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To enhance the efficiency and quality of artistic image style conversion, this study improves the 

convolutional neural network style conversion algorithm by introducing a multi-scale feature fusion 

network, comprehensively considering different convolutional features. Then, combined with attention 

mechanism, important features of artistic images are extracted. It occupied less conversion time, CPU 

usage, and memory usage in the artistic image style conversion, with better conversion performance. 

The research method had high peak signal-to-noise ratio and structural similarity index when 

converting different artistic styles. The highest peak signal-to-noise ratios for converting to Van Gogh 

artistic style, Ukiyo-e style, Monet style, and Cézanne style were 22.892, 17.844, 21.647, and 22.291, 

respectively, and the highest structural similarity index values were 0.842, 0.783, 0.845, and 0.843, 

respectively. The research has achieved effective conversion of target styles while preserving content in 

images, improving the quality and effectiveness of artistic image style conversion, and promoting the 

image processing technology. 

Povzetek: Študija izboljšuje algoritem za pretvorbo umetniških slik v drugačne stile s pomočjo 

konvolucijskih globokih nevronskih mrež.

1 Introduction 

With the progress of artificial intelligence and computer 

vision technology, artistic image style conversion 

technology has gradually become a research hotspot. The 

artistic image style conversion technology aims to 

convert the style of one image into another, which has 

broad application prospects [1]. However, existing 

methods have certain limitations in processing large-scale 

image data and performing style conversion while 

preserving content. Traditional methods suffer from style 

distortion and slow computational speed. Therefore, the 

research on artistic image style conversion based on 

Multi-scale Feature Fusion (MSFF) networks is of great 

significance. The MSFF is a network structure that 

utilizes deep learning techniques to fuse image features 

extracted at different scales. By integrating feature 

information, the accuracy and effectiveness of image 

processing tasks can be improved, which is suitable for 

fields such as image style conversion, semantic 

segmentation, etc [2]. The feature information of various 

scales is fused, which can retain the content information 

while approximating the target style information into the 

generated image, improving the quality and efficiency of 

style conversion [3]. Therefore, the research aims to use 

MSFF to achieve more accurate and efficient artistic 

image style conversion, and improve its quality and 

efficiency. The innovation lies in the introduced attention 

mechanism, which help the network focus its attention on 

more important features. The research provides an 

effective solution for the development of artistic image 

style conversion technology, with significant scientific 

research and practicality. It can promote the progress and 

application of related technologies. This study has four 

parts. The first reviews the literature, summarizing the 

existing results of MSFF networks and artistic image 

style conversion. The second mainly discusses the 

improved Convolutional Neural Network (CNN), MSFF 

network, and the attention mechanism for artistic image 

style conversion. The third mainly compares the research 

methods. The last part summarizes the achievements and 

shortcomings. 

2 Related works 

MSFF network is a crucial and widely used research 

direction, which integrates feature information at various 

scales and improve image processing and analysis 

performance. Zhou et al. built an unsupervised dense 

network ground on MSFF, and residual modules to 

address the multi-focus image fusion. It performed better, 

providing an efficient solution [4]. Deng et al. designed 

an efficient and lightweight MSFF multi-tasking strategy 

to address the challenges of cell segmentation and 

counting. A new up-sampling method, norm combination 

loss function, and coordinated multi-tasking training 

discriminator were introduced to achieve non-point-based 

cell counting and segmentation tasks based on cell count 

and global segmentation annotations. Compared with 
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traditional methods, the research method had fewer 

parameters and better performance. The speed increased 

by nearly ten times [5]. Wang et al. built a method ground 

on feature fusion and hybrid strategy to address the 

significant challenge of re-identifying individuals. The 

ResNet50 backbone was improved and implemented with 

a deep kernel pooling strategy and a mixed loss function. 

In three datasets including CUHK3, the research method 

had higher recognition accuracy, surpassing multiple 

advanced methods [6]. Wang et al. developed a MSFF 

network framework to solve the difficult single image 

crowd counting. This network combined encoder decoder, 

dense dilated convolutional block, and channel attention 

mechanism to improve the accuracy of density maps. It 

was superior to existing methods. The ablation study 

confirmed the effectiveness of each component [7]. Shen 

et al. built a hyper-spectral classification strategy ground 

on a three-dimensional MSFF strategy and channel 

attention mechanism to address the difficulties of 

traditional 2D or 3D deep CNNs in hyper-spectral image 

classification. The proposed method had significant 

progress in hyper-spectral data classification, solving the 

challenges of traditional methods in dealing with limited 

training samples and excessive parameters [8]. 

