in the original Hopfield's 
model although the learning rule for Hopfield's 
model is designed for values 1 and -1 . In Hop-
field's model one memory element corresponds to 
the difference betvveen a probability that the two 
connected neurons are in the same state minus 
the probability that they are in different states. 
One memory element of the Bayesian neural net-
work corresponds to the probability that the two 
connected neurons are both active. 

The proof of the convergence of the Hopfield's 
model is based on the idea of the energy of the 
model. The state of the model determines its 
energy which with iterations decreases until it 
reaches a minimum in a fixed point. The energy 
function used by Hopfield (1982) is: 

(5) 

Kosko (1988) ušes the similar approach to prove 
log2P(Vj\Vi,...,Vn) = -log2P(Vj)- ] T log2Qjitiie convergence of the execution phase of bi-

v.=1<ij.j directional associative memories. The proof of 
(3) the convergence of the Bayesian neural network 
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(Kononenko, 1989a) assumes a similar function 
representing a measure of similarity between the 
current state of a netvvork and the current activa-
tion levels of neurons. During the execution the 
similarity increases until a maximum is reached 
in a fixed point. The similarity function used is: 

Sim(Vu...,Vn)= [[ — — (6) 

The logarithm of (6) shows the analogy with Hop-
field's energy function. The following holds: 

E(Vu...,Vn) = -htog2Sim{Vu...,Vn) (7) 

as 

log2Sim{Vu...,Vn) = £ log/{Vj]^Vn) 

X»ff: :
 P(VJ) 

The major differences among the two functions 
are the same as for the differences among the com-
bination functions. According to relation (7) it 
would be more appropriate to name (5) the en-
tropg or the Information content of the system. 
Namely the minus logarithm of (6) is interpreted 
according to the interpretation of (3) as the sum 
of information gains from ali active neurons to the 
conclusion that other currently active neurons are 
in fact active. As every information gain appears 
in the sum twice, because of the symmetry, con-
stant \ is added to (5). The fixed point is now 
interpreted as the state with (locally) minimal in­
formation content. 

2.3 Continuous Bayesian neural 
network based on probability 

In this subsection the discrete model of the 
Bayesian neural netvvork is generalized to contin­
uous states analogously to Hopfield's continuous 
model (1984). Instead of discrete states 0 and 1, 
the state of one neuron will nov/ be represented 
by any value on the interval [0..1]. The state of 

a neuron will be proportional to the probability 
that the neuron is currently active. 

Eq. (3) defines the information gain of i-th neu­
ron to the conclusion that j - t h neuron is active if 
the i-th neuron is active with probability 1. A 
more general definition of information gain is the 
product: 

Vi x log2Qji (8) 

where Vi represents the current state of i-th neu­
ron (which stands for the probability that z-th 
neuron is active). (8) can be interpreted as the 
expected amount of information from i-th neuron 
to the conclusion that j-th neuron is active. The 
generalized eq. (3) contains the sum over ali neu­
rons (not only the active ones): 

-log2P(Vj\V1,...,Vn) = 

-log2P(Vj) - J2(Yi X log2Qji) (9) 

Applying the exponential function to (9) results 
in the combination function for the continuous 
model which is the generalization of (1): 

P(V]\V1,...,Vn) = P(Vj)HQji
V> (10) 

Note that the correct generalization of the con-
ditional probability P(Vj\V{ = 1), given the un-
certain evidence of Vj- = 1, is P(Vj\Vi — 1) X Vi 
(Ihara, 1987) which leads to different definition 
than (10). However, (10) is a meaningful gen­
eralization if the influences of different neurons 
(although representing the same attribute) are re-
garded independentb/. 

