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ASTRACT - Full parallelism offered by the aulti-processar is not still fully
exploited. Much work that has been done in structured prograsaing to separate a
mono-processor program into well-defined modules, and attempts to systematize the
interactions between modules, have helped toc achieve a more disciplined approach to
software development with much benetit to multi-mikroprocessor software.

This paper presents various issues relevant to language aspects of parallel
processing systems. The objective is to present a discussion of issues and some of
the current approaches rather than a well-developed metodology of software, which
has yet to be developed. Nev approaches to parallel processing architecture are
briefly outlined too. ’

0 JEZIKIH SISTEMOV PARALELNEGA PROCESIRANJA, PRVI DEL: Konkuren&ni mikroprocesorski
sistemi. Popolna so#asnost, ki jo omogo8a materialna oprema vedprocesorskih siste-
mov, 8e ni dovolj izkori¥¥ena, Da bl se ta cilj dosegel, je bilc med drugim vloZano
Ye veliko napora tudi v strukturirano programiranje, ki deli enoprocesorski progqraa
v dobro definirane module, poskufa sistemizirati akcije med moduli, pomaga doseti
bolj urejen pristop k razvoju programske opreee in Jji daje-Stevilne prednosti.

Clanek podaja zakljulke, ki lzﬁajajo iz jezikovnega vidika na sistese paralelnega
procesiranja. Obravnavani so zgolj rezultati in novej#i poskusi redevanja problesov

programske opreme. 0 kaki bol} dovr¥eni metodologiji programsske opreee pa nf eod
govoriti, saj je le-ta 8e vedno v razvojnih fazah.

Na kratko so opisane tudi nekatere najvidnejde radunalnidke arhitakture, ki ¢&e
pasebej udinkovito podpirajo paralelno procesiranje. -

1., INTRODUCTION

High level languages and their translators have A further difficulty stems from the fact that
become essential for writing application pro- the language issues and runtime support aspacts
grams for mono-processor systems. The same, cannot be isolated totally. The attributes of
hovever, cannot be sald for multi-microproces- the kernel are important in deciding whether or
sor systems. The immense variety of applicati- not certain issues need to be dealt with at the
ons and hardware architectures, and the diver- language level, ..

sity aof philasophies about how systems shoud be

structured, makes it extremely difficult to Most of the language proposals in the ooncu-
design languages that are likely to be widely rrent programming area also have an underlying
accepted. It still remains a difficult chal- model of distributed computing. The wmany of
lenge to design a high level language which is these languages are in the research phase and
sufficiently general and modular to accommodate any have not been implemented, also there |is
a large number of architectural types of machi- little hard practical experience., Most of the
nes /17, In the absence of bold and fresh time the underlying médel is not explicitly
ideas to express concurrency, it is then natu- stated.

ral  that current thinking is along the lines

for extending or generalizing the sequential Event 1f one attempts to extract the underlying
programmlng languages /2/. At least it is model fram a proposal, it is not always an easy
known that using this approach one has comet- task. Sometimes the model and languages issues
ning that works for an isolated microprocessor become inseparable. The choice of the sodel
which farms a constitutent part of. the vhole would affect the programsing sethodology and
system. Thus a sequential language enables the proof techniques for a3 language based on
individual software modules to be written. that model. A model provides a conceptual
This 1is a rather primitive approcach, howaever, framework in which to discuss and understand
where concurrency (which requires a control and the benhaviour of concurrent ococeputations, and
communication structure), synchronization for is intended to capture the underlying philosop-
resource sharing, efficiecy and robustness a- hy of a programming language.

spects are outside the language conslderation.



A high level language is a aedium which not
only enables us to obtain a machine executable
code but, perhaps more importantly allows us to
farmulate an application precisely. In this
sense, there is a greate vacuuam for a vehicle
to describe concurrent applicatios formally.

Another difficulty in using languages applica-
ble to multi-microprocessor systems is the
. necessity for a translator. Translator vriting
immediately requires the specification of the
target amachine. It is desirable that the
translator alsoc runs on the target eachines.
Since there 1s no architectural uniforaeaity,
this requires a +translator design wvhich |is
capable of running on widely varying configura-
tions. 1ldeally, a translator also should take
advantage of the structure and hence be aodu-
lar., This requires significant departure fron
coapiler writing for mono-processor cystoes.