Applying algorithms to solve image related 

problems is an important and widely used method that 

can achieve functions such as image recognition, 

processing, and analysis, which has great value and role 

in fields such as computer vision, medical imaging, and 

security monitoring. Sun et al. developed a strategy to 

improve the structure and weight initialization of the deep 

CNN to solve image classification problems. The variable 

length gene coding strategy was used to represent 

network building blocks and depth. The new connection 

weights were introduced to initialize the representation 

scheme. It could improve computational efficiency, 

which was superior to existing designs in terms of 

classification error rate and weight quantity [9]. Bi et al. 

designed a genetic performance program with knowledge 

transfer to address the high computational cost of current 

large-scale image classification. The new fitness function 

and set were used to represent the effective image 

classification set established by the strategy. It could 

achieve better classification ability in a shorter 

computation time, which had significant advantages over 

baseline genetic performance program algorithms and 

other algorithms [10]. In response to the high time 

consumption of fractal image compression, Li et al. 

developed a specific update strategy to improve the 

computational time in fractal image compression. 

Experimental results showed that while maintaining 

image quality, the research method had higher encoding 

efficiency. It could effectively reduce encoding time [11]. 

Alkishriwo proposed an adaptive multi-resolution image 

decomposition strategy to optimize image compression 

without reducing image quality, which conducted 

multi-resolution decomposition in different directions. 

The designed method performed excellently compression 

ratio, bringing new solutions to the image compression 

[12]. Tade and Vyas proposed a hybrid depth classifier to 

classify tone mapped images in various visualization 

applications. The research method was superior to other 

image quality evaluation methods. It had the potential to 

solve color mapping challenge in high dynamic range 

environments, providing the best quality images for 

specific visualization applications [13]. The summary of 

the related works is shown in Table 1. 

 

Table 1: Related works summary table 

Author Main method Key result Limitation 

Zhou et al. [4] Unsupervised dense networks Extract source image 

features 

May require a significant 

amount of computing 

resources 

Deng et al. [5] Efficient and lightweight 

multi-scale feature fusion 

multi-task model 

Fewer parameters, better 

performance, and nearly 

ten times faster. 

Small object detection 

may not be accurate 

enough 

Wang et al. [6] A method based on feature 

fusion and hybrid strategy 

Higher recognition 

accuracy 

Weak generalization 

ability 

Wang et al. [7] Multi-layer feature fusion 

network framework 

Improved the accuracy of 

density maps 

May lead to over-fitting 

Shen et al. [8] Hyper-spectral image 

classification method 

Remarkable progress in 

hyper-spectral data 

classification 

Unclear applicability of 

non hyperspectral image 

data 

Sun et al. [9] An improved structure for 

deep convolutional neural 

networks 

Improved computational 

efficiency 

Maybe too much search 

space 

Bi et al. [10] Divide-and-conquer genetic 

performance program 

Better classification 

performance in less 

computation time 

Need to design fitness 

functions 

Li et al. [11] Specific update search 

algorithm 

Higher coding efficiency Image compression may 

not be ideal for complex 

textures 

Alkishriwo [12] Image decomposition Excellent performance in Sensitive to parameter 
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algorithm based on adaptive 

multi-resolution 

peak signal-to-noise ratio selection 

Tade and Vyas [13] A hybrid depth classifier Solved color tone 

mapping in high dynamic 

range environments 

Unable to determine the 

special classification 

effect 

 

In summary, integrating feature information from 

different scales can improve image processing and 

analysis performance. Given the style distortion and slow 

computational speed of traditional methods for artistic 

image style conversion, this study utilizes the MSFF 

network for artistic image style conversion, achieving 

more accurate image artistic style conversion. 

3 Feature extraction and style 

conversion of artistic images 

ground on MSFF Network 

To improve the efficiency and quality of artistic image 

style conversion, the CNN is first improved to better 

extract image features. Then, the MSFF network is used 

to fuse features at various scales to improve the  

 

 

expression ability. The attention mechanism is adopted to 

fix on the more important features of artistic images. 

 

3.1 Image feature extraction based on 

improved CNN 

Image style conversion algorithms ground on deep 

learning use CNN to extract image features. Then the 

U-shaped network structure is used for style conversion. 

The high-level convolutional features of the input content 

image and the target style image are calculated by the 

encoder. The style conversion algorithm is combined to 

form a fused feature map, which is ultimately mapped 

back to the original pixel space by the decoder to get the 

target style conversion image [14]. Figure 1 displays the 

process. 

 

Content image

Style conversion

 image

Encoder

Multi scale feature fusion 

style transformation 

algorithm
Decoder

Style image

 

Figure 1: Artistic image style conversion process 

 

In Figure 1, the features extracted by convolution at 

different levels exhibit different characteristics. As the 

network depth increases, the extracted overall contour 

features are more blurred and representative. In view of 

this, an improved CNN style conversion algorithm has 

been proposed in the study to address issues such as 

detail deterioration and local structural distortion caused 

by input images with complex spatial structures. The 

algorithm structure includes an encoder, a conversion 

network, and a decoder. A novel feature detection 

strategy is used to grasp features with fewer parameters. 