Hopfield (1984) defined the dynamics of his con­
tinuous model with the following equations: 

Rj (H) 

(12) 

where Vi is the output (state) of the i-th neu­
ron, Uj is the input (activation level) of the j - th 
neuron and Ij,Rj and C j are constants. "gj" is 
the output function defuiing the input-output re­
lation which is smooth and sigmoid with asymp-
totes 0 and 1. Eq. (11) states that the speed of 
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change of Uj is proportional to the difference be-
tween current UJ and the new one calculated with 
(4). Actually, Hopfield omits the condition i ^ j 
as for ali i in his model T,-,- = 0. 

Since (9) is analogous to (4), if same replace-
ments are made as in (3) in order to obtain (4), 
the same dynamics described with (11) and (12) 
for Hopfield's model (Hopfield, 1984) can be used 
to define and prove the stability of the continuous 
Bayesian neural nettvork model. The generalized 
similarity function (6) is therefore: 

Sim(V1,...,Vn) = l[ 'P^IVi,..,^)' v* 

P(Yi) 
(13) 

2.4 Information score 
Let the correct class of a testing instance T,- be 
C and the prior probabilty of class C be denoted 
by P{C). Let the probability, returned by a clas-
sifier, that a given testing object T,- belongs to 
class C be P'(C). We define the information score 
Inf(Ti) of classifier's answer as follows: 

1. if P'(C) > P(C) then 

Inf(Ti) = - log2 P(C) + log2 P'(C) [bits] 

i.e., the amount of obtained information is 
the entire amount of information necessary to 
correctly classify an instance into class C mi­
nus the remainder of information necessary 
to correctly classify that instance. 

2. if P'(C) = P(C) then 

Inf{Ti) = 0 [bits] 

i.e., the system didn't change the prior prob-
ability of the correct class therefore we didn't 
obtain any information. 

3. if P'(C) < P{C) then 

Inf\Ti) = 

- log2(l - P{C)) + log2(l - P'{C)) [bits] 

i.e., the amount of information returned by 
the system is the entire amount of informa­
tion necessary to decide that an instance does 
not belong to class C minus the remainder of 

the information necessary to make that deci-
sion. As this information is in fact wrong we 
define the information score of the system's 
answer in this čase as negative: 

Inf{Ti) = -Inf'(Ti) [bits] 

The average information score of an answer is cal­
culated over ali testing instances: 

Inf = 
s-^#testing-instances r f('y.\ 

fttesting Anstances 

Note that this assumes that prior probabilities 
of classes are known or can be reliably approx-
imated with relative frequencies from training in­
stances. We define also the relative information 
score Infr as a normalization of the average in­
formation score of an answer with the expected 
necessary information to classify one instance (i.e. 
entropy): 

Infr = 
Inf 

Zc(P(C)log2P(C)) 
x 100% 

2.5 Semi-naive Bayesian classifier 

Here we will limit our discussion on a feedfor-
ward Bayesian neural network that calculates the 
probability P{Cj\V\, ...,Vn) of class C j of an ob­
ject, described with values Vi,..., Vn of attributes. 
Note that for Bayesian neural networks, described 
in sections 2.2 and 2.3, the class attribute is just 
one of attributes that describe the object while 
here it is the target attribute. 

vVhen calculating the probability of class C j in 
(1) the infiuence of attributes Ai and Ai is dehned 
with: 

PiCAVi) P(C3\Vt) 
A P(Cj) P{Cj) 

(14) 

If, instead of assuming the independence of val­
ues V{ and V;, the values are joint, the corrected 
infiuence is given with: 

P(Cj\ViVi) 
P(Cj) 

(15) 

For joining the two values two conditions should 
be satisfied: the values of (14) and (15) should be 
sufficiently different while the approximation of 
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P(Cj\ViVi) with relative frequency should be suf-
ficiently reliable. For the estimation of the relia-
bility of the probability approximation the theo-
rem of Chebyshev can be used. The theorem gives 
the lower bound on the probability, that relative 
frequency / of an event after n trials differs from 
the factual prior probability p for less than e: 

P ( l - P ) P ( | / - p | < e ) > l - e2n 
(16) 

The lower bound is proportional to n and to e2. 
In our čase we are interested in the reliability of 
the folkrvving approximation: 

_ NcjVjV, 

NVivt 
PVAVM)) (17) 

Therefore the number of trials n in (16) is equal 
to NviVt, i-e. the number of training instances 
having values Vi and V/ of attributes A,- and A\, 
respectively. As prior probability p is unknown, 
for approximation of p at the right-hand side of 
(16) the worst čase can be assumed, i.e. p = 0.5. 