2. FEATURES OF CONCURRENT LANGUAGE

Some of the desired features of a concurrant
language can be listed as follows /3/:

- expressive power or richness - provablility -
gase and efficiency of implementation - casy of

use - readability of resulting prograss -
impact of changes - extent of concurrency
possible

Expressive pover or richnass This refers to the
ability of the model/language in being able to
express certain behaviours, i.e. the richness
to be able to model certain computations like
recursion, non-determiniss, and so on. This
praperty is also referred to as completeness or
adequancy. An increase ln expressive power is
likely to be accompanied by an increase in the
difficulty of proving praograms. While it is
desirable to. have siasplicity as ona of the
goals, {t is not advisable to have that as the
overriding criterion.

Pravability One aay be intecegted in proving
many properties, like partial correctness, fre-
edom {rom deadlocks, terminatlon, fairness,
etc. The presense of some construots would
make it extremely difficult, if not iaspossible,
ta prove certain properties. For example, at
the current state of the art of program pro-
ving, the presence of time-outs could cake the
achlevement of the ¢tractability af proofs
almost impossible. 0f course, an important
consideratlon is the power of the language
used for specifyng assertions about progras
properties. The assertion language or the
logic used should be rich enough to be ablae to
specify formally various desired properties
/41,

Formalization aof the semantics of constructs is
an important prerequisite for program proving.
While researches have been discussing all of
the above praperties for a long time, there are
very few well defined techniques or {foraal
methods to {llustrate the existence of the
necessary properties.

Ease and sfficiency of iaplesentatior The {a-
plementation of certain features may be quite
difficult to achieve. It is not sufficient
merely to define primitives vhose functionality
makes them worth implementing. It aust also be
passible to deliver that {functinality with
reasonable efficiency. In most aplications the
eff{iciency, or costliness, is likely to be an
important consideration. While some constructs
might be implemented easily, the efficiency of
such iaplementations may not necessarily be
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. Eagse of

.operation,

good. The practicality of mechanises would be
measured by the efficiency of their iaplementa-
tions.

use The presence of powerful features
does naot mean that they would be easy ta wuse.
Normally high level constructs and good ab-
stractions capabilities make thing easier. Ea-
se af use and expressive powver are cosplementa-
ry criteria. A model/language being rich eno-
ugh to express a certaln type of ocasputation
does not automatically mean that it could be
done in an easy wvay-certain ingenious, awkward
and obscure wvays have to be resorted to.
Constructs which reflect intuitive ways of
abstractions would be appealing to the usgar,

While writing programs, language primitives
should allow coherent combinations. Avoiding
subtle interactions among primitives would make
them easier to use and help reduce errors. The
flexibility of the constructs is also an impor-
tant factor in the ease of their use.

Readability of resulting prograss Any proposal
for nev language features should be sorutinized
closely to determine the effect of the propased
facility on program structure. The agchanisenms
should be such that they discourage coaplex and
confusing structures. The presense of high
level and very powerful constructs could lead
to easily comprehensible programs. 0f course,
this may not always be the case. The ability
to compose the process structure hierarchically
should be of great benefit. In general, con-
structs that ace easily verifled are likely to
be easily understood.

1spaot of ohanges If the constructe do not
include or force a high degree of modularity, &
change in the definition of one process may
necessitate many changes throughout the rest of
the system. This would be highly undesirable,
particularly if the nueber of the processes
involved 1is quite 1large. Peramitting a great
degree of autonomy in the definition of proces-
ses would help a good deal in reducing and
localizing the impact of ohanges.

Entent of conourrency possible The greater the
degree of concurrency the constructs permit to
be expressed, the better. But the overheads
involved in supporting such concurrenay should
not be such as to offset the advantages gqained
through the increase in parallellisa.

3. HIGH PARALLEL PROCESSING ARCHITECTURES

1t is agreed by all concerned that the key to
fifth generation computer acrchitecturss is a
much higher degree of parallelism than s
incorporated into computers at present. .1t is
likely that there will be a nuaber of layers of
parallelism: closely coupled processing ele-
ments reflecting the parallelise inhercent in
inference or knowledge base processing cperati-
ons, looser coupling between the various subsy-
stems in a fifth generaton computer, and di-
stributed processing across local and wide area
networks of computers /3/.

At present there are two types of close-coupled
parallelism implemented in cosputers: proces-
sing arrays and plpelines. Processing arrays
are vectors of identical processing eleaants
which act synchronously to perfora identical
opreations an arrays af data. Pipelines are
used for multi-stage operations /7/ such as
floating-point multiplications, whera esach ele-
ment of the pipeline carries out one step of
and passes its intermediate result




to the next element, Operations .on successive
sets of data can take place at intervals of one
step., Parallel processing of this type, known
as "regular" parallelism, will undoubtedly find
3 place in fifth generattion computers, but
mechanlsms to deal with irregular parallelism
are the main topic for research. Three appro-
aches are present today: parallel control flaw,
dataflow and graph reduction /9,10/.