By decomposing the large convolutional kernels in the 

conversion network, the parameters are reduced and the 

conversion speed is improved [15]. The adaptive 

normalization method is used to process the output of 

Convolutional Layer (CL) to better preserve the semantic 

information of content images. This algorithm achieves 

fast conversion of multiple styles, enhances the structural 

features, and significantly improves the detail effects. In 

style conversion, the encoder extracts feature under 

various CLs. The encoder adopts a pre-trained Visual 

Geometry Group (VGG) structure, as shown in Figure 2. 
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Figure 2: Encoder structure 

 

In Figure 2, from conv1_1 to conv4_1, all 

convolution kernels have a size of 3×3. Each CL is 

followed by a Relu activation function. After conv_2, 

conv2_2, and conv3_4, there is a max pooling layer for 

down-sampling. In feature fusion, the content feature map 

and style feature map are output for fusion in the conv2_1, 

conv3_1, and conv4_1 section to avoid fusing the conv_1 

results and prevent affecting the quality of style 

conversion [16-17]. To reduce parameter calculations, the 

large convolutional kernel in the CL of the conversion 

network is decomposed into two 5×5 convolutional 

kernels instead of the 9×9 convolutional kernel, keeping 

the receptive field unchanged and increasing the network 

depth and learning ability. 

In the conversion network, an Adaptive Instance 

Normalization (AdaIN) is introduced to automatically 

match the feature statistics of content images and style 

images. The mean and variance of content feature 

information are aligned with the mean and variance of 

style feature images to obtain the target feature map h . 

After AdaIN, the content Loss Function (LF) and Style 

LF are obtained, as shown in equation (1). 

( )( )

( )( ) ( )( ) ( )( ) ( )( )
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In equation (1), ,C AdaINL  and ,S AdaINL  are the 

content LF and style LF, respectively [18]. The overall 

content perception LF and style perception LF for image 

style conversion are displayed in equation (2). 
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In equation (2), ( ),CL x y  and ( ),SL y y  represent 

the overall content perception LF and style perception LF 

of image style conversion, respectively. Therefore, the 

total LF of the entire network training is obtained. It is 

trained and optimized by the random gradient descent 

method, as shown in equation (3). 

 

C S RL L L L  = + +   (3) 

 

In equation (3),   and   represent the weight 

values of content loss and style loss, respectively. RL  is 

the regularization term.   represents the weight value 

of RL  [19]. Afterwards, the decoder parameters can be 

derived through the LF. After multiple training, the 

optimal decoder parameters can be obtained. The style 

conversion network training and CNN improvement are 

completed to extract image features. The improved CNN 

architecture aims to improve the extraction efficiency and 

quality of image features, as shown in Figure 3. 

 

Encoder Conversion network

Decoder

Pre-trained VGG Adaptive normalization

Original image Target style avatar

 

Figure 3: Improved CNN architecture 
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The architecture includes three main parts: encoder, 

conversion network and decoder. The encoder uses the 

pre-trained VGG network structure to extract image 

features through multiple convolution layers and pooling 

layers. The conversion network reduces the number of 

parameters by reducing large convolution kernels, and 

optimizes the feature representation by adaptive 

normalization methods. The decoder is responsible for 

mapping the fused features back into the pixel space to 

generate the target style image. 

3.2 Feature fusion based on the MSFF 

network 

The features extracted by convolutional networks at 

different levels have different effects. Low level 

convolution can grasp the detailed information, which is 

beneficial for expressing local features. High level 

convolution focuses more on the overall structural 

features of the image, such as shape and contour. The 

existing image style conversion algorithms mainly focus 

on converting high-level features into images. Although 

this can better express overall features, it may not achieve 

satisfactory results in terms of local details [20]. 

Accordingly, the MSFF network is introduced. Taking 

into account different levels of convolutional features 

comprehensively, the decoder takes into account both low 

and high information during the image generation to 

obtain more satisfactory detail results. The artistic image 

style conversion based on MSFF network first extracts 

content and style image features by the encoder, and 

merges feature maps through MSFF. Finally, the target 

image is generated through the decoder. The core of 

MSFF network is to integrate features of different scales 

to enhance feature expression ability. The network uses 

convolution kernels with different sizes to extract features 

in parallel through the multi-scale feature extraction layer, 

and then concatenation operations are carried out through 

the MSFF layer to integrate features. The dimensionality 

reduction layer is used to reduce the number of channels 

in the fusion layer to avoid dimensional disasters. The 

MSFF is displayed in Figure 4. 
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Figure 4: MSFF module structure 

 

From Figure 4, the MSFF module aims to extract 

features at various scales in the image and fuse them, 

including a MSFF feature extraction layer, a MSFF layer, 

and a dimensionality reduction layer. The multi-scale 

feature extraction layer extracts feature at various scales 

through multiple convolution kernels of various sizes, 

among which the 1x1 convolution kernel is used to 

preserve shallow information to improve the image 

quality. When selecting the feature extraction scales, a 

comprehensive consideration should be given to network 

parameters and over-fitting. The core function of the 

MSFF module is to extract image features at various 

scales and integrate these features together [21]. Multiple 

convolutional kernels with different sizes can extract 

features from different scales and perform nonlinear 

representations in the fusion layer. When determining the 

feature extraction scales, network parameters and 

over-fitting need to be balanced to achieve the best results. 