It remains to determine the value of e. As 
we are interested also if the values of (14) times 
P (Cj) and (17) are significantly different we use 
e that is proportional to the difference between 
the two values. The joint values will influence ali 
classes C j , j = l...m. Therefore, e will be the 
average difference over ali classes: 

P(Cj\VM) 
PiCjmPiCjiv,) 

P{Cj) 
(18) 

It is necessary to determine the threshold for 
the probability (16) above vvhich decides when it 
is useful to join two values of two attributes. Em-
pirically (Kononenko, 1991c), a typical value of 
the threshold that gives satisfactory results is 0.5. 
Therefore, the rule for joining two values states: 
join two values if the probability is greater than 
0.5 that the theoretically correct (unknown) influ­
ence of values Vj- and Vi differs, in average over aH 
classes, from the used (approximated) influence, 
for less than the difference between used influence 
and the influence of the two values without join­
ing them: 

I-TUCT—^°-5 (19) 
Ae2NVivl 

The values can be iteratively joint so that more 
than two values can be joint together enabling the 

semi-naive Bayesian classifier to discover higher 
order dependencies. 

3 Discussion 

3.1 The origin of Bayesian neural 
networks 

The naive Bayesian classifier (that assumes the 
conditional indcpendence of attributes) is fast, in-
cremental, has no problems with overfitting the 
training dat a, and can naturally deal with missing 
data. Despite its naivety, it achieves the impres-
sive classification accuracy on many real world 
problems. 

Our early experience with the naive Bayesian 
classifier \vas presented at the "International 
School for the Synthesis of Expert's Knowledge" 
Workshop (Kononenko et al., 1984). We com-
pared the performance of the naive Bayesian clas­
sifier with Assistant, an inductive learning algo-
rithm for generating decision trees. Although 
both systems achieved similar results we claimed 
that Assistant has an obvious advantage as the 
generated knowledge in the form of decision trees 
is transparent to human experts. However, at the 
workshop Professor Donald Michie pointed out 
that "if the same amount of effort had been de-
voted to the development of the naive Bayesian 
classifier as was used for the development of As­
sistant, the Bayesian approach would ccrtainly 
outperform Assistant". Today it seems that his 
prediction was correct. 

We performed a series of experiments in vari-
ous medical diagnostic problems in order to de-
velop medical diagnostic expert systems. Physi-
cians were never realy satisfied with Assistanfs 
decision trees although Assistant achieved excel-
lent classification performance. They complained 
that decision trees contain too few attributes and 
therefore poorly describe the patients (Pirnat et 
al., 1989). On the other hand the naive Bayesian 
classifier ušes ali available attributes. It turned 
out, that a simple interpretation of its decisions 
as the sum of information gains for/against cer-
tain diagnoses is transparent to physicians and 
acceptable for everyda.y use of such diagnostic sys-
tem (Kononenko, 1989b; 1990b; 1991b; 1993a). 
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In 1986 the P D P group, with the book (Rumel-
hart &: McClelland, 1986), caused the beginning 
of the exponential grovvth of the research effort de-
voted to neural networks (Anderson & Rosenfeld, 
1988). One of the most notable contributions are 
famous Hopfield's papers (Hopfield, 1982; 1984), 
tha t described the single layered feedback neural 
network architecture with interesting properties. 
It turned out that the naive Bayesian classifier 
can be implemented on the same neural network 
architecture as was used by Hopfield but with 
appropriately modified learning rule and combi-
nation function (Kononenko, 1989a). There is a 
strong analogy betvveen Bayesian neural network 
and Hopfield's model (see sections 2.2 and 2.3). 
Discrete and continuous Bayesian neural networks 
were defined and empirically they significantly 
outperformed Hopfield's model with respect to 
classification accuracy (Kononenko, 1990a). 