Traditionally, by parallel contral flow each
step of a program s executed in sequence,
under the cantrol of a single progras counter
which determines the lowlevel aperation to be
carried 'out next. The {flow of control |is
implicit in the structure of the program. Each
statement in the module is a call to a aore
detailed processing procedure. Therefore, if a
parallel computer system and programming langu-
age were available, the processing procedure
are called at the same time., They executed in
parallel, and the control module walits until
all processing procedure are complete before
continuing. Programming languages such as con-
current Pascal and Ada have facilities far
operations of this sort coaputers, but it
cemains to be seen whether this approach, whiah
is only a slight variation on conventional
sequential processing, will be adequate for the
radical demands of {ifth generation architectu-
res. :

For @ number of reasons, one of the, K most
promising architectural models, certainly for
the inference processing subsystems of a fifth
‘generation computer, is dataflow architecture.
It can cope with irregular as well as regular
close-coupled parallelism, it is flexible and
extensible, it has the potencial tor very high
data throughputs, and it reflects, at hardware
level, the type of parallelisa Lnherant in
inference processing. - The central idea of
dataflow architecture is: a netwark af proces-
sing elements 1is set up, which reflects the
logical structure of the task to bhe oarried
out, and {tems of data flow between the ele-
ments. Each elements operates at its own pace,
and waits wuntil it has a camplete et of
intermediate inputs before it ‘“fires". There
are two techniques for the control of such a
network. In the totally data-driven approach,
each element walts passively for data to arri-
ve, whereas in the demand-driven regime each
element issues requests "upstrean” for data
whan it is ready for it. 1In general a dataflow
computer or computer subsystems has three requ-
irements:

- ta store representations of program graphs,

- to implement some form of data tokens to
flow through the graphs, and

- to provide suitable instruction processing
tacilities.

Each requirement poses certain probleas, soame
af which are quite severe. Program graphs in
practice will contain hundreds of thousands, if
not wmillions, of arcs and nodes, and may not
aluays reduce to the neat tree structure.
Furthemore, {f, as is almost certain, program
contains recursive definitions, portions of the
structures will be re-entrant. In this example

the graph (recursive program graph) of this
inference needs to replicate itself repeatedly
during processing. Further, mast of the data

processed in knowledge-based systems does not
consist of single items, but of large structu-
res which would cause unacceptable overheads if
they were passed through a dataflow network in
their entirety. This problem is being approac-
hed by using pointers to the data structures in
the dataflow netwarks, and accessing the struc-
tures from fixed memory only vhen they are
required. ’ o
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Three 1lines of research are being followed in
response to these difficulties. The (ficst {s
to regard a dataflow task as fiwed at coapile

time, and to prohibit re-entrat code /12,13/,
This static approach is ilustrated 1in Fig.1,
which uses a network of binary processors each
with two alternative output channels.
—pd
Processing Processing
etament element
— et
— -
Processing Processing
element element
e

Fig.1-A static dataflow network(delta network).

The dynamic approach gets round the problems of
re-entrat code by allowing replication of por-
tions of the network at cun time. This has the
virtue of simplicity, and may become increasin-
gly teasible as hardware constrains slacken.
Fig.2. illustrated one possible configuration
using this technique /14/.
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Fig.2-A dynamic dataflow architecture.

The line of development which holds out the
most promise in the short teca is the tagged
system, variations of which are under develop-
ment at MIT and Manchester University. Each



data iLteas flowing through the network carries
with it an identification tag, vhich specifies

its type ({for example it may be a pointer to a
large data structure held in {ixed store) and
its position in the program. The tags enable
data items to be paired and matched with
appropriate instructions for processing. The
tags also indicate the level of recursion it
re-entrant code is used. One node of a data-
flow systems using this approach 718/ is illu-
strated in Fig.3.

Communiation swazh

Unmatcred| Program
Qeaph g'rm
sy l wore
Token Insinicton
L‘ Toner matching Tolon Procossor -
Quers ( wne wnt ( r
Qats wem a4 e Oata cerr Cata nem
Hohn Jata e calacem ioken

toner Gpovaton

Fig.3~A tagged dataflow architecture.