After each CL, the nonlinear mapping ability is enhanced 

through nonlinear layers. The input of all multi-scale 

feature extraction layers is X , and there are m  CLs in 

this layer. Different layers have different convolution 

kernel sizes. Equation (4) represents the i -th CL in the 

first MSFF module. 

( ) ( )1 1 1 1i i i i
f X W X B=  +  (4) 

In equation (4), 1i
W  and 1i

B  are the weights and 

biases of the CL, respectively. *  refers to the 

convolution operation. 1i
  is the nonlinear element after 

the i -th CL, which presented in equation (5). 

( ) ( )1 max 0,
i

x x =   (5) 
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In equation (5), x  stands for the input value of the 

nonlinear element. The MSFF layer is to fuse the feature 

maps output by multiple scale feature extraction layers to 

supply the next layer for processing. This layer consists 

of concatenation operations, which overlay feature maps 

of various scales and channels together [22]. The 

channels in the fused feature map are equal to the total 

channels in each CL of the MSFF extraction layer. The 

fusion principle is displayed in Figure 5. 

 

Concatenation

layer

 

Figure 5: Fusion of MSFF layers 

 

From Figure 5, the MSFF layer mainly integrates 

three different types of features. Assuming that the 

multi-scale feature extraction layer has m  CLs, the 

MSFF layer in the first MSFF module is displayed in 

equation (6). 

( ) ( ) ( )1

1 1 1 1

1 1
i i i i

m m

i i

f X f X W X B
= =

= =  +   (6) 

In equation (6), X  refers to the input value of the 

multi-scale feature extraction layer. The dimensionality 

reduction layer is to reduce the MSFF layer’s 

dimensionality, that is, to reduce its channel count. In a 

multi-feature extraction layer, each scale CL typically 

requires a certain number of convolution kernels, as 

different convolution kernels can extract different 

features. Although there are many channels in the CL at 

each scale, it may not cause dimensionality issues when 

used in cascading. However, after parallel use and fusion, 

the channels in the MSFF layer increase sharply, which 

may cause dimensional disasters and limit the network 

size [23]. Therefore, before entering the next 

multi-feature fusion module, the MSFF layer is 

dimensionally reduced to reduce the channels and 

facilitate feature fusion into the next module. The 

dimensionality reduction layer has a CL with a kernel 

size of 1×1 and a nonlinear activation unit. The channels 

in this CL are less than the channels in the multi-feature 

fusion layer. The 1×1 convolution kernel can retain all 

information in the multi-feature fusion layer, while 

reducing the channels in the final output multi-scale 

feature map, playing a dimensionality reduction role. The 

dimensionality reduction layer of the first MSFF module 

is displayed in equation (7). 

( )( )
1 1

1 1

1 1m m
F W f X B

+ +
=  +  (7) 

In equation (7), ( )1f X  stands for the output value 

of the multi-feature fusion layer. 
11m

W
+

 and 
11m

B
+

 stand 

for the weights and biases of the CL in the dimensionality 

reduction layer, respectively.   is used to describe the 

operation of non-linear activation units in the 

dimensionality reduction layer. The MSFF module 

utilizes convolution kernels of various sizes to extract 

multi-scale features of images. Multiple filter sets with 

various sizes extract and fuse multi-scale information 

from images [24]. After each CL, nonlinear activation 

units are introduced to learn the nonlinear mapping 

relationship between input and class labels. The 

dimensionality reduction operation avoids the curse of 

dimensionality caused by the increase in the channels in 

the MSFF layer and the limitation on network size, 

allowing modules to be used in multi-level concatenation. 

It is suitable for MSFF network artistic image style 

conversion tasks. The MSFF module performs better 

when used in cascading. The first and l -th multi-scale 

feature modules are shown in equation (8). 
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In equation (8), 1F  and lF  represent the first and 

l -th multi-scale feature modules, respectively. 1lF −  

stands for the output value of the previous MSFF module. 

1ml
W

+
 and 

1ml
B

+
 represent the weights and biases of the 

CL in the dimensionality reduction layer, respectively. 

The MSFF network includes multiple cascaded 

multi-feature fusion modules and a CL with a kernel size 

of 3×3, mainly achieving artistic image style conversion. 

These modules map the multi-scale features of one 

artistic image style to another artistic image style. Finally, 

a multi-scale feature of an artistic image style is 

transformed into the desired artistic image through 3×3 

CLs [25-26]. Assuming that L  MSFF modules and a 

reconstruction layer (i.e. convolutional layer) are used in 

the network, the mathematical expressions of the first L  

modules are shown in equation (9). 

( )

( )

1 1

1

, 1

, 2..l l l

f X F X l

f X F f l L−

 = =


= =
 (9) 

In equation (9),  is used to describe the set of 

feature extraction, representation, and dimensionality 

reduction operations of the MSFF module on the input. 