Although the naive Bayesian classifier is fast, 
incremental, has excellent performance on real life 
problems, and can explain its decisions as the sum 
of information gains, its naivety may result in 
poor performance in domains with strong depen-
dencies among attr ibutes. To avoid independence 
assumption we defined the "semi-naive" Bayesian 
classifier. The idea is to explicitly search for the 
dependencies between the values of different at­
tributes and if such dependency is discovered the 
two values are joint (Kononenko, 1991c). The al-
gorithm must solve the trade-off between the non-
naivety and the reliability of probability approxi-
mations (see section 2.5). 

A subproblem in comparison of different clas-
sifiers was tha t classification accuracy may be 
misleading especially for the classification prob­
lems with high variations in prior probabilities 
of different classes. This problem was particu-
larly illuminated with experiments in two medi-
cal diagnostic problems. In the "breast cancer" 
problem classifiers typically achieved the classifi­
cation accuracy of about 80% while in the "pri-
mary tumor" problem the classification accuracy 
was about 45%. The classification accuracy for 
breast cancer seems high while for primary tumor 
very poor. However, in breast cancer there are 
only 2 classes, and one has the prior probability 

equal to 80%! Therefore, a simple classifier that 
each object classifies into the majority class would 
also achieve a "high" classification accuracy. On 
the other hand, in primary tumor, there are 22 
possible classes, and the majority class contains 
only 25% of cases. 45% of the classification accu-
racy is in fact a fairly good result in this problem! 

Professor Michie helped us by suggesting en-
tropy as the basis for the appropriate measure 
of classifier's performance. We developed the 
evaluation function called "information score" 
(Kononenko & Bratko, 1991), that can evaluate 
answers of classifiers in the form of a probabilistic 
distribution, appropriately considers differences 
in prior probabilities of classes, and has natu-
ral interpretation that stems from the information 
theory (see section 2.4). 

3.2 The contribution of Bayesian 
neural networks 

The key intellectual contribution is that the use 
of probability and information theory can nat-
urally (and simply) solve several open issues in 
machine learning. Instead of using ad-hoc ap-
proaches or "fuzzy arithmetic" approaches (Kauf-
mann & Gupta, 1985) which are widely used in 
machine learning and neural netvvorks, we used 
the probability (Good, 1950; 1964) as the basic 
tool for modeling, and the strongly related infor­
mation theorij (Shannon & Weaver,1949) as the 
basic tool for the interpretation. 

We showed that the probability can be used to 
model neural networks by introducing the naive 
Bayesian formula as a combination function vvhile 
preserving the basic Hebbian learning rule, which 
is one of the basic learning rules in neural net-
works that has also strong biological plausibility 
(Hebb, 1949). We also used the probability to de-
tect the dependencies among attributes by consid-
ering the basic definition of the dependency and 
the reliability of probability approximations (see 
section 2.5). 

The logarithm of the probability of an event 
can be interpreted as the information necessary to 
find out that the event has happened. The inter­
pretation of the naive Bayesian formula directly 
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follows from this. It is simple, natural, and trans­
parent to human users. Besides, it shows direct 
relationship of Bayesian neural networks with the 
HopfiePs model and it shows also the analogy be-
tween the Hopfield's energy of the network's state 
and the entropij (or the information content) of 
the state (see section 2.2). 

The definition of the "information score" (see 
section 2.4) of a classifiers answer naturally fol-
lows from the definition of the information. The 
information score has several advantages as was 
discussed in the previous subsection. 