The graph reduction architecture /416/ is the
next variation on the dataflow approach discus-
sed above. This variation is to evaluate
functions by vorking directly on their graphi-
cal cepresentations. As various portions of
the graph are evaluated, they are replesaced by
their intermediate results. Evaluation of each
af ' the lovest nodes (which becoaes a search to
see whether such a node is present in the given
relations), can proceed in parallel. The in-
termediate boolean results are then fed back
through the graph as it is reduced, until a
single result enmerges. ALICE /17/ is the
computer which incorporates graph reduction
directly into its basic architecture,. It is
designed to be programmed in the applicative
language HOPE, but can alsc support declarative
languages such as PROLOG. The architecture of
ALICE enables the parallel operations to be
performed without any explicit instructions
from the program. Each node in a progras graph
is represented as a packet within Alice. A
packet consists of an identifier fields, a
function or operator field, and one or aore
argument fields, which may be data values or
references to other packets. There are also
control fields used by the computer 1n {ts
operation.

The general layaut of an ALICE computer is
shown in Fig.4. 1t consists of a large segaen-
ted meaory serving as a packet pool, and a
number of processing agents. The processors
and the memory segments are connacted by a
high-speed switching network which enables any
processor to access any memory segmeent with
minimal delay due to other access path. The
configuration chosen 1is a delta network, coa-
peising a large nuaber of simple switching
elemente with four inputs and four outputs in a
regular array. (Fig.1 shows a delta network of
elements with two inputs and two outputs.) The
network operates asynohronously, so that each
request for a packet is propagated through the
switches as rapidly as possible, and the packet
is returned to the processor as soon as the
access path is open.

Distribution network 1
[
PA PA PA PA PA
y
Interconnection network ]
PPS PPS PPS PPS pPPS

PA Processing Agent
PPS Packet pool segment

Fig.4-Alice: overall structure.

Also linking each processing agent is a low
bandwidth distribution netwocrk, which contains
addresses of processable packets and eapty
packets, This network includes simple proces-
sing elements which transfer these addresses
from one processing agent to another, in order
to even out the queue of work waiting at each
processor. ALICE wuses the 1INMOS transputer
/12,13 / as its basic processing element: each
main processing agent cointains a nuaber of
transputers, and additional transputers provide
the intelligence in the distribution network.
The transputer is designed as & single-chip
processing element for pacallel computer archi-
tectures. It has an one-board wmemory, with
high-speed DMA (for input and output channels,

bypassing the processor) facllities and rcrecep-
tion and transmission registers for data trans-
fer between transputers. [Its single sequential
praocessor has a reduced Instruction set (RISC
pracessor) for maximum speed (instruction cycle
time of S0 nanosecond). Transputer is designed
for a very high throughput of data, even {f the
processing rate is not so high.

The transputer {s designed to be prograssadble
directly in Occam programming language /18/.
It is intended to be incorporated in & distri-
tuted acchitecture, with individual transputers
connected by a very high speed local area
network. As such it is an ideal building block
for many components af a multi-mi{croprocesor
fifth generation computer systenm.

4, CONCLUSION

With the increased interest in aulti-sicropro-
cessor and distributed coaputing systeas, there
is emerging a large number of proposals and
approach to handle them. 1n a multi-aicropro-
cessor design the architectural philosophy re-
quires the interrelated consideration of appli-
cation requirements, hardware oomaunications,
and software aspects. While weore detailed
treatment of softwvare issues 1is left until
second part which succeed of this paper, efach
ot the considerations, as are: types of cosau-
nications, priority, co-ordination of proces-
ses, process-procesor allocation, network visi-
bility, ocontrol Llssues, and synchronization
719/ shauld be seen as having implications as
to the structure, hardware, and softvare af a
system. ’



In multl-microprocessor systems the architectu-
ral structure, applications requirements,
varied software aspects like the operating
systems /20/, coamunications infrastructure,
and tools to ald application programaing such
as high level languages suitable for parallel
programming, all form a tightly knit situation
in which it 1is far more difficult to isolate
the constituent parts and arrive at universally
accepted solutians.

The requirements of the fifth generation for
layers af parallelism and an eaphasis on infe-
rence rather than numerical camputation look
like providing sufticient incentive. Even it
the objective of a computer with
intelligece {s not attained, the new

tures will provide engines of unprecendent
power for conventional computing. The aove
away from general-purpose processors to aggre-
gations of special-purpose chips is 1likely to
affect all branches of information technolagy.
The increase {n the scale of integration, and
the advanced CAD systems for microchip produc-
tion will find applications in every branch of
microelectronics. The industrial, econoaic and
political conseguences of having access ta, or
not having access to the new genecation of
silicon foundries are farreaching.
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