The final reconstruction layer, also known as the CL, is 

responsible for fusing features at different scales together, 

as shown in equation (10). 

( ) ( )1 1* L

L LF X W f X B+ += +  (10) 

In equation (10), ( )Lf X  stand for the output of 

the L -th MSFF module in the network, thus achieving 

the artistic image style conversion of the MSFF network. 

The overall structure of the Improved CNN-Multi-Scale 

Feature Fusion Network (ICNN-MFFN) is presented in 

Figure 6. 

 

Style conversion

 image

VGG

Encoder

conv

1

conv

2

conv

3

conv

4

conv

1

conv

2

conv

3

conv

4

Decoder  

Figure 6: MSFF network structure 

 

From Figure 6, the MSFF network structure utilizes 

feature information from different scales. An appropriate 

fusion strategy effectively combines this feature 

information into a network structure. The features at 

different scales are fused, which can better generalize  

 

 

targets, thereby more effectively achieving tasks 

including image segmentation and object detection. This 

network structure can effectively integrate information 

from different scales in images, improving the 

performance and robustness. 
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3.3 Artistic image style conversion based on 

introduced attention mechanism 

The visual attention mechanism is an important method 

for humans to obtain key information. In complex scenes, 

humans prioritize capturing the target area and 

concentrate their attention to obtain more detailed 

information. This mechanism helps humans suppress 

useless information and quickly obtain information on 

key areas. The attention mechanism in computer vision is 

comparable to humans, focusing on key regions in images 

[27]. The visual attention mechanism based on deep 

learning is implemented through a mask mechanism, 

using weights to mark important features of the image, 

and forming attention through neural network learning. 

Soft attention focuses on regions or feature channels, and 

obtains attention weights through neural network learning, 

while strong attention focuses on pixel level details. Each 

pixel may generate attention, which is typically achieved 

through reinforcement learning. 

The channel attention mechanism in CNNs is used 

to measure the importance of each feature channel, 

stimulate important channel information, suppress useless 

channel information, and highlight key areas in the image. 

This mechanism can improve the deep CNNs [28]. An 

Efficient Channel Attention Network (ECA) network is 

proposed. The ECA is displayed in Figure 7. 

 



 

Figure 7: ECA network 

 

From Figure 7, the ECA network emphasizes the 

importance of direct correspondence between channels 

and weights by independently learning the weights of 

each channel, while avoiding dimensionality reduction 

operations. Meanwhile, by designing a one-dimensional 

convolutional kernel with adaptive size selection, cross 

channel information exchange is achieved, which 

improves the effectiveness of channel attention and 

ensures both performance and model efficiency [29-30]. 

The channel attention module first performs a 

compression operation, as shown in equation (11). 

( )
1 1

1
,

T N

c

i j

z u i j
T N = =

=


  (11) 

 

In equation (11), z  represents the compressed 

feature map. ( )u c  represents the spatial graph 

convolution output data. Excitation conversion is 

performed on the feature graph, as shown in equation 

(12). 

( )( )1zs W W z =   (12) 

In equation (12), s  represents the converted feature 

map.   represents the Sigmoid  activation function. 

  stands for the Re Lu  activation function. The 

ICNN-MFFN-Attention Mechanism (ICNN-MFFN-AM) 

is designed. Figure 8 displays the structure. 
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Figure 8: Lightweight image style conversion algorithm with attention mechanism 

 

From Figure 8, the network structure of the 

algorithm includes an image conversion network and a 

content and style representation network. The image 

conversion network has an encoder, an ECA-Fire module, 

and a decoder. The encoder-decoder structure is applied 

to reduce computational complexity and increase 

receptive field. The main body is composed of multiple 

ECA-Fire modules. The content and style representation 

network is a pre-trained VGG-16 network used to grasp 

content and style features of images, and define content 

loss and style loss. During the training, based on 

pre-selected images read from the dataset, they are input 

into the network to calculate content and style loss. The 

image conversion network parameters are updated 

through backpropagation. A lightweight style transfer 

model with a specific style is ultimately generated [31]. 

The image conversion network consists of five ECA-Fire 

modules, with residual connections used between the first 

and second modules, as well as between the fourth and 

fifth modules. The network uses a abundant small 

convolution kernels with sizes of 3*3 or 1*1, while the 

first and last layers use 9*9 convolution kernels. The 

input is a color 3-channel content image with a resolution 

of 256*256. Down-sampling is achieved through a CL 

with a stride size of 2. The corresponding up-sampling is 

achieved through a CL with a stride size of 1/2 to adjust 

the channels and resolution of the output image to match 

the input image. This operation reduces computational 

complexity, which can effectively increase the size of the 

receptive field. Down-sampling can conveniently use 

larger CLs for feature extraction, and the increase in 

effective receptive field also helps to improve the quality 

of image style conversion. 