3.3 Open issues 

Although the semi-naive BayesianA classifier par-
tially solves the problem of naivety, there is stili 
an open problem which seems to be the key issue 
of machine learning in general. Namely, for par-
ticular problems (e.q. parity problems of higher 
degrees) the discovering of dependencies between 
attributes may be either 

1. unfeasible due to combinatorial explosion or 

2. the discovered dependencies cannot be reli-
ably estimated due to small number of train-
ing examples. 

In such cases efficient heuristic algorithms are 
needed to discover the dependencies (first prob­
lem) or discover new attributes by deriving them 
from existing ones (second problem). For such 
new attributes it should be possible to reliably 
estimate probabilities from the given training set. 

It is well known that the result of the learn­
ing strongly depends on the knovvledge represen-
tation. If the attributes, used to describe objects, 
are primitive and low level, learning systems will 
not be able to extract regularities from data. On 
the other hand, if attributes are high level and 
informative, most of classification systems will 
achieve similar classification accuracy. In the for-
mer situation one of the two problems mentioned 
above should be solved. The development of ef­
ficient heuristic algorithms for solving these two 
problems seems to be currently the main research 
issue in machine learning. 

3.4 Possible applications 

The developed algorithms may be used either as 
a tool for analysing data or as a basis for an ex-
pert system shell. In fact, the majority of ap­
plications that were done in Ljubljana Artificial 
Intelligence Laboratories (Urbančič et al., 1991), 
that involved machine learning algorithms, used 
machine learning as an efficient tool for data anal-
ysis. On the other hand, general expert system 
shell based on Bayesian neural networks may be 
developed (Kononenko, 1991b) and several pro-
totypes were already implemented (Ritoša, 1992; 
Grahor, 1992). 

One promising wide area of potential applica­
tions is medical diagnosis (Kononenko, 1993a). 
Here the major requirement for any system for 
supporting medical diagnostic decisions is that 
decisions of the system must be transparent to 
physicians. The semi-naive Bayesian classifier 
seems to be the most appropriate for that pur-
pose. Its decisions can be interpreted as the 
sum of information gains from different attributes 
(symptoms, laboratory tests, etc) for/against the 
diagnosis which is similar to the way physicians 
actually explain their decisions. We are currently 
developing one such application in the problem of 
the prediction of hip-bone break recovery (Kukar, 
1993). 

Other potential ušes of the developed meth-
ods include the use of the information score as 
a simple, transparent, and unbiased evaluation 
criterion for estimating classifier's performance. 
Unfortunately, not many researchers have begun 
to use it in their experiments so far. A feed-
back Bayesian neural network can be used also 
as an auto-associative memory that is hopefully 
more efficient than the Hopfield's auto-associative 
memory. This, however, must yet be analysed. 

3.5 Refinements using today's 
knovvledge 

After the dissertation was completed m-estimate 
of probabilities was developed and used indepen-
dently by Cestnik (1990) and Smyth & Goodman 
(1990) to estimate the conditional probabilities 
in the naive Bavesian formula. Cestnik (1990) 
showed that m-estimate drastically improves the 
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classification performance of the naive Bayesian 
classifier in several real world problems. 

The experiments described in the dissertation 
would be more attractive if m-estimate was used 
instead of the relative frequency. Besides, m-
estimate should even improve the explanation 
ability of the naive and the semi-naive Bayesian 
classifier, as it eliminates the high fluctuations of 
probabilities when relatively small samples of in-
stances are used for training. 

3.6 Continuation of the work 

The most important open issue described in the 
dissertation that was later completed is the prob­
lem of continuous data. The naive Bayesian clas­
sifier is designed to deal with discrete attributes 
while continuous attr ibutes need to be discretized 
(its values grouped into intervals) in advance. The 
problem is hov/ many intervals should one use. 
Too many intervals may be a too detailed split 
resulting in a small number of training instances 
corresponding to each interval. This causes the 
unreliable estimation of probabilities. On the 
other hand, too few intervals may result in the 
loss of the information content of a continuous 
at t r ibute. Another problem with discretization is 
the loss of the order of values of the continuous 
at tr ibute. 

We developed a fuzzy discretization of continu­
ous attr ibutes that "softens" the bounds between 
neighbour intervals (Kononenko, 1991a; 1992a). 
Such discretization may use a lot of intervals with-
out the loss of the reliability of probability ap-
proximations. It also implicitly keeps the infor­
mation about the order of values. 

Currently, the multistrategy learning is becom-
ing the central research area. The idea is to com-
bine several different learning strategies and/or 
apply several different learning algorithms on the 
same problem and then try to combine their re-
sults. One promising approach to combining the 
ansv/ers of different classifiers, tha t was used by 
Smyth et al. (1990), is (again) the naive Bavesian 
formula. We showed experimentally that the 
naive Bayesian combination of answers of differ­
ent decision rules is acceptable and superior to 
several other combination methods (Kononenko 
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& Kovačič, 1992; Kononenko, 1992b). 

Another open issue, tackled with current re­
search, was described in details in section 3.3. We 
developed the successive naive Bayesian classi­
fier (Kononenko, 1993) and Langley (1993) de­
veloped the recursive Bayes. Both approaches 
try to overcome the independence assumption 
by several successive applications of the naive 
Bayesian classifier on intermediate results. Both 
approaches, however, are not satisfactory as the 
classification accuracy is not better than that of 
the naive Bayesian classifier and, besides, both 
systems loose the explanation ability of the simple 
naive Bayesian classifier. Therefore, currently the 
"semi-naive" Bayesian classifier seems the most 
promising. 
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Appendix: Bayesian neural networks 
based on probability ratio 

Discrete model 

Here, we will briefly define the Bavesian neural net-
work which is more appropriate for comparison vvith 
Hopfield's model as it assumes the symmetric inter-
pretation of values of neurons. It is based on Good's 
(1950) plausibility as opposed to Shannon's entropij 
(Shannon & VVeaver, 1949), or, from another point of 
view, it is based on odds defined as }~/ as opposed 
to probabiliiij. 

The Bayesian neural netvvork will implement the 
'naive' Bayesian classifier based on odds. Each neuron 
will now represent one attribute, and one neuron will 
stand for a class. Each neuron has only two possible 
values (0 and 1) and therefore ali attributes will have 
only two possible values and there will be only two pos­
sible classes. Of course, it will be possible to solve also 
problems vvith multivalued attributes and with more 
than two classes by appropiiate coding (binarization 
of attributes and classes, i.e. one multivalued attribute 
will be represented vvith more binary attributes). Note 
that novv the tvvo values (0 and 1) are not interpieted 
anymore as inaetive and aetive as each represents one 
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value of an attribute. Again, netvrork makes no differ-
ence among attributes and classes. 

As ali attributes are binarv, the value of i-th neuron 
(i.e. i-th attribute) will be represented with Vt ', Xi = 
0 or 1. If the independence of influences of other neu-
rons to the activation level of the current neuron is 
assumed, the analogous formula to (1) can be used: 

p{v>\v?\...,yX") ^ 

P{V?\V?\...,Vf-) 

P{Vt)TTZii^Xi) 

where 

Zji(X,Y) p(y?,vn 
p(vf)p{vr) 

(20) 

(21) 

is the influence of i-th neuron on j-th neuron. 
Note that P (V?) can be calculated from P(V>) 
and that ali P{Vp'^V^') can be calculated from 
P{V>,V>-),P(V)-) and P (V}1). Therefore, if j - th neu­
ron is to be able to calculate value of (21) then it 
needs the same information as in the Bavesian neural 
network defined in section 2.2 and the same learning 
rule can be applied. 

In the execution phase the netvvork again iterates. 
Each neuron calculates the quotient among the prob-
abilitv of state 1 and the probabilitv of state 0 as de­
fined in (20). Note that ali neurons (not only the active 
ones as before) will influence the quotient. The thresh-
old value for changing the neuron's state will now be 
the quotient among prior probabilities of state 1 and 
state 0 (the first factor at the right hand side of (20)). 