The content and style representation network is 

essentially a pre-trained VGG-16 network used to grasp 

features from content images, converted images, and style 

images. These three types of images are input into the 

network and their activation responses in a certain layer 

of the network are extracted, which are called feature 

maps [32]. Content loss is not an accurate pixel level loss, 

but the mean square error in the feature maps extracted 

from the converted image and the content image in the 

network, representing their content similarity. After the 

CLs in the content and style representation network, the 

feature map size is represented as j j jC H W  . jC  is 

the channels, jH  is the height, and jW  is the width. 

The LS is defined as the mean square error between the 

features of the content image and the features of the 

converted image, as expressed in equation (13). 

( ) ( ) ( )
2

2

1
,content c j c j

j j j

l x y x y
H W C

 = −
 

(13) 
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In equation (13), contentl  represents the CLF. cx  

and y  are content images and conversion images. j  

represents the j -th CL of the content and style network 
 . Style loss is applied to constrain the distinctions in the 

converted image y  and the style image sx , aiming to 

preserve style features such as color, texture, and 

common patterns. The Gram matrix is defined to 

represent the style information of the feature map, as 

expressed in equation (14). 

( ) ( ) ( )' ', , , , ,
1 1

1 j jH W

j j jc c h w c h w c
h wj j j

G x x x
H W C

  
= =

=
 

 (14) 

In equation (14), ( )j x  represents a 

C -dimensional vector. All elements are composed of a 

set of feature maps j jH W  to form a row vector. It 

meas that ( )j x  is converted into a two-dimensional 

vector   of j j jC H W , and then solved with its 

transposed inner product to obtain the Gram matrix. The 

diagonal elements of the Gram matrix represent the 

feature map information itself. Other elements represent 

the correlation information between different feature 

maps, which can be used to measure the importance of 

features within themselves and between different features. 

The square of the difference norm in the Gram matrices 

of the converted image y  and the style image sx  is 

calculated. The differences calculated at each layer are 

added to obtain the final style loss, as expressed in 

equation (15). 

( ) ( ) ( )
2

,
j jstyle s s

F
l x y G x G y = −  (15) 

The total LS is composed of a linear combination of 

content loss and style loss, expressed as equation (16). 

( ) ( ) ( )1 2, , , ,total c s content c style sl x x y l x y l x y = + (16) 

In equation (16), 1  and 2  represent the weight 

coefficients of content loss and style loss, respectively. 

The total LS is iteratively optimized, aiming to minimize 

the total loss value and ultimately generate a lightweight 

style conversion model with a specific style. The stylized 

images generated by this model are comparable in quality 

to other models, but have advantages in terms of size and 

speed, making it more convenient to achieve real-time 

image style conversion. 

4 Analysis of artistic image style 

conversion based on MSFF 

network 

To analyze the effect of the research method on artistic 

image style conversion, it is first compared with other 

advanced methods and applied to artistic image style 

conversion. The research method performs well in 

various artistic image style conversions, with good 

visualization results. 

4.1 Algorithm Performance Analysis 

To analyze the artistic image style conversion effect of 

the research method, the performance of 

ICNN-MFFN-AM is first compared. It is compared with 

ICNN-MFFN and Cycle-Consistent Generative 

Adversarial Networks (CycleGAN). Among them, 

CycleGAN can achieve image conversion of different 

styles through adversarial training between two 

generators and two discriminators. The experimental 

environment for all algorithms is consistent, as displayed 

in Table 2. 

 

Table 2: Experimental environment 

Number Software and hardware projects Specific information 

(1) CPU 
12th Gen Intel(R) Core(TM) 

i5-12400F 

(2) GPU NVIDA GeForce RTX 3060 Ti 

(3) RAM 12G 

(4) Operating system Windows 10 64 bit operating system 

(5) Anaconda version 4.6.11 

(6) Hard disk 1TB 

(7) CUDA version 9.0 

(8) Python version 3.7.3 

 

The experiment uses a memory hardware parameter 

of 12GB DDR4 RAM, which ensures the memory 

requirement when processing large-scale image datasets. 

The GPU hardware model is NVIDIA GeForce RTX 

3060 Ti, which provides efficient parallel computing 

power to accelerate the training and reasoning process of  

 

 

 

deep learning models. The Anaconda version 4.6.11 is 

used to manage the Python environment and dependency 

packages, with Python version 3.7.3 as the basis for 

programming language and scripting, and PyTorch 0.4.0 

deep learning framework for building and training CNN 

models. The Content image dataset is MSCOCO 2017, 

which is widely used for computer vision tasks that 

contains 118,287 images of everyday life scenes. The 
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Style Image dataset of WikiArt is adopted. WikiArt is a 

dataset containing many artistic style images, 

downloaded from Kaggle, with a quantity of 

approximately 80000. The preprocessing steps ensure the 

consistency and availability of the dataset, ensure that all 

images are in RGB format, adjust the size uniformly to 

256x256 pixels, remove damaged or inconsistent images, 

establish a pair of content images and style images, and 

ensure that there are enough samples for style conversion 

training. A two-sample t test is performed on the 

experimental results to verify whether the performance 

difference between the proposed method and the existing 

method is statistically significant. 95% confidence 

intervals are calculated to evaluate the reliability of the 

experimental results. To ensure the reliability and 

consistency of the experimental results, a fixed random 

seed is used in the experiment to repeat the random 

initialization process. The experiment is repeated for 

many times under the same conditions, and the mean 

value and standard deviation of the results are calculated. 