The netvvork iterates until there are no more 
changes in neuron's state (the netvvork reaches a fixed 
point). In (Kononenko, 1989c) it is shown that this al-
ways happens in afinite number of iterations if the net­
vvork vvorks asynchronously (only one neuron changes 
its state at a tirne). The proof is analogous to that 
in (Kononenko, 1989a). The measure of similarUy be-
tvveen current activation levels of neurons and their 
current states X,,i = l..n, in this čase is: 

„ P(VXj\ViXl VXn) 
Sim(V^,...,V^) = U [> ^ - ' " j (22) 

The similarity is greater if the calculated probability of 
the current state of a neuron is greater than the prior 
probability of that state and vice versa. It is shovvn 
in (Kononenko, 1989c) that when one neuron changes 
its state the similarity increases. As there is a finite 
number of possible states of a netvvork the similarity 

measure is bounded and therefore the netvvork vvill al-
ways converge to a fixed point. 

Continuous model 

The weight of evidence from i-th neuron, in favor 
of the conclusion that jf-th neuron is active if the i-
th neuron is active vvith probability 1, is given vvith 
(Good, 1950; Michie k Al Attar, 1991): 

l°(J: 
Zjijl.l) 
^•,(0,1) 

The expected vveight of evidence given that i-th neu­
ron is active vvith probability Vi (vvhich represents the 
current state of i-th neuron), is given vvith: 

Vi><log2^%^ + (l-Vi)xlo92^%i (23) 
ZjiiO,!) 

Therefore, the generalized (20) is: 

P(V3
l\Vu...,Vn) 

P(V°\Vu...,Vn) 

• ^ ( 0 , 0 ) 

mirr Zji(l,l) Za(l,0) ( i - ^ ) ' 

and the corresponding similarity measure: 

Sim(Vu...,Vn) = 

p(y?\Vi,...tvn)\Vi ( P(V°) n P{VD P{V^\Vu...tVn) 

(24) 

(l-Vi)l 

(25) 
Let Tji{X,Y) stand for -log2Zji{X,Y). The minus 
logarithm of (24) does not correspond directly to (4) 
as it is of the form: 

Aj = J2(vi x (:/).-(l. 1) - ^ , (0 ,1) )+ 

(l-Vi)x(Tji(l,0)-Tji(0,0))j+Ij (26) 

The equation that describes the dynamics of the con­
tinuous Bayesian neural netvvork based on odds is ob-
tained from (11) by replacing Aj vvith (26). As (26) 
differs from (4) the convergence proof is not so ob-
vious as for the continuous Bayesian neural netvvork 
based on probability. 

From Hopfield's (1984) proof it can be shovvn that 
the sufficient condition for such a model to converge is 
given vvith the relation 

dEi 
dt E^XA V dt (27) 
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where E\ is a function of neural network's state and 
Aj the activation level of j - th neuron that appears 
in (11). Hopfield ušes the follovving E\ as the part of 
the energv function for the continuous model (again 
omitting the condition i ^ j): 

Ei(v1>...,vn) = ~j2J2viv^ + Jl1^ (28) 

If, instead of Aj in (11), activation level defined with 
(26) is used and if, instead of (28), E\ is defined using 
the minus logarithm of (25): 

E1(V1,...,Vn) = YlIJVJ + 
i 

j E E ( ^ r ; « ( M ) + ^(l-K)T^l,0)+ 

(1 - VfiViTjiiO, 1) + (1 - Vj){\ - V^TjiiO, 0)) (29) 

then the relation (27) holds, namelv: 

dEi_ _ y > (dEy_ dVj\ 
dt ~ 4^ V"̂ " X dt ) 

(30) 

tTi,(X,Y) = Til(Y,X). 