In the comparative experiment, all algorithms have the 

same backbone network VGG-16. Four GPU servers are 

used to compute nodes. Each node processes one type of 

image. The environment configuration of each node is 

consistent. The usage and loss of each node are different, 

resulting in differences in model training time. To control 

variables, the detection speed of the training model is 

tested at the same computing node to ensure the rigor. 

300 images are randomly selected for testing. The batch 

size is 2. The learning rate is 1×10-4, with a total of 

50000 iterations. The time for converting images using 

three methods is shown in Figure 9. 
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Figure 9: Artistic image style conversion time 

 

From Figure 9, as the images increased, the 

conversion time of the three algorithms also has increased. 

However, the conversion time of ICNN-MFFN-AM was 

significantly shorter than that of CycleGAN and 

ICNN-MFFN. When converting 8000 images, the 

conversion time of ICNN-MFFN-AM, CycleGAN, and 

ICNN-MFFN was 61.2s, 118.5s, and 137.6s, respectively. 

ICNN-MFFN-AM had higher efficiency in artistic image 

style conversion. The CPU and memory usage during the 

artistic image style conversion process using the three 

algorithms are shown in Figure 10. 
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Figure 10: CPU usage and memory usage during the artistic image style conversion 

 

Figures 10 (a) and 10 (b) respectively show the CPU 

and memory usage for converting image artistic styles. 

From Figure 10, when there were more converted images, 

the CPU and memory usage also increased and gradually 

stabilized. Overall, ICNN-MFFN-AM had lower CPU 

and memory usage, which meant that ICNN-MFFN-AM 

had the best artistic image style conversion performance. 

4.2 The quality conversion results of different 

artistic image styles 

Artistic image style conversion is a digital image 

processing technique. It uses computer vision and deep 

learning algorithms to re-render an image (called a 

"content image") with the artistic style of another image 

(called a "style image"). The effects of converting 

ordinary photos into Van Gogh style, Ukiyo-e style, 

Monet style, and Cé zanne style are compared. The 

Structural Similarity Index (SSI) and Peak 

Signal-to-Noise Ratio (PSNR) are used to assess the 

similarity and distortion in the generated and the source 

domain image. Firstly, an ablation experiment is 

conducted on Van Gogh's artistic style conversion. The 

results are shown in Figure 11. 
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Figure 11: The result of Van Gogh style conversion 
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Figures 11 (a), 11 (b), 11 (c), and 11 (d) represent 

the average PSNR and SSI values of converting images A, 

B, C, and D into Van Gogh artistic style images using 

three algorithms 50 times, respectively. PSNR evaluates 

the distortion by comparing the ratio between mean 

square error and the maximum pixel value, with higher 

values indicating better image quality. SSI is based on 

similarities in brightness, contrast, and structure. The 

larger values indicating that the generated image is closer 

to the source domain image. From Figure 11, the PSNR 

and SSI values of the three algorithms were 

ICNN-MFFN-AM, CycleGAN, and ICNN-MFFN in 

descending order. ICNN-MFFN-AM preserved high 

quality of the content images in converting the four 

content images into Van Gogh artistic style images. The 

error was smaller, which could better reflect the 

subjective evaluation of image quality, while retaining 

the structural information. The style conversion of 

Ukiyo-e is shown in Figure 12. 
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Figure 12: Result of Ukiyo-e artistic style conversion 

 

Figures 12 (a) and 12 (b) respectively represent the 

PSNR and SSI values of three algorithms for converting 

four content images into Ukiyo-e style images. From 

Figure 12, the PSNR values of the four content images 

converted by ICNN-MFFN-AM were 16.259, 17.884, 

16.644 and 15.985, respectively. The standard deviation 

of the PSNR values for ICNN-MFFN-AM was 0.131. 

The SSI values were 0.752, 0.756, 0.709 and 0.783, 

respectively, and the standard deviation of SSI values of 

ICNN-MFFN-AM was 0.193. The PSNR and SSI values 

for ICNN-MFFN-AM were significantly higher than 

those of CycleGAN and ICNN-MFFN, and the standard 

deviations were lower than those of CycleGAN and 

ICNN-MFFN. The result of Monet style conversion is 

shown in Figure 13. 
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Figure 13: Monet style conversion results 

 

Figures 13 (a), 13 (b), 13 (c), and 13 (d) present the 

average PSNR and SSI values of images A, B, C, and D 

converted into Monet artistic style images using three 

algorithms 50 times, respectively. From Figure 13, 

compared with CycleGAN and ICNN-MFFN, 

ICNN-MFFN-AM also had higher PSNR and SSI values, 

indicating that CycleGAN retained more information. It 

had smaller errors when converting content images into 

Monet artistic style images. The result of the Cézanne 

style conversion is shown in Figure 14. 
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Figure 14 Cézanne style conversion results 

 

Figures 14 (a) and 14 (b) respectively represent the 

PSNR and SSI values of three algorithms for converting 

four content images into Cézanne style images. From 

Figure 14, the PSNR values of image B converted by 

ICNN-MFFN-AM, CycleGAN and ICNN-MFFN were 

22.291 (P<0.05), 21.331 (P<0.05) and 19.844 (P<0.05), 

respectively. The standard deviations of PSNR values for 

ICNN-MFFN-AM, CycleGAN and ICNN-MFFN were 
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0.122, 0.231 and 0.063, respectively. The SSI values of 

ICNN-MFFN-AM, CycleGAN and ICNN-MFFN were 

0.843 (P<0.05), 0.801 (P<0.05) and 0.714 (P<0.05), 

respectively. The standard deviations of SSI values for 

ICNN-MFFN-AM, CycleGAN and ICNN-MFFN were 

0.041, 0.063 and 0.084, respectively. ICNN-MFFN-AM 

was more likely to inherit the color and texture  

information of the source image when converting styles,  

 

achieving the best image conversion effect. The above 

research results indicate that ICNN-MFFN-AM has 

superior image conversion performance and significant 

advantages in image conversion tasks. The visualization 

results of ICNN-MFFN-AM converting four content 

images into Van Gogh style, Ukiyo-e style, Monet style, 

and Cézanne style are shown in Figure 15. 

 

 

Figure 15: Visualization results of artistic image style conversion 

 

Figures 15 (a), 15 (b), 15 (c), and 15 (d) present the 

results of ICNN-MFFN-AM converting four content 

images into Van Gogh style, Ukiyo-e style, Monet style, 

and C é zanne style. From Figure 15, the 

ICNN-MFFN-AM could naturally convert content images 

into different artistic styles while retaining the original 

content. 

5 Conclusion 

The artistic image style conversion technology aims to 

convert the style of one image into another image, which 

has broad application prospects. However, existing 

methods have certain limitations in processing large-scale 

image data and performing style conversion while 

preserving content. This study was based on the MSFF 

network and attention mechanism to convert artistic 

image styles. The main contributions of the research 

included an improved CNN structure, which enhanced 

the feature extraction capability through adaptive 

normalization and multi-scale feature fusion technology. 

An efficient channel attention mechanism was introduced, 

which enabled the network to focus more on the key 

features of the image, and improved the naturalness and 

accuracy of style conversion. The results showed that 

when converting 8000 images, the conversion time of 

ICNN-MFFN-AM, CycleGAN, and ICNN-MFFN was 

61.2s, 118.5s, and 137.6s, respectively. The 

ICNN-MFFN-AM had higher efficiency in artistic image 

style conversion, and lower CPU and memory usage. The 

PSNR and SSI values of the three algorithms in 

descending order were ICNN-MFFN-AM, CycleGAN, 

and ICNN-MFFN. After converting content images into 

different artistic styles, ICNN-MFFN-AM could naturally 

convert them into the required artistic style while 

retaining the original content. The artistic image style 

conversion method based on MSFF network proposed in 

the study has achieved significant improvements in image 

conversion quality and speed. In the future research, from 

the perspective of practical application, the research will 

study how to combine user interaction and allow users to 

guide the style conversion process to generate an image 

style that is more in line with user expectations. 

6 Discussion 

The proposed artistic image style conversion realizes 

efficient style conversion of content images through 

multi-scale feature fusion network and attention 

mechanism. First of all, compared with the unsupervised 

dense network proposed by Zhou et al. [4], the research 

method is more refined in feature extraction. The 

introduced attention mechanism pays more attention to 

the important features of artistic images, so as to better 

retain the details of content images in the style conversion. 

Compared with the traditional CNN style conversion 

algorithm, this study significantly improves the detail 

effect and overall quality of style conversion by 

improving the CNN structure, and using adaptive 

normalization and multi-scale feature fusion techniques. 

In addition, by reducing the large convolution kernel in 

the conversion network, the number of parameters is 
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reduced, the conversion speed is increased, and the slow 

operation speed in the traditional method is solved. 

Compared with advanced methods such as CycleGAN, 

the research method showed lower consumption in 

conversion time, CPU usage, and memory usage, 

indicating higher efficiency. Thanks to the design of the 

multi-scale feature fusion network, it allows the network 

to consider local details and overall structure at different 

levels simultaneously, thus achieving a better balance in 

the task of artistic image style conversion. The 

multi-scale feature fusion network combined with 

attention mechanism provides a new perspective in the 

artistic image style conversion. This combination not 

only improves the quality and efficiency of style 

conversion, but also achieves a deeper understanding and 

expression of artistic style through more detailed feature 

extraction and fusion. 
